Skeletons

• A number of patterns recur frequently in the body of parallel algorithms.

These patterns are composed of

- computations and
- the interactions between them.

The patterns can be conceptually abstracted from the details of the activities they control.

- This leads to (algorithmic) skeletons which are
 - higher-order functions
 - with an associated parallel evaluation strategy and
 - a cost (performance) model to estimate the execution time
- Campbell's classification:
 - divide and conquer (recursively partitioned)
 - task queue (work pool, master worker)
 - systolic (pipeline)

Divide and Conquer

• <u>higher order function</u>:

d&c :: (a-> Bool) -> (a->b) -> (a -> [a]) -> ([b] -> b) -> a -> b

- d&c trivial solve divide conquer p
 - = if (trivial p) then solve p

else conquer (map (d&c trivial solve divide conquer) (divide p))

- parallel implementations:
 - idealised implementation on tree of processors
 - H-tree implementation of binary d&c on a grid:

Task Queue - Farm - Master/Worker

• <u>higher order function:</u>

farm :: (a -> b -> c) -> a -> [b] -> [c] farm f env = map (f env)

- implementation:
 - static task distribution:

- dynamic task distribution:

• <u>cost model</u> (static distr.): $t_{farm} = t_{setup} + n/p (t_{solve} + 2t_{comm})$

Systolic Scheme - Pipelining

- <u>higher order function:</u>
 - pipe :: [[a] -> [a]] -> [a] -> [a]

pipe = foldr (.) id

• implementation:

linear pipeline of processes

• <u>cost model</u>: $t_{pipe} = t_{setup} + (t_{stage} + t_{comm})(p + n-1)$

Skeletal Programming

• fixed number of higher-order skeletons

(algorithmic skeletons)

 different highly optimized implementations for different target architectures (architectural skeletons)

- **Programming Methodology**:
 - choose suitable skeletons
 - compose them in a program
 - estimate its expected performance => cost model
 - make changes in design, if necessary => transformation rules

History

• origin:

PhD thesis of M. Cole (Univ. of Edinburgh, 1988) few complex skeletons:

- FDDC (fixed degree divide & conquer)
- IC (iterative combination)
- TQ (task queue)

• first systems:

- P³L Pisa Parallel Programming Language [Pelagatti et al. 1995] based on imperative computation language
- SCL Structured Coordination Language [Darlington et al. 1995] based on functional computation language

SCL - Structured Coordination Language

layered skeletal approach:

program's parallel behavior including data partitioning, placement, movement

skeletons cannot be called from sequential code

 provides lower level of detailed control through explicitly distributed arrays ParArray with skeletons:

partition :: Partition_pattern -> SeqArray index a

-> ParArray index (SeqArray index a)

gather :: Partition_pattern -> ParArray index (SeqArray index a)

-> SeqArray index a

align :: ParArray index a -> ParArray index b -> ParArray index (a,b)

- higher level skeletons:
 - elementary skeletons (data parallel operations over distributed arrays)
 - computational skeletons (parallel control flow)
 - communication skeletons

SCL Skeletons

• elementary

- map :: (a -> b) -> ParArray index a -> ParArray index b
- imap :: (index -> a -> b) -> ParArray index a -> ParArray index b
- fold :: (a -> a -> a) -> ParArray index a -> a
- scan :: (a -> a -> a) -> ParArray index a -> ParArray index a
- computational
 - farm :: (a -> b -> c) -> a -> ParArray index b -> ParArray index c
 farm f e = map (f e)

```
    spmd :: [ (ParArray index a -> ParArray index a, index -> a -> a) ] ->
ParArray index a -> ParArray index a
spmd [] = id
spmd ((gf, lf) : fs) = (spmd fs) . gf . (imap lf)
    ...
```

- communication
 - rotate :: Int -> ParArray index a -> ParArray index a

- ...

Standardisierung – Skelettbibliotheken für MPI –

- H. Kuchen (Univ. Münster, 2002)
 - Skelette als C++ Bibliothek auf der Basis von MPI
 - Polymorphie über Templates simulieren
 - Funktionen höherer Ordnung mittels überladener
 Operatoren
 - Unterscheidung
 - datenparallele Skelette
 - Manipulation verteilter Datenstrukturen
 - Berechnungsskelette: map, fold, zip, scan ...
 - Kommunikationsskelette: rotate, broadcast, permute, gather ...
 - kontrollparallele Skelette

 pipe, farm, d&c, search
 Erzeuge Prozesstopologie
 starte Tasks (parallele Prozesse)

Standardisierung – Skelettbibliotheken für MPI II –

- M. Cole, A. Benoit (Univ. of Edinburgh, 2004)
 - eSkel Edinburgh Skeleton Library
 - Ziel: Erweiterung von kollektiven Operationen (einfache Skelette) in MPI um algorithmische Skelette
 - Zur Zeit: 5 Skelette
 - 1. pipeline
 - 2. farm
 - 3. deal (wie farm, ohne farmer mit zyklischer Taskverteilung)
 - 4. haloswap -> iterative Approximation
 - Schleife mit
 - local update
 - check for termination
 - 5. butterfly -> divide & conquer in hypercube

