PHILIPPS-UNIVERSITÄT MARBURG

Fachbereich Mathematik Informatik Prof. Dr. R. Loogen

D-35032 Marburg Hans Meerwein Straße Lahnberge 14. Juni 2005

Übungen zur "Theoretischen Informatik", Sommersemester 2005

Nr. 10, Abgabe: Dienstag, 21. Juni 2005 vor der Vorlesung

A. Hausaufgaben

43. Das Spektrum einer formalen Sprache L ist folgendermaßen definiert:

4 Punkte

$$S(L) := \{ |w| \mid w \in L \} \subseteq \mathbb{N}.$$

Dabei bezeichnet |w| für $w \in \Sigma^*$ die Länge von w.

Die Spektralfolge $Sf(L) := (n_0, n_1, n_2, ...)$ ist die streng monoton steigende Folge aller Elemente von S(L).

(a) Beweisen Sie, dass es zu einer kontextfreien Sprache L mit nicht-leerem Spektrum S(L) ein $m \in \mathbb{N}$ gibt, so dass für die Spektralfolge Sf(L) gilt:

$$n_{i+1} - n_i \leq m$$
 für alle $i \in \mathbb{N}$.

(b) Geben Sie diejenigen Polynome $P(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x + a_0$ an, deren Wertebereich das Spektrum einer kontextfreien Sprache ist.

44. Die Grammatik $\mathcal{G} = (\{S\}, \{(,)\}, P, S)$ mit $P: S \rightarrow () \mid (S) \mid SS$ erzeugt die Sprache K der wohlgeformten Klammerausdrücke.

4 Punkte

Geben Sie eine ausführlich kommentierte Turingmaschine an, die die Sprache K akzeptiert.

45. Eine Turingmaschine heißt rechtsseitig, falls sie niemals ein Feld auf dem Turingband benutzt, welches links von dem Eingabewort der Anfangskonfiguration liegt.

4 Punkte

Zeigen Sie, dass es zu jeder Turingmaschine eine äquivalente rechtsseitige gibt.

B. Mündliche Aufgabe

46. Zu $L \subseteq \Sigma^*$ sei $perm(L) \subseteq \Sigma^*$ die Menge aller Permutationen von Wörtern in L. Dabei heißt w Permutation von v, falls die Buchstaben von w so umgestellt werden können, dass sich v ergibt.

Beispiel: $perm(\{a^nb^n \mid n > 0\}) = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}.$

- (a) Geben Sie mit Begründung ein Beispiel für eine reguläre Sprache L über dem Alphabet $\{a, b\}$ an, so dass perm(L) nicht regulär ist.
- (b) Geben Sie mit Begründung ein Beispiel für eine reguläre Sprache L über dem Alphabet $\{a, b, c\}$ an, so dass perm(L) nicht kontextfrei ist.
- (c) Zeigen Sie, dass für jede reguläre Sprache L über einem zweielementigen Alphabet perm(L) kontextfrei ist.

Hinweis: Gehen Sie von einem DFA α für L aus und konstruieren Sie einen PDA \mathcal{Z} für perm(L). Begründen Sie, warum \mathcal{Z} perm(L) erkennt.