
Tackling the Awkward Squad:
monadic input/output, concurrency, exceptions, and

foreign-language calls in Haskell

Simon PEYTON JONES

Microsoft Research, Cambridge

simonpj@microsoft.com

http://research.microsoft.com/users/simonpj

23rd May 2005

Abstract

Functional programming may be beautiful, but to write real applications we must grapple
with awkward real-world issues: input/output, robustness, concurrency, and interfacing to
programs written in other languages.

These lecture notes give an overview of the techniques that have been developed by the
Haskell community to address these problems. I introduce various proposed extensions to
Haskell along the way, and I offer an operational semantics that explains what these exten-
sions mean.

This tutorial was given at the Marktoberdorf Summer School 2000. It will appears in the
book “Engineering theories of software construction, Marktoberdorf Summer School 2000”,
ed CAR Hoare, M Broy, and R Steinbrueggen, NATO ASI Series, IOS Press, 2001, pp47-96.

This version has a few errors corrected compared with the published version. Change
summary:

� May 2005: Section 6: correct the way in which the FFI declares an imported function
to be pure (no “unsafe” necessary).

� Apr 2005: Section 5.2.2: some examples added to clarify evaluate.
� March 2002: substantial revision

1 Introduction

There are lots of books about functional programming in Haskell [44, 14, 7]. They tend to con-
centrate on the beautiful core of functional programming: higher order functions, algebraic data
types, polymorphic type systems, and so on. These lecture notes are about the bits that usually
aren’t written about. To write programs that are useful as well as beautiful, the programmer
must, in the end, confront the Awkward Squad, a range of un-beautiful but crucial issues, gener-
ally concerning interaction with the external world:

� Input and output.

� Error detection and recovery; for example, perhaps the program should time out if some-
thing does not happen in time.

� Concurrency, when the program must react in a timely way to independent input sources.

� Interfacing to libraries or components written in some other language.

The call-by-value (or strict) family of functional languages have generally taken a pragmatic
approach to these questions, mostly by adopting a similar approach to that taken by imperative
languages. You want to print something? No problem; we’ll just have a function printChar
that has the side effect of printing a character. Of course, printChar isn’t really a function any
more (because it has a side effect), but in practice this approach works just fine, provided you
are prepared to specify order of evaluation as part of the language design — and that is just what
almost all other programming languages do, from FORTRAN and Java to mostly-functional ones
like Lisp, and Standard ML.

Call-by-need (or lazy) languages, such as Haskell, wear a hair shirt because their evaluation order
is deliberately unspecified. Suppose that we were to extend Haskell by adding side-effecting
“functions” such as printChar. Now consider this list

xs = [printChar ’a’, printChar ’b’]

(The square brackets and commas denote a list in Haskell.) What on earth might this mean?
In SML, evaluating this binding would print ’a’ followed by ’b’. But in Haskell, the calls
to printChar will only be executed if the elements of the list are evaluated. For example, if
the only use of xs is in the call (length xs), then nothing at all will be printed, because
length does not touch the elements of the list.

The bottom line is that laziness and side effects are, from a practical point of view, incompatible.
If you want to use a lazy language, it pretty much has to be a purely functional language; if you
want to use side effects, you had better use a strict language.

For a long time this situation was rather embarrassing for the lazy community: even the in-
put/output story for purely-functional languages was weak and unconvincing, let alone error
recovery, concurrency, etc. Over the last few years, a surprising solution has emerged: the

2

monad. I say “surprising” because anything with as exotic a name as “monad” — derived from
category theory, one of the most abstract branches of mathematics — is unlikely to be very
useful to red-blooded programmers. But one of the joys of functional programming is the way
in which apparently-exotic theory can have a direct and practical application, and the monadic
story is a good example. Using monads we have found how to structure programs that perform
input/output so that we can, in effect, do imperative programming where that is what we want,
and only where we want. Indeed, the IO monad is the unifying theme of these notes.

The “standard” version of Haskell is Haskell 98, which comes with an I/O library that uses the
monadic approach. However, Haskell 98 is not rich enough to deal with the rest of the Awkward
Squad (exceptions, concurrency, etc), so we have extended Haskell 98 in a number of experi-
mental ways, adding support for concurrency [35], exceptions [37, 29], and a foreign-language
interface [36, 11]. So far, these developments have mostly been documented in scattered research
papers; my purpose in these lectures is to gather some of it together into a coherent account. In
what follows, when I refer to “Haskell”, I will always mean Haskell 98, rather than earlier ver-
sions of the language, unless otherwise specified.

As a motivating example, we will explore the issues involved in writing a web server in Haskell.
It makes an interesting case study because it involves every member of the Awkward Squad:

� It is I/O intensive.

� It requires concurrency.

� It requires interaction with pre-existing low-level I/O libraries.

� It requires robustness. Dropped connections must time out; it must be possible to recon-
figure the server without dropping running connections; errors must be logged.

The Haskell web server we use as a case study is remarkably small [27]. It uses only 1500 lines of
Haskell to implement (more than) the HTTP/1.1 standard. It is robust enough to run continuously
for weeks at a time, and its performance is broadly comparable with the widely-used Apache
server. Apache handles 950 connections/sec on the machine we used, while the Haskell web
server handles 700 connections/sec. But this is a bit of an apples-and-oranges comparison: on
the one hand Apache has much more functionality while, on the other, the Haskell web server
has had very little performance tuning applied.

I began this introduction by saying that we must confront the Awkward Squad if we are to write
useful programs. Does that mean that useful programs are awkward? You must judge for your-
self, but I believe that the monadic approach to programming, in which actions are first class
values, is itself interesting, beautiful, and modular. In short, Haskell is the world’s finest imper-
ative programming language.

3

I O a
Wor l d outWor l d in

result::a

put Char

()Char

get Char

Char

put Char

()

get Char

Char

get Char >>= put Char

r et ur n

aa

Haskel l
pr ogr am

[Request][Response]

r et ur n

act

Discard world

Invent
world

unsaf ePer f or mI O act

Result

get Char : : I O Char put Char : : Char - > I O ()

Figure 1: The stream I/O model

2 Input and output

The first member of the Awkward Squad is input/output, and that is what we tackle first.

2.1 The problem

We begin with an apparently fundamental conflict. A purely functional program implements
a function; it has no side effect. Yet the ultimate purpose of running a program is invariably
to cause some side effect: a changed file, some new pixels on the screen, a message sent, or
whatever. Indeed it’s a bit cheeky to call input/output “awkward” at all. I/O is the raison d’être
of every program. — a program that had no observable effect whatsoever (no input, no output)
would not be very useful.

Well, if the side effect can’t be in the functional program, it will have to be outside it. For
example, perhaps the functional program could be a function mapping an input character string
to an output string:

main :: String -> String

Now a “wrapper” program, written in (gasp!) C, can get an input string from somewhere (a
specified file, for example, or the standard input), apply the function to it, and store the result
string somewhere (another file, or the standard output). Our functional programs must remain
pure, so we locate all sinfulness in the “wrapper”.

The trouble is that one sin leads to another. What if you want to read more than one file? Or write
more than one file? Or delete files, or open sockets, or sleep for a specified time, . . . ? The next
alternative, and one actually adopted by the first version of Haskell, is to enrich the argument and
result type of the main function:

main :: [Response] -> [Request]

Now the program takes as its argument a (lazy) list of Response values and produces a (lazy)
list of Request values (Figure 1). Informally a Request says something like “please get
the contents of file /etc/motd”, while a Response might say “the contents you wanted is

4

No email today”. More concretely, Request and Response are both ordinary algebraic
data types, something like this:

type FilePath = String

data Request = ReadFile FilePath
| WriteFile FilePath String
|

data Response = RequestFailed
| ReadSucceeded String
| WriteSucceeded
| ...