Deal in Pipeline

Butterfly

Pipeline Skelett

=> 15 Parameter:

- 3 Parameter für Pipeline Eingaben
- 4 Parameter für Pipeline Ausgaben
- 3 Parameter für Pipeline-Stufen-Spezifikation
- 4 Parameter für Schnittstellen & Modi
- 1 Parameter für Kommunikator

Transformation of Skeletal Programs

- Problem: composition of skeletons
 - try to predict impact on performance -> cost model required
 - develop transformation rules
- [Gorlatch, Lengauer 1997]: (De)Composition Rules for Parallel Scan and Reduction, Workshop on Massively Parallel Programming Models
 - Expressiveness:

How much ground does the class of (almost-)homomorphisms cover?

- Implementation:

How can the homomorphism skeleton be implemented efficiently on parallel computers?

- Composition:

Are certain compositions of standard homomorphisms good candidates for new homomorphic skeletons? How can these be optimized further?

- Decomposition:

Can a more complex homomorphism be decomposed into simpler homomorphisms, with the result of improved performance?

- Performance:

How portable are skeleton implementations?

Homomorphisms

- Functions are defined on non-empty finite lists, with list concatenation ++ as constructor.
- Definition: Function h on lists is a homomorphism iff there exists a binary operator
 such that, for all lists xs and ys:
 h (xs ++ ys) = h xs
 h ys
- \otimes is necessarily associative, because ++ is associative.
- Examples:
 - Mapping: map f $[x_1, x_2, ..., x_n] = [f x_1, f x_2, ..., f x_n]$
 - Reduction: red (\oplus) $[x_1, x_2, ..., x_n] = x_1 \oplus x_2 ... \oplus x_n$
 - Scanning:

scan (\oplus)[$x_1, x_2, ..., x_n$] = [$x_1, x_1 \oplus x_2, ..., x_1 \oplus x_2 ... \oplus x_n$] with associative operator \oplus

Properties of Homomorphisms

• Normal form: Function h is a homomorphism iff it can be factored into the composition

 $h = red (\otimes)^{\circ} map f$ with f a = h [a]

for every element a and \otimes is from the definition of homomorphisms.

- Promotion property: $h^{\circ} red (++) = red (\otimes)^{\circ} map h$
- Transformations: Functional programs consisting of homomorphisms can be transformed using semantics-preserving equational rules, e.g.

Scan-Reduce Composition

Let scanred (\otimes , \oplus) := red (\oplus) ° scan (\otimes). We assume that \otimes distributes over \oplus : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c).

An almost-homomorphism is a function that becomes a homomorphism when tupled with one or more auxiliary functions. When tupled with function red scanred becomes the homomorphism scanred':

```
scanred' (\otimes,\oplus) x := (scanred (\otimes,\oplus) x , red (\otimes) x)
```

For arbitrary binary, associative operators \otimes and \oplus , such that \otimes
distributes over \oplus :red (\oplus) ° scan (\otimes) = π_1 ° red ($<\oplus$, \otimes >) ° map pairwherepairx:= (x,x)and(s_1,r_1) < \oplus, \otimes> (s_2,r_2):= (s_1 \oplus (r_1 \otimes s_2), r_1 \otimes r_2).

Scan - Scan - Composition

For arbitrary binary, associative operators \otimes and \oplus , where \otimes distributes over \oplus ,

scan (\oplus) ° scan (\otimes) = map π_1 ° scan ($\langle \oplus, \otimes \rangle$) ° map pair

This result can be derived using the auxiliary function

inits
$$[x_1, x_2, ..., x_n] = [[x_1], [x_1, x_2], ..., [x_1, x_2, ..., x_n]]$$

and the following identities

- map (f ° g) = map f ° map g
- scan (\otimes) = map (red (\otimes)) ° inits
- inits ° map f = map (map f) ° inits
- inits ° scan (\otimes) = map (scan (\otimes)) ° inits

Hypercube Implementation

- Properties:
 - An elementary operation takes one unit of computation time.
 - Communication links are bidirectional:

Two neighboring processors can send messages of size m to each other simultaneously in time

 $t_s + m t_w$,

where t_s is the start-up time and t_w is the per-word transfer time.

- A processor is allowed to send/receive messages on only one of its links at a time.
- The computation time it takes to split or concatenate lists within a processor is ignored.
- Time for scan on hypercube using powerlist implementation:

$\log p (t_s + m (t_w + 2))$

where p is the number of processor elements and m is the number of list elements per processor element.

• Time for red: $\log p (t_s + m (t_w + 1))$

Performance Evaluation

• Scan-Red Performance:

 $\frac{\operatorname{red}(\oplus) \circ \operatorname{scan}(\otimes)}{\log p \ (2 \ t_s + m \ (2 \ t_w + 3))} = \frac{\pi_1 \circ \operatorname{red}(\langle \oplus, \otimes \rangle) \circ \operatorname{map pair}}{\log p \ (t_s + m \ (2 \ t_w + 3))}$