PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik und Informatik Prof. Dr. R. Loogen D-35032 Marburg Hans Meerwein Straße Lahnberge

1. Leistungskontrolle zur "Theoretischen Informatik"

10. Mai 2005

TT	•	•	
н	1	$\mathbf{n}\mathbf{wei}$	co.
	1	TI W CT	oc.

Bearbeitungszeit: 25 MinutenGesamtpunktzahl: 25 Punkte

In beiden Leistungskontrollen sind **insgesamt mindestens 30 Punkte** zu erwerben.

- Es sind keine Hilfsmittel erlaubt!
- Bitte lösen Sie jede Aufgabe auf einem separaten Blatt und versehen Sie jedes Blatt mit Ihrem Namen!

Name:	• • • •	• • • •	••	•••	••	••	• •	 	• •	• •	••				• •	 ••	• •	•	••	• •	•	••	•	••	• •	• •	••	• •
MatN	Jr.: .							 	•	Γ.	Tu1	to	r(:	in):								•					•

Aufgabe	max. Punktzahl	erreichte Punktzahl	korrigiert von
1	13		
2	4		
3	8		
Summe	25		

Aufgaben

1. Es sei $\Sigma = \{0, 1\}$ und $L = \{ w \in \Sigma^* \{01, 10, 11\} \mid |w| \ge 3 \}$.

13 Punkte

(a) Geben Sie einen NFA A_1 mit $L(A_1) = L$ an.

/ 3

(b) Konstruieren Sie einen DFA A_2 mit $L(A_2) = L$.

/ 5

(c) Ist Ihr DFA minimal?

/ 5

Geben Sie im Falle der Minimalität in Tabellenform zu jedem Zustandspaar ein Wort an, das die Nichtäquivalenz der Zustände zeigt, und bestimmen Sie im Falle der Nicht-Minimalität den Minimalautomaten.

2. Beweisen oder widerlegen Sie:

4 Punkte

$$L_1 \in \mathcal{L}(\Sigma, DFA) \wedge L_2 \subseteq L_1 \curvearrowright L_2 \in \mathcal{L}(\Sigma, DFA).$$

3. Seien Σ ein Alphabet mit $\$ \not\in \Sigma$ und $L \in \mathcal{L}(\Sigma, DFA)$.

8 Punkte

Ferner sei $L_{\$} := \{u\$v \mid uv \in L\}.$

Konstruieren Sie einen DFA \mathcal{A} mit $L(\mathcal{A}) = L_{\$}$.

Aufgaben

1. Es sei $\Sigma = \{a, b\}$ und $L = \Sigma^*\{a\}\Sigma^*\{a\} \cup \Sigma^*\{b\}\Sigma^*\{b\}$.

13 Punkte

(a) Geben Sie einen NFA A_1 mit $L(A_1) = L$ an.

/ 3

(b) Konstruieren Sie einen DFA A_2 mit $L(A_2) = L$.

/ 5

(c) Ist Ihr DFA minimal?

/ 5

Geben Sie im Falle der Minimalität in Tabellenform zu jedem Zustandspaar ein Wort an, das die Nichtäquivalenz der Zustände zeigt, und bestimmen Sie im Falle der Nicht-Minimalität den Minimalautomaten.

2. Beweisen oder widerlegen Sie:

4 Punkte

$$L_1L_2 \in \mathcal{L}(\Sigma, DFA) \wedge L_2 \in \mathcal{L}(\Sigma, DFA) \curvearrowright L_1 \in \mathcal{L}(\Sigma, DFA).$$

3. Seien Σ ein Alphabet und $L \in \mathcal{L}(\Sigma, DFA)$.

8 Punkte

Konstruieren Sie einen DFA \mathcal{A} mit

$$L(A) = L \cap \{w \in \Sigma^* \mid |w| \text{ mod } 4 = 1\}.$$