There is still a wrapper program, as before. It repeatedly takes a request off the result list, acts
on the request, and attaches an appropriate response to the argument list. There has to be some
clever footwork to deal with the fact that the function has to be applied to a list of responses
before there are any responses in the list, but that isn’t a problem in a lazy setting.

This request/response story is expressive enough that it was adopted as the main input/output
model in the first version of Haskell, but it has several defects:

� It is hard to extend. New input or output facilities can be added only by extending the
Request and Response types, and by changing the “wrapper” program. Ordinary
users are unlikely to be able to do this.

� There is no very close connection between a request and its corresponding response. It is
extremely easy to write a program that gets one or more “out of step”.

� Even if the program remains in step, it is easy to accidentally evaluate the response stream
too eagerly, and thereby block emitting a request until the response to that request has
arrived – which it won’t.

Rather than elaborate on these shortcomings, we move swiftly on to a better solution, namely
monadic I/O. Hudak and Sundaresh give a useful survey of approaches to purely-functional in-
put/output [15], which describes the pre-monadic state of play.

2.2 Monadic I/O

The big breakthrough in input/output for purely-functional languages came when we learned
how to use so-called monads as a general structuring mechanism for functional programs. Here
is the key idea:

A value of type IO a is an “action” that, when performed, may do some in-
put/output, before delivering a value of type a.

5

This is an admirably abstract statement, and I would not be surprised if it means almost nothing
to you at the moment. So here is another, more concrete way of looking at these “actions”:

type IO a = World -> (a, World)

This type definition says that a value of type IO a is a function that, when applied to an argu-
ment of type World, delivers a new World together with a result of type a. The idea is rather
program-centric: the program takes the state of the entire world as its input, and delivers a mod-
ified world as a result, modified by the effects of running the program. I will say in Section 3.1
why I don’t think this view of IO actions as functions is entirely satisfactory, but it generates
many of the right intuitions, so I will use it unashamedly for a while. We may visualise a value
of type IO a like this:

IO� a
World outWorld in

result::a

putChar

()Char

getChar

Char

putChar

()

getChar

Char

getChar� >>=� putChar

return

aa

Haskell
program

[Request][Response]

return

act

Discard�world

Invent�
world

unsafePerformIO� act

Result

getChar� ::� IO� Char putChar ::� Char� ->� IO� ()

The World is fed in on the left, while the new World, and the result of type a, emerge on the
right. In general, we will call a value of type IO a an I/O action or just action. In the literature
you will often also find them called computations.

We can give IO types to some familiar operations, which are supplied as primitive:

getChar :: IO Char
putChar :: Char -> IO ()

getChar is an I/O action that, when performed, reads a character from the standard input
(thereby having an effect on the world outside the program), and returns it to the program as
the result of the action. putChar is a function that takes a character and returns an action that,
when performed, prints the character on the standard output (its effect on the external world), and
returns the trivial value (). The pictures for these actions look like this (the box for putChar
takes an extra input for the Char argument):

IO� a
World outWorld in

result::a

putChar

()Char

getChar

Char

putChar

()

getChar

Char

getChar� >>=� putChar

return

aa

Haskell
program

[Request][Response]

return

act

Discard�world

Invent�
world

unsafePerformIO� act

Result

getChar� ::� IO� Char putChar ::� Char� ->� IO� ()

Suppose we want to read a character, and print the character we have read. Then we need to glue
together putChar and getChar into a compound action, like this:

6

IO� a
World outWorld in

result::a

putChar

()Char

getChar

Char

putChar

()

getChar

Char

getChar� >>=� putChar

return

aa

Haskell
program

[Request][Response]

return

act

Discard�world

Invent�
world

unsafePerformIO� act

Result

getChar� ::� IO� Char putChar ::� Char� ->� IO� ()

To achieve this we use a glue function, or combinator, also provided as primitive:

(>>=) :: IO a -> (a -> IO b) -> IO b

echo :: IO ()
echo = getChar >>= putChar

The combinator (>>=) is often pronounced “bind”. It implements sequential composition: it
passes the result of performing the first action to the (parameterised) second action. More pre-
cisely, when the compound action (a >>= f) is performed, it performs action a, takes the
result, applies f to it to get a new action, and then performs that new action. In the echo exam-
ple, (getChar >>= putChar) first performs the action getChar, yielding a character � ,
and then performs putChar � .

Suppose that we wanted to perform echo twice in succession. We can’t say
(echo >>= echo), because (>>=) expects a function as its second argument, not an ac-
tion. Indeed, we want to throw away the result, (), of the first echo. It is convenient to define
a second glue combinator, (>>), in terms of the first:

(>>) :: IO a -> IO b -> IO b
(>>) a1 a2 = a1 >>= (\x -> a2)

The term (\x -> a2) is Haskell’s notation for a lambda abstraction. This particular abstrac-
tion simply consumes the argument, x, throws it away, and returns a2. Now we can write

echoTwice :: IO ()
echoTwice = echo >> echo

“(>>)” is often pronounced “then”, so we can read the right hand side as “echo then echo”.

In practice, it is very common for the second argument of (>>=) to be an explicit lambda
abstraction. For example, here is how we could read a character and print it twice:

echoDup :: IO ()
echoDup = getChar >>= (\c -> (putChar c >> putChar c))

All the parentheses in this example are optional, because a lambda abstraction extends as far to
the right as possible, and you will often see this laid out like this:

echoDup :: IO ()
echoDup = getChar >>= \c ->

putChar c >>

7

putChar c

The fact that this looks a bit like a sequence of imperative actions is no coincidence — that is
exactly what we wish to specify. Indeed, in Section 2.3 we will introduce special syntax to mirror
an imperative program even more closely.

How could we write an I/O action that reads two characters, and returns both of them? We can
start well enough:

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
???

But what are we to put for the “???” part? It must be of type IO (Char,Char), but we have
done all the input/output required. What we need is one more combinator:

return :: a -> IO a

The action (return v) is an action that does no I/O, and immediately returns v without
having any side effects. We may draw its picture like this:

IO� a
World outWorld in

result::a

putChar

()Char

getChar

Char

putChar

()

getChar

Char

getChar� >>=� putChar

return

aa

Haskell
program

[Request][Response]

return

act

Discard�world

Invent�
world

unsafePerformIO� act

Result

getChar� ::� IO� Char putChar ::� Char� ->� IO� ()

Now we can easily complete getTwoChars:

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
return (c1,c2)

Here is a more realistic action that reads a whole line of input:

getLine :: IO [Char]
getLine = getChar >>= \c ->

if c == ’\n’ then
return []

else
getLine >>= \cs ->
return (c : cs)

In this example, the “[]” is Haskell’s notation for the empty list, while the infix constructor “:”
is the list constructor.

A complete Haskell program defines a single big I/O action, called main, of type IO (). The
program is executed by performing the action. Here, for example, is a program that reads a
complete line from the input, reverses it, and prints it on the output:

8

main :: IO ()
main = getLine >>= \ cs ->

putLine (reverse cs)

We have not yet defined putLine :: [Char] -> IO (); we leave it as an exercise.

Notice that the only operation that combines, or composes I/O actions is (>>=), and it treats
the world in a single-threaded way. That is, it takes the world produced from the first action and
passes it on to the second action. The world is never duplicated or thrown away, no matter what
code the programmer writes. It is this property that allows us to implement getChar (and other
IO primitives) by performing the operation right away — a sort of “update in place”. I will say
more about implementation in Section 2.8.

You might worry that there is an unbounded number of possible I/O “primitives”, such as
putChar and getChar, and you would be right. Some operations can be defined in terms
of existing ones (such as getLine) but many cannot. What is needed, of course, is a way to call
arbitrary I/O libraries supplied by the operating system, a topic I discuss in detail in Section 6.

2.3 “do” notation

Rather than make you write programs in the stylised form of the last section, Haskell provides a
special syntax, dubbed “the do notation”, for monadic computations. Using the do notation we
can write getTwoChars as follows:

getTwoChars :: IO (Char,Char)
getTwoChars = do { c1 <- getChar ;

c2 <- getChar ;
return (c1,c2)

}

You can leave out the “c <-” part when you want to throw away the result of the action:

putTwoChars :: (Char,Char) -> IO ()
putTwoChars (c1,c2) = do { putChar c1; putChar c2 }

The syntax is much more convenient than using (>>=) and lambdas, so in practice everyone
uses do notation for I/O-intensive programs in Haskell. But it is just notation! The compiler
translates the do notation into calls to (>>=), just as before. The translation rules are simple1:

do { � <- � ; � } � � >>= \ � -> do { � }
do { � ; � } � � >> do { � }

do { � } � �

It follows from this translation that the do statement “x <- e” binds the variable x. It does
not assign to the location x, as would be the case in an imperative program. If we use the same
variable name twice on the left hand side, we bind two distinct variables. For example:

1Haskell also allows a let form in do notation, but we omit that for brevity.

9

do { c <- getChar ; -- c :: Char
c <- putChar c ; -- c :: ()
return c

}

The first line binds c to the character returned by getChar. The second line feeds that c to
putChar and binds a distinct c to the value returned by putChar, namely (). This example
also demonstrates that the scope of x bound by “x <- e” does not include e.

A do expression can appear anywhere that an expression can (as long as it is correctly typed).
Here, for example, is getLine in do notation; it uses a nested do expression:

getLine :: IO [Char]
getLine = do { c <- getChar ;

if c == ’\n’ then
return []

else
do { cs <- getLine ;

return (c:cs)
} }

2.4 Control structures

If monadic I/O lets us do imperative programming, what corresponds to the control structures of
imperative languages: for-loops, while-loops, and so on? In fact, we do not need to add anything
further to get them: we can build them out of functions.

For example, after some initialisation our web server goes into an infinite loop, awaiting service
requests. We can easily express an infinite loop as a combinator:

forever :: IO () -> IO ()
forever a = a >> forever a

So (forever a) is an action that repeats a forever; this iteration is achieved through the
recursion of forever. Suppose instead that we want to repeat a given action a specified number
of times. That is, we want a function:

repeatN :: Int -> IO a -> IO ()

So (repeatN n a) is an action that, when performed, will repeat a n times. It is easy to
define:

repeatN 0 a = return ()
repeatN n a = a >> repeatN (n-1) a

Notice that forever and repeatN, like (>>) and (>>=), take an action as one of their
arguments. It is this ability to treat an action as a first class value that allows us to define our own
control structures. Next, a for loop:

10

for :: [a] -> (a -> IO ()) -> IO ()

The idea is that (for ns fa) will apply the function fa to each element of ns in turn, in
each case giving an action; these actions are then combined in sequence.

for [] fa = return ()
for (n:ns) fa = fa n >> for ns fa

We can use for to print the numbers between 1 and 10, thus:

printNums = for [1..10] print

(Here, [1..10] is Haskell notation for the list of integers between 1 and 10; and print has
type Int -> IO ().) Another way to define for is this:

for ns fa = sequence_ (map fa ns)

Here, map applies fa to each element of ns, giving a list of actions; then sequence_ combines
these actions together in sequence. So sequence_ has the type

sequence_ :: [IO a] -> IO ()
sequence_ as = foldr (>>) (return ()) as

The “_” in “sequence_” reminds us that it throws away the results of the sub-actions, returning
only (). We call this function “sequence_” because it has a close cousin, with an even more
beautiful type:

sequence :: [IO a] -> IO [a]

It takes a list of actions, each returning a result of type a, and glues them together into a single
compound action returning a result of type [a]. It is easily defined:

sequence [] = return []
sequence (a:as) = do { r <- a;

rs <- sequence as ;
return (r:rs) }

Notice what is happening here. Instead of having a fixed collection of control structures provided
by the language designer, we are free to invent new ones, perhaps application-specific, as the need
arises. This is an extremely powerful technique.

2.5 References

The IO operations so far allow us to write programs that do input/output in strictly-
sequentialised, imperative fashion. It is natural to ask whether we can also model another per-
vasive feature of imperative languages, namely mutable variables. Taking inspiration from ML’s
ref types, we can proceed like this:

data IORef a -- An abstract type
newIORef :: a -> IO (IORef a)

11

readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

A value of type IORef a is a reference to a mutable cell holding a value of type a. A new
cell can be allocated using newIORef, supplying an initial value. Cells can be read and written
using readIORef and writeIORef.

Here is a small loop to compute the sum of the values between 1 and n in an imperative style:

count :: Int -> IO Int
count n = do { r <- newIORef 0 ;

loop r 1 }
where
loop :: IORef Int -> Int -> IO Int
loop r i | i>n = readIORef r

| otherwise = do { v <- readIORef r ;
writeIORef r (v+i) ;
loop r (i+1) }

Just for comparison, here is what it might look like in C:

count(int n) {
int i, v = 0 ;
for (i=1; i<=n; i++) { v = v+i ; }
return(v) ;

}

But this is an absolutely terrible example! For a start, the program is much longer and clumsier
than it would be in a purely-functional style (e.g. simply sum [1..n]). Moreover, it purports
to need the IO monad but does not really require any side effects at all. Thus, the IO monad
enables us to transliterate an imperative program into Haskell, but if that’s what you want to do,
it would be better to use an imperative language in the first place!

Nevertheless, an IORef is often useful to “track” the state of some external-world object. For
example, Haskell 98 provides a direct analogy of the Standard C library functions for opening,
reading, and writing a file:

openFile :: String -> IOMode -> IO Handle
hPutStr :: Handle -> [Char] -> IO ()
hGetLine :: Handle -> IO [Char]
hClose :: Handle -> IO ()

Now, suppose you wanted to record how many characters were read or written to a file. A
convenient way to do this is to arrange that hPutStr and hGetLine each increment a mutable
variable suitably. The IORef can be held in a modified Handle:

type HandleC = (Handle, IORef Int)

12

Now we can define a variant of openFile that creates a mutable variable as well as opening
the file, returning a HandleC; and variants of hPutStr and hGetLine that take a HandleC
and modify the mutable variable appropriately. For example:

openFileC :: String -> IOMode -> IO HandleC
openFileC fn mode = do { h <- openFile fn mode ;

v <- newIORef 0 ;
return (h,v) }

hPutStrC :: HandleC -> String -> IO ()
hPutStrC (h,r) cs = do { v <- readIORef r ;

writeIORef r (v + length cs) ;
hPutStr h cs }

In this example, the mutable variable models (part of) the state of the file being written to, by
tracking the number of characters written to the file. Since the file itself is, in effect, an external
mutable variable, it is not surprising that an internal mutable variable is appropriate to model its
state.

2.6 Leaving the safety belt at home

I have been careful to introduce the IO monad as an abstract data type: that is, a type together
with a collection of operations over that type. In particular, we have:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char
putChar :: Char -> IO ()
...more operations on characters...

openFile :: [Char] -> IOMode -> IO Handle
...more operations on files...

newIORef :: a -> IO (IORef a)
...more operations on IORefs...

A key feature of an abstract data type is what it prevents as well as what it permits. In particular,
notice the following:

� All the operations except one, (>>=), have an I/O action as their result, but do not take
one as an argument.

� The only operation that combines I/O actions is (>>=).

13

� The IO monad is “sticky”: no operation takes argument(s) with an IO type and returns a
result with a non-IO type.

Sometimes, however, such restrictions are irksome. For example, suppose you wanted to read a
configuration file to get some options for your program, using code something like this:

configFileContents :: [String]
configFileContents = lines (readFile "config") -- WRONG!

useOptimisation :: Bool
useOptimisation = "optimise" ‘elem‘ configFileContents

Here, lines :: String -> [String] is a standard function that breaks a string into
its constituent lines, while elem :: Eq a => a -> [a] -> Bool tells whether its first
argument is a member of its second argument. Alas, the code is not type correct, because
readFile has type

readFile :: FilePath -> IO String

So readFile produces an IO String, while lines consumes a String. We can “solve”
this by giving configFileContents the type IO String, and useOptimisation
the type IO Bool, plus some changes to the code. But that means we can only test
useOptimisationwhen we are in the IO monad2, which would be very inconvenient! What
we want is a way to get from IO String to String, but that is the very thing we cannot do
in the IO monad!

There is a good reason for this: reading a file is an I/O action, so in principle it matters when
we read the file, relative to all the other I/O operations in the program. But in this case, we are
confident that the file configwill not change during the program run, so it really doesn’t matter
when we read it. This sort of thing happens often enough that all Haskell implementations offer
one more, unsafe, I/O primitive:

unsafePerformIO :: IO a -> a

Now we can write

configFileContents :: [String]
configFileContents = lines (unsafePerformIO (readFile "config"))

and all is well. This combinator has a deliberately long name! Whenever you use it, you are
promising the compiler that the timing of this I/O operation, relative to all the other I/O operations
of the program, does not matter. You must undertake this proof obligation, because the compiler
cannot do it for you; that is what the “unsafe” prefix means. Just to make the point even
clearer, here is the “plumbing diagram” for unsafePerformIO:

2We would also need to be careful not to read the file every time we tested the boolean!

14

IO� a
World outWorld in

result::a

putChar

()Char

getChar

Char

putChar

()

getChar

Char

getChar� >>=� putChar

return

aa

Haskell
program

[Request][Response]

return

act

Discard�world

Invent�
world

unsafePerformIO� act

Result

getChar� ::� IO� Char putChar ::� Char� ->� IO� ()

As you can see, we have to invent a world out of thin air, and then discard it afterwards.

unsafePerformIO is a dangerous weapon, and I advise you against using it extensively.
unsafePerformIO is best regarded as a tool for systems programmers and library writ-
ers, rather than for casual programmers. Because the input/output it encapsulates can happen
at unpredictable moments (or even not at all) you need to know what you are doing. What
is less obvious is that you can also use it to defeat the Haskell type, by writing a function
cast :: a -> b; see [25]!

unsafePerformIO is often mis-used to force an imperative program into a purely-functional
setting. This a bit like using a using a chain saw to repair a dishwasher — it’s the wrong tool for
the job. Such programs can invariably be restructured into a cleaner, functional form. Neverthe-
less, when the proof obligations are satisfied, unsafePerformIO can be extremely useful. In
practice, I have encountered three very common patterns of usage:

� Performing once-per-run input/output, as for configFileContents.

� Allocating a global mutable variable. For example:

noOfOpenFiles :: IORef Int
noOfOpenFiles = unsafePerformIO (newIORef 0)

� Emitting trace messages for debugging purposes:

trace :: String -> a -> a
trace s x = unsafePerformIO (putStrLn s >> return x)

2.7 A quick review

Let us summarise what we have learned so far:

� A complete Haskell program is a single (perhaps large) I/O action called main.

� Big I/O actions are built by gluing together smaller actions using (>>=) and return.

15

� An I/O action is a first-class value. It can be passed to a function as an argument, or
returned as the result of a function call (consider (>>), for example). Similarly, it can be
stored in a data structure — consider the argument to sequence, for example.

� The fact that I/O actions can be passed around so freely makes it easy to define new “glue”
combinators in terms in existing ones.

Monads were originally invented in a branch of mathematics called category theory, which is
increasingly being applied to describe the semantics of programming languages. Eugenio Moggi
first identified the usefulness of monads to describe composable “computations” [32]. Moggi’s
work, while brilliant, is not for the faint hearted. For practical programmers the breakthrough
came in Phil Wadler’s paper “Comprehending monads” [47], in which he described the useful-
ness of monads in a programming context. Wadler wrote several more very readable papers about
monads, which I highly recommend [48, 49, 50]. He and I built directly on this work to write the
first paper about monadic I/O [38].

In general, a monad is a triple of a type constructor
�

, and two functions, return and >>=,
with types

return ���������	��
 � �
>>= ���������� � ��
 ����
 � ���
 �

That is not quite all: these three must satisfy the following algebraic laws:

return � >>= � � � � ���������! ��
" >>= return � " ��#$�%�&�' &�

�)(* �,+,� ".- �"0/ >>= �21 �3� ".4 >>= �2165,� ".- �7� � � "0/ >>= �21 �3� ".4 �7� >>= ��1859� ".- � ��:��;�=<>�

(In this box and ones like it, I use names like (LUNIT) simply as a convenient way to refer to
laws from the running text.) The last of these rules, (BIND), is much easier to understand when
written in do notation:

do { � <- "?/ ;
5 <- ".4 ;".- �

do { 5 <- do { � <- "0/ ;".4 }".- }
In any correct implementation of the IO monad, return and (>>=) should satisfy these prop-
erties. In these notes I present only one monad, the IO monad, but a single program may make
use of many different monads, each with its own type constructor, @ �BADC8@FE and GIH2E�J operators.
Haskell’s type class mechanism allows one to overload the functions return and (>>=) so
they can be used in any monad, and the do notation can likewise be used for any monad. Wadler’s
papers, cited above, give many examples of other monads, but we do not have space to pursue
that topic here.

16

2.8 Implementation notes

How difficult is it for a compiler-writer to implement the IO monad? There seem to be two main
alternatives.

Keep the monad right through. The first technique carries the IO monad right through the
compiler to the code generator. Most functional-language compilers translate the source
program to an intermediate form based closely on the lambda calculus, apply optimising
transformations to that intermediate form, and then generate code. It is entirely possible
to extend the intermediate form by adding monadic constructs. One could simply add
(>>=) and return as primitives, but it makes transformation much easier if one adds
the do-notation directly, instead of a primitive (>>=) function. (Compare the two forms
of the (BIND) rule given in the previous section.) This is the approach taken by Benton
and Kennedy in MLj, their implementation of ML [6].

The functional encoding. The second approach, and the one used in the Glasgow Haskell Com-
piler (GHC), is to adopt the functional viewpoint of the IO monad, which formed the basis
of our earlier pictorial descriptions:

type IO a = World -> (a, World)

If we represent the “world” argument by an un-forgeable token, of type World, then we
can directly implement return and (>>=) like this:

return :: a -> IO a
return a = \w -> (a,w)

(>>=) :: IO a -> (a -> IO b) -> IO b
(>>=) m k = \w -> case m w of

(r,w’) -> k r w’

Here w is the un-forgeable token that stands for the world. In the definition of (>>=) we
see that the world returned by the first action is passed to the second, just as in the picture
in Section 2.2. We must also implement the primitive IO operations, such as getChar,
but that is now no different to implementing other primitive operations, such as addition of
two integers.

So which of these two approaches is better? Keeping the IO monad explicit is principled, but it
means that every optimisation pass must deal explicitly with the new constructs. GHC’s approach
is more economical. For example, the three laws in Section 2.7, regarded as optimisations, are
simple consequences and need no special attention. All the same, I have to say that I think the
GHC approach is a bit of a hack. Why? Because it relies for its correctness on the fact that the
compiler never duplicates a redex. Consider this expression:

17

getChar >>= \c -> (putChar c >> putChar c)

If we use GHC’s definitions of (>>=) we can translate this to:

\w -> case getChar w of
(c,w1) -> case putChar c w1 of

(_,w2) -> putChar c w2

The compiler would be entirely justified in replacing this code with:

\w -> case getChar w of
(c,w1) -> case putChar c w1 of

(_,w2) -> putChar (fst (getChar w)) w2

Here I have replaced the second use of c with another call to getChar w. Two bad things have
happened: first, the incoming world token, w, has been duplicated; and second, there will now
be two calls to getChar instead of one. If this happens, our assumption of single-threadedness
no longer holds, and neither does our efficient “update-in-place” implementation of getChar.
Catastrophe!

In the functional language Clean, the whole I/O system is built on an explicit world-passing style.
The single-threadedness of the world is ensured by Clean’s uniqueness-type system, which ver-
ifies that values which should be single-threaded (notably the world) are indeed used in single
threaded way [4]. In Haskell, the IO monad maintains the world’s single-threadedness by con-
struction; so the programmer cannot err, but it is in principle possible for the compiler to do
so.

In practice, GHC is careful never to duplicate an expression whose duplication might give rise to
extra work (a redex), so it will never duplicate the call to getChar in this way. Indeed, Ariola
and Sabry have shown formally that if the compiler never duplicates redexes, then indeed our
implementation strategy is safe [2]. So GHC’s approach is sound, but it is uncomfortable that
an apparently semantics-preserving transformation, such as that above, does not preserve the
semantics at all. This observation leads us neatly to the next question I want to discuss, namely
how to give a semantics to the Awkward Squad.

3 What does it all mean?

It is always a good thing to give a precise semantics to a language feature. How, then, can we
give a semantics for the IO monad? In this section I will describe the best way I know to answer
this question. I will introduce notation as we go, so you should not need any prior experience of
operational semantics to understand this section. You can also safely skip to Section 4. Never-
theless, I urge to persevere, because I will use the same formal framework later, to explain the
semantics of concurrency and exceptions.

18

3.1 A denotational semantics?

One approach to semantics is to take the functional viewpoint I described earlier:

type IO a = World -> (a, World)

In this view, the meaning of an action is just a function. One can make this story work, but it is a
bit unsatisfactory:

� Regarded as a function on Worlds, this program

loop :: IO ()
loop = loop

has denotation bottom (�). But, alas, this program

loopX :: IO ()
loopX = putChar ’x’ >> loopX

unfortunately also has denotation � . Yet these programs would be regarded as highly
distinguishable by a user (one loops for ever, the other prints ’x’ for ever). Nor is the
problem restricted to erroneous programs: some programs (server processes, for example)
may be designed to run essentially forever, and it seems wrong to say that their meaning is
simply � !

� Consider two Haskell programs running in parallel, each sending output to the other —
a Web server and a Web browser, for example. The output of each must form part of the
World given as the input to the other. Maybe it would be possible to deal with this through
a fixpoint operator, but it seems complicated and un-intuitive (to me anyway!).

� The approach does not scale well when we add concurrency, which we will do in Section 4.

These problems may be soluble while remaining in a denotational framework, perhaps by pro-
ducing a sequence of Worlds, or by returning a set of traces rather than a new World. To give
the idea of the trace approach, we model IO like this:

type IO a = (a, Set Trace)
type Trace = [Event]
data Event = PutChar Char | GetChar Char | ...

A program that reads one character, and echoes it back to the screen, would have semantics

((), { [GetChar ’a’, PutChar ’a’],
[GetChar ’b’, PutChar ’b’],
[GetChar ’c’, PutChar ’c’],
... })

19

���;5 * �������	��
���� * ���������������
���FE * ���������	�����������

� * �! ����

Values " ��� � \ � ->
� # � #

���FE � /%$&$&$ �(')# �#
return

� #	�
>>= *#

putChar �
#
getChar

Terms
� �+*,�.- ��� � �

# " #	� * #
if

�
then * / else * 4 # $&$&$

Evaluation contexts / ��� � 0 $21 # / >>= �

Figure 2: The syntax of values and terms.

We return a set of traces, because the trace contains details of inputs as well as outputs, so there
must be a trace for each possible input. The set of traces describes all the behaviours the program
can have, and no others. For example [GetChar ’x’, PutChar ’y’] is excluded.

This approach is used to give the semantics of CSP by Roscoe [42]. However we will instead
adopt an operational semantics, based on standard approaches to the semantics of process cal-
culi [31]. Ultimately, I think the two approaches have similar power, but I find the operational
approach simpler and easier to understand.

3.2 An operational semantics

Our semantics is stratified in two levels: an inner denotational semantics that describes the be-
haviour of pure terms, while an outer monadic transition semantics describes the behaviour of IO
computations. We consider a simplified version of Haskell: our language has the usual features
of a lazy functional language (lambda abstraction, application, data structures, case expressions,
etc.), augmented with constants corresponding to IO operations. We will only present those el-
ements of the syntax that are relevant to the semantics; other aspects (such as how we represent
lists, or how to write a case expression) would not aid comprehension of the semantics, and are
not presented.
�

and * range over terms in our language, and " ranges over values (Figure 2). A value is a
term that is considered by the inner, purely-functional semantics to be evaluated. The values in
Figure 2 include constants and lambda abstractions, as usual, but they are unusual in two ways:

� We treat the primitive monadic IO operations as values. For example, putChar ’c’ is a
value. No further work can be done on this term in the purely-functional world; it is time

20

to hand it over to the outer, monadic semantics. In the same way,
�
>>= * , getChar,

and return
�

are all values.

� Some of these monadic IO values have arguments that are not arbitrary terms (
� �+* , etc.),

but are themselves values (e.g. �). The only example in Figure 2 is the value putChar �
but others will appear later. So putChar ’A’ is a value, but putChar (chr 65)
is not (it is a term, though). It is as if putChar is a strict data constructor. The reason
for this choice is that evaluating putChar’s argument is something that can be done in
the purely-functional world; indeed, it must be done before the output operation can take
place.

We will give the semantics by describing how one program state evolves into a new program
state by making a transition. For now, we model a program state simply as a term, but we write
it in curly braces, thus � ��� , to remind us that it is a program state.

3.3 Labelled transitions

The transition from one program state to the next may or may not be labelled by an event, � . So
we write a transition like this: � ��
 �
The events � represent communication with the external environment; that is, input and output.
Initially we will use just two events:

�

�
! ��
 � means “program state

�
can move to � , by writing the character � to the

standard output”.

�

�
? ��
 � means “program state

�
can move to � , by reading the character � from the

standard input”.

Here, then, are our first two transition rules.

� putChar � � ! ��
 � return () �
� getChar � ? ��
 � return � �

The first rule says that a program consisting only of putChar � can make a transition, labelled
by ! � , to a program consisting of return (). The second rule is similar. But most programs
consist of more than a single I/O action! What are we to do then? To answer that question we
introduce evaluation contexts.

21

� / 0putChar � 1 � ! ��
 � / 0return () 1 � ��� �& � �
� / 0 getChar1 � ? ��
 � / 0return � 1 � ����� � �

� / 0return * >>=
� 1 � �
 � / 0 � * 1 � ���������! ��

� 0 0 � 1 1 � " � (� "
� / 0 � 1 � �
 � / 02" 1 � ��� �%� �

Figure 3: The basic transition rules

3.4 Evaluation contexts

The getChar transition rule is all very well, but what if the program consists of more than a
single getChar? For example, consider the program3:

main = getChar >>= \c -> putChar (toUpper c)

Which is the first I/O action that should be performed? The getChar, of course! We need a
way to say “the first I/O action to perform is to the left of the (>>=)”. Sometimes we may have
to look to the left of more than one (>>=). Consider the slightly artificial program

main = (getChar >>= \c -> getChar) >>= \d -> return ()

Here, the first I/O action to be performed is the leftmost getChar. In general, to find the first
I/O action we “look down the left branch of the tree of (>>=) nodes”.

We can formalise all this arm-waving by using the now well-established notion of an evaluation
context [9, 52]. The syntax of evaluation contexts is this (Figure 2):

/ ��� � 0 $ 1 # / >>= �
An evaluation context / is a term with a hole, written 0 $21 , in it. For example, here are three
possible evaluation contexts:

/ / � 0 $ 1
/ 4 � 0 $ 1 >>= (\c -> return (ord c))
/ - � (0 $21 >>= f) >>= g

In each case the “ 0 $ 1 ” indicates the location of the hole in the expression. We write / 0 � 1 to denote
the result of filling the hole in / with the term

�
. Here are various ways of filling the holes in

our examples:

/ / 0print "hello"1 � print "hello"
/ 4 0getChar 1 � getChar >>= (\c -> return (ord c))
/ - 0newIORef True 1 � (newIORef True >>= f) >>= g

3toUpper :: Char -> Char converts a lower-case character to upper case, and leaves other characters
unchanged.

22

Using the notation of evaluation contexts, we can give the real rules for putChar and
getChar, in Figure 3. In general we will give each transition rule in a figure, and give it a
name — such as (PUTC) and (GETC) — for easy reference.

The rule for (PUTC), for example, should be read: “if a putChar occurs as the next I/O action,
in a context / 0 $21 , the program can make a transition, emitting a character and replacing the call
to putChar by return ()”. This holds for any evaluation context / 0 $ 1 .
Let us see how to make transitions using our example program:

main = getChar >>= \c -> putChar (toUpper c)

Using rule (GETC) and the evaluation context � 0 $21 >>= \c -> putChar (toUpper c �7� ,
and assuming that the environment delivers the character ’w’ in response to the getChar, we
can make the transition:

� getChar >>= \c -> putChar (toUpper c)
�

?’w’� � � �

� return ’w’ >>= \c -> putChar (toUpper c)

�
How did we choose the correct evaluation context? The best way to see is to try choosing another
one! The context we chose is the only one formed by the syntax in Figure 2 that allows any
transition rule to fire. For example the context 0 $21 , which is certainly well-formed, would force
the term in the hole to be getChar >>= \c -> putChar (toUpper c), and no rule
matches that. The context simply reaches down the left-branching chain of (>>=) combinators
to reach the left-most action that is ready to execute.

What next? We use the (LUNIT) law of Section 2.7, expressed as a new transition rule:

� / 0 return * >>=
� 1 � �
 � / 0 � * 1 � �����%�&�' &�

Using this rule, we make the transition

� return ’w’ >>= \c -> putChar (toUpper c)
�

�

� (\c -> putChar (toUpper c)) ’w’

�
Now we need to do some ordinary, purely-functional evaluation work. We express this by “lift-
ing” the inner denotational semantics into our transition system, like this (the “(FUN)” stands for
“functional”): � 0 0 � 1 1 � " � (� "

� / 0 � 1 � �
 � / 02" 1 � ��� �%� �

That is, if the term
�

has value " , as computed by the denotational semantics of
�

, namely� 0 0 � 1 1 , then we can replace
�

by " at the active site. The function
� 0 0 1 1 is a mathematical

function that given a term
�

, returns its value
� 0 0 � 1 1 . This function defines the semantics of the

purely-functional part of the language – indeed,
� 0 0 1 1 is called the denotational semantics of the

23

language. Denotational semantics is well described in many books [43, 1], so we will not study
it here; meanwhile, you can simply think of

� 0 0 � 1 1 as the value obtained by evaluating
� 4.

The side condition
� (� " is just there to prevent the rule firing repeatedly without making

progress, because
� 0 02" 1 1 � " for any " . Rule (FUN) allows us to make the following transition,

using normal beta reduction:

� (\c -> putChar (toUpper c)) ’w’
� �
 � putChar ’W’

�

In making this transition, notice that
� 0 0 1 1 produced the value putChar ’W’, and not

putChar (toUpper ’w’). As we discussed towards the end of Section 3.2, we model
putChar as a strict constructor.

Now we can use the putChar rule to emit the character:

� putChar ’W’
� !’W’� � � �
 � return ()

�

And now the program is finished.

Referring back to the difficulties identified in Section 3.1, we can now distinguish a program
loop that simply loops forever, from program loopX that repeatedly prints ’x’ forever. These
programs both have denotation � in a (simple) denotational semantics (Section 3.1), but they
have different behaviours in our operational semantics. loopX will repeatedly make a transition
with the label !x. But what happens to loop? To put it another way, what happens in rule (FUN)
if
� 0 0 � 1 1 � � ? The simplest thing to say is that then there is no value " such that

� 0 0 � 1 1 � " ,
and so (FUN) cannot fire. So no rule applies, and the program is stuck. This constitutes an
observably different sequence of transitions than loopX5.

Lastly, before we leave the topic of evaluation contexts, let us note that the term
�

in rule (FUN)
always has type IO � for some type � ; that is, an evaluation context / 0 $ 1 always has an I/O action
in its hole. (Why? Because the hole in an evaluation context is either the whole program, of
type IO (), or the left argument of a (>>=), of type IO � for some � .) So there is no need to
explain how the program (say) � True � behaves, because it is ill-typed.

24

@ *
IORef

" ��� � � � � # writeIORef @ * #
readIORef @ #

newIORef
� # @

�
� � � � ��� � � ��� The main program# � �����

An IORef named @ , holding
�

� # � Parallel composition# �
�3�
�

Restriction

� / 0readIORef @ 1 � #�� ����� �
 � / 0 return � 1 � #�� ����� � # �	��<=��
 �
� / 0 writeIORef @ * 1 � #�� ���� �
 � / 0 return () 1 � #�� * ��� ��� # �! � ��
 �

@ (*���� � / � � �
� / 0 newIORef � 1 � �
 � @ � � � / 0 return @ 1 � #��2����� � ��� ��� ��
 �

Figure 4: Extensions for IORefs

3.5 Dealing with IORefs

Let us now add IORefs to our operational semantics. The modifications we need are given in
Figure 4:

� We add a new sort of value for each IORef primitive; namely newIORef, readIORef,
and writeIORef.

� We add a new sort of value for IORef identifiers, @ . An IORef identifier is the value
returned by newIORef — you can think of it as the address of the mutable cell.

� We extend a program state to be a main thread � � � , as before, together with zero or more
IORefs, each associated with a reference identifier @ .

The syntax for program states in Figure 4 might initially be surprising. We use a vertical bar to
join the main thread and the IORefs into a program state. For example, here is a program state

4I am being a bit sloppy here, because a denotational semantics yields a mathematical value, not a term in the
original language, but in fact nothing important is being swept under the carpet here. From a technical point of view
it may well be simpler, in the end, to adopt an operational semantics for the inner purely-functional part too, but that
would be a distraction here. Notice, too, that the valuation function of a denotational semantics would usually have
an environment, � . But the rule (FUN) only requires the value of a closed term, so the environment is empty.

5By “observable” I mean “observable looking only at the labelled transitions”; the labelled transitions constitute
the interaction of the program with its environment. You may argue that we should not say that loop gets “stuck”
when actually it is in an infinite loop. For example, the program forever (return ()) is also an infinite loop
with no external interactions, and it makes an infinite sequence of (unlabelled) transitions. If you prefer, one can
instead add a variant of (FUN) that makes an un-labelled transition to an unchanged state if ��� ����� ����� . Then loop
would also make an infinite sequence of un-labelled transitions. It’s just a matter of taste.

25

� # � � � # � � �
���� �� # � � # � � � �
� # � � # � � �����
 � ��

�3� � 5,�
�

� � 59� � �3�
�

��� � � � �
� � �3�
�
� # � � �

�3� �
� # � ��� �	�
��������� �����. %#$��< � ��

�3�
�

� � 59�
�
0 5�� � 1 � 5��* ��� �

�
� � ��� ��� � �

� ��
 �� # � ��
 � # � � � ��#��
� ��
 ��

�3�
� ��
 �

�3� � � �.���
�

�
��� ��� ��
 �

�
�

�
� �� ��
 � ����� �,� � �

Figure 5: Structural congruence, and structural transitions.

for a program that has (so far) allocated two IORefs, called @ / and @ 4 respectively:

� ��� #�� * / ��� � #�� * 4 ���"!
If you like, you can think of running the (active) program

�
in parallel with two (passive)

containers @ / and @ 4 , containing * / and * 4 respectively.

Here are the rules for reading and writing IORefs:

� / 0readIORef @ 1 � # � ���� �
 � / 0return � 1 � #�� ���� � # � ��<=��
 �
� / 0 writeIORef @ * 1 � #�� ���� �
 � / 0 return () 1 � #�� * ��� ��� # �! � ��
 �

The rule for readIORef says that if the next I/O action in the main program is readIORef @ ,
and the main program is parallel with an IORef named @ containing

�
, then the action

readIORef @ can be replaced by return
� 6. This transition is quite similar to that for

getChar, except that the transition is unlabelled because it is internal to the program — re-
member that only labelled transitions represent interaction with the external environment.

We have several tiresome details to fix up. First, we originally said that the transitions were
for whole program states, but these two are for only part of a program state; there might be
other IORefs, for example. Second, what if the main program was not adjacent to the relevant
IORef? We want to say somehow that it can become adjacent to whichever IORef it pleases.
To formalise these matters we have to give several “structural” rules, given in Figure 5. Rule
(PAR), for example, says that if

�
can move to � , then

�
in parallel with anything (

�
) can move

to � in parallel with the same anything — in short, non-participating pieces of the program
state are unaffected. The equivalence rules (COMM), (ASSOC) say that

#
is associative and

6The alert reader will notice that (READIO) duplicates the term � , and hence models call-by-name rather
that call-by-need. It is straightforward to model call-by-need, by adding a heap to the operational semantics, as
Launchbury first showed [24]. However, doing so adds extra notational clutter that is nothing do to with the main
point of this tutorial. In this tutorial I take the simpler path of modelling call-by-name.

26

commutative, while (EQUIV) says that we are free to use these equivalence rules to bring parts
of the program state together. In these rules, we take � to range over both events, such as ! � and
?
� , and also over the empty label. (In the literature, you will often see the empty event written

� .)

It’s all a formal game. If you read papers about operational semantics you will see these rules
over and over again, so it’s worth becoming comfortable with them. They aren’t optional though;
if you want to conduct water-tight proofs about what can happen, it’s important to specify the
whole system in a formal way.

Here is the rule for newIORef:

@ (*���� � / � � �
� / 0 newIORef � 1 � �
 � @ � � � / 0 return @ 1 � #��2����� � ��� ��� ��
 �

If the next I/O action in the main program is to create a new IORef, then it makes a transition to a
new state in which the main program is in parallel with a newly-created (and suitably initialised)
IORef named @ . What is @ ? It is an arbitrary name whose only constraint is that it must not
already be used in

�
, or in the evaluation context / . That is what the side condition " (*��� � / � � � means — ��� � / � � � means “the free names of / and

�
”.

Here is an example of working through the semantics for the following program:

main = newIORef 0 >>= \ v ->
readIORef v >>= \ n ->
writeIORef v (n+1)

The program allocates a new IORef, reads it, increments its contents and writes back the new
value. The semantics works like this, where I have saved space by abbreviating “newIORef” to
“new” and similarly for readIORef and writeIORef:

�
new 0 >>= \v -> read v >>= \n -> write v (n+1) ��� ����� � � return � >>= \v -> read v >>= \n -> write v (n+1) �
	�� 0 � � ����������� �

�� ����� � � (\v -> read v >>= \n -> write v (n+1)) � ��	�� 0 � � �������������
�� ����� � � read � >>= \n -> write � (n+1)) ��	�� 0 � � ��� �!� �
�� ����� � � return 0 >>= \n -> write � (n+1)) �"	#� 0 � � ��$%�'&�(���� �
�� ����� � � (\n -> write � (n+1)) 0 ��	#� 0 � � �������������
�� ����� � � write � (0+1)) �
	�� 0 � � ��� �!� �
�� ����� � � return () �"	#� 0+1 � � �)��$*�����'��� �

It should be clear that naming a new IORef with a name that is already in use would be a Bad
Thing. That is the reason for the side condition on rule (NEWIO) says that @ cannot be mentioned
in / or

�
. But what if @ was in use somewhere else in the program state — remember that there

may be other threads running in parallel with the one we are considering? That is the purpose of
the “

� @ ” part: it restricts the scope of @ . Having introduced
�

in this way, we need a number of
structural rules (Figure 5) to let us move

�
around. Notably, (EXTRUDE) lets us move all the

27

�
’s to the outside. Before we can use (EXTRUDE), though, we may need to use (ALPHA) to

change our mind about the name we chose if we come across a name-clash. Once all the
�

’s are
at the outside, they don’t get in the way at all.

4 Concurrency

A web server works by listening for connection requests on a particular socket. When it receives
a request, it establishes a connection and engages in a bi-directional conversation with the client.
Early versions of the HTTP protocol limited this conversation to one utterance in each direction
(“please send me this page”; “ok, here it is”), but more recent versions of HTTP allow multiple
exchanges to take place, and that is what we do here.

If a web server is to service multiple clients, it must deal concurrently with each client. It is
simply not acceptable to deal with clients one at a time. The obvious thing to do is to fork a
new thread of some kind for each new client. The server therefore must be a concurrent Haskell
program.

I make a sharp distinction between parallelism and concurrency:

� A parallel functional program uses multiple processors to gain performance. For example,
it may be faster to evaluate � /�� � 4 by evaluating � / and � 4 in parallel, and then add the
results. Parallelism has no semantic impact at all: the meaning of a program is unchanged
whether it is executed sequentially or in parallel. Furthermore, the results are deterministic;
there is no possibility that a parallel program will give one result in one run and a different
result in a different run.

� In contrast, a concurrent program has concurrency as part of its specification. The program
must run concurrent threads, each of which can independently perform input/output. The
program may be run on many processors, or on one — that is an implementation choice.
The behaviour of the program is, necessarily and by design, non-deterministic. Hence,
unlike parallelism, concurrency has a substantial semantic impact.

Of these two, my focus in these notes is exclusively on concurrency, not parallelism. For those
who are interested, a good introduction to parallel functional programming is [46], while a recent
book gives a comprehensive coverage [12].

Concurrent Haskell [35] is an extension to Haskell 98 designed to support concurrent program-
ming, and we turn next to its design.

28

4.1 Threads and forkIO

Here is the main loop of the web server:

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket
= forever (do { conn <- accept socket ;

forkIO (serviceConn config conn) })

(We defined forever in Section 2.4.) This infinite loop repeatedly calls accept, a Haskell
function that calls the Unix procedure of the same name (via mechanisms we will discuss in
Section 6), to accept a new connection. accept returns, as part of its result, a Handle that can
be used to communicate with the client.

accept :: Socket -> IO Connection

type Connection = (Handle, -- Read from here
SockAddr) -- Peer details

Having established a connection, acceptConnections then uses forkIO to fork off a fresh
thread, (serviceConn config conn), to service that connection. The type of forkIO
is this:

forkIO :: IO a -> IO ThreadId

It takes an I/O action and arranges to run it concurrently with the “parent” thread. The call to
forkIO returns immediately, returning as its result an identifier for the forked thread. We will
see in Section 5.3 what this ThreadId can be used for.

Notice that the forked thread doesn’t need to be passed any parameters, as is common in C
threads packages. The forked action is a full closure that captures the values of its free variables.
In this case, the forked action is (serviceConn config conn), which obviously captures
the free variables config and conn.

A thread may go to sleep for a specified number of microseconds by calling threadDelay:

threadDelay :: Int -> IO ()

forkIO is dangerous in a similar way that unsafePerformIO is dangerous (Section 2.6).
I/O actions performed in the parent thread may interleave in an arbitrary fashion with I/O actions
performed in the forked thread. Sometimes that is fine (e.g. the threads are painting different
windows on the screen), but at other times we want the threads to co-operate more closely. To
support such co-operation we need a synchronisation mechanism, which is what we discuss next.

4.2 Communication and MVars

Suppose we want to add some sort of throttling mechanism, so that when there are more than
N threads running the server does something different (e.g. stops accepting new connections

29

or something). To implement this we need to keep track of the total number of (active) forked
threads. How can we do this? The obvious solution is to have a counter that the forked thread
increments when it begins, and decrements when it is done. But we must of course be careful! If
there are lots of threads all hitting on the same counter we must make sure that we don’t get race
hazards. The increments and decrements must be indivisible.

To this end, Concurrent Haskell supports a synchronised version of an IORef called an MVar:

data MVar a -- Abstract
newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

Like an IORef, an MVar is (a reference to) a mutable location that either can contain a value
of type a, or can instead be empty. Like newIORef, newEmptyMVar creates an MVar but,
unlike an IORef, the MVar is created empty.

putMVar fills an empty MVar with a value, and takeMVar takes the contents of an MVar out,
leaving it empty. If it was empty in the first place, the call to takeMVar blocks until another
thread fills it by calling putMVar. A call to putMVar on an MVar that is already full blocks
until the MVar becomes empty7.

With the aid of MVars it is easy to implement our counter:

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket
= do { count <- newEmptyMVar ;

putMVar count 0 ;
forever (do { conn <- accept socket ;

forkIO (do { inc count ;
serviceConn config conn ;
dec count})

}) }

inc,dec :: MVar Int -> IO ()
inc count = do { v <- takeMVar count; putMVar count (v+1) }
dec count = do { v <- takeMVar count; putMVar count (v-1) }

Presumably there would also be some extra code in acceptConnections to inspect the value
of the counter, and take some action if it gets too large.

The update of the counter, performed by inc and dec is indivisible because, during the brief
moment while inc has read the counter but not yet written it back, the counter location is empty.
So any other thread that tries to use inc or dec at that moment will simply block.

7This represents a change from an earlier version of Concurrent Haskell, in which putMVar on a full MVar
was a program error.

30

" *
MVar

A *
ThreadId

J * � ������� ���

" ��� � � � � forkIO � #
threadDelay J # A # J#

putMVar " * #
takeMVar " #

newEmptyMVar
"

�
� � � � ��� � � � �# � ����� A thread called A# � �����

An MVar called " containing
�

� ���
An empty MVar called "

C (*���� � � � /9�
� / 0forkIO � 1 ��� �
 � C3� � � / 0 return C 1 ��� # � � ��� � ���
�#��0�

" (*���� � /9�
� / 0newEmptyMVar1 �	� �
 � " � � � / 0 return " 1 ��� #�� �
� � � � ��� � �

� / 0 takeMVar " 1 ��� #�� ����� �
 � / 0return � 1 ��� #�� ��� � ���� � � �
� / 0putMVar " � 1 ��� #�� ��� �
 � / 0return () 1 ��� # �2����� ��� �� � �

� / 0threadDelay J 1 ��� ���
 � / 0return () 1 ��� ��< � � ��� �

Figure 6: Extensions to support concurrency

4.3 Semantics

One of the advantages of the operational semantics we set up in Section 3 is that it can readily
be extended to support concurrency and MVars. The necessary extensions are given in Figure 6:

� We add new values to represent (a) each new primitive IO operation; (b) the name of an
MVar " , and a thread A ; (c) the integer argument of a threadDelay, J .

� We extend program states by adding a form for an MVar, both in the full state
� �����

, and
in the empty state

� ���
; and a form for a named thread � � ��� .

� We provide transition rules for the new primitives.

31

Rules (FORK) and (NEWM) work in a very similar way as the (NEWIO) rule that we described
in Section 3.5. In particular, they use

�
in an identical fashion to control the new names that are

required. Rules (PUTM) and (TAKEM) are similar to (WRITEIO) and (READIO), except that
(TAKEM) leaves the MVar empty, while (PUTM) fills it.

For the first time, the semantics of the program has become non-deterministic. If there are two
threads both of which want to take the contents of an MVar, the semantics leaves deliberately
unspecified which one “wins”. Once it has emptied the MVar with rule (TAKEM), however, the
other thread can make no progress until some other thread fills it.

The rule (DELAY) deals with threadDelay. To express the delay, I have invented an extra
event � J , which means “ J microseconds elapse”. Recall that an event indicates interaction with
the external world (Section 3.3), so I am modelling a delay as an interaction with an external
clock. This is not very satisfactory (e.g. I/O events are presumably queued up, but clock ticks
should not be), but it gives the general idea.

Notice that there is no explicit rule for “blocking” a thread when it tries to take the contents of an
MVar that is empty. All that happens is that there is no valid transition rule involving that thread,
so it stays unchanged in the program state until the MVar it is trying to take is filled.

4.4 Channels

The thread created by forkIO and its parent thread can each independently perform input and
output. We can think of the state of the world as a shared, mutable object, and race conditions
can, of course, arise. For example, if two threads are foolish enough to write to the same file,
say, bad things are likely to happen.

But what if we want to have two threads write to the same file, somehow merging their writes, at
some suitable level of granularity? Precisely this behaviour is needed in our web server, because
we want to log errors found by the client-service threads to a single error-log file. The simplest
thing to do is to create a single thread whose business is to write to the error-log file; to log an
error, a client-service thread need only send a message to the error-logging thread. But we have
just pushed the problem to a different place: what does it mean to “send a message”?

Using MVars we can define a new type of buffered channels, which we will implement in this
section:

type Channel a = ...given later...
newChan :: IO (Channel a)
putChan :: Channel a -> a -> IO ()
getChan :: Channel a -> IO a

A Channel permits multiple processes to write to it, and read from it, safely. The error-logging
thread can now repeatedly do getChan, and write the value it receives into the file; meanwhile
a client-service thread wanting to log an error can use putChan to send the error message to the
error logger.

32

Second value Third valueFirst value

Item Item Item

Channel

Read end Write end

Figure 7: A channel with unbounded buffering

One possible implementation of Channel is illustrated in Figure 7. The channel is represented
by a pair of MVars (drawn as small boxes with thick borders), that hold the read end and write
end of the buffer:

type Channel a = (MVar (Stream a), -- Read end
MVar (Stream a)) -- Write end (the hole)

The MVars in a Channel are required so that channel put and get operations can atomically
modify the write and read end of the channels respectively. The data in the buffer is held in a
Stream; that is, an MVar which is either empty (in which case there is no data in the Stream),
or holds an Item (a data type we will define shortly):

type Stream a = MVar (Item a)

An Item is just a pair of the first element of the Stream together with a Stream holding the
rest of the data:

data Item a = MkItem a (Stream a)

A Stream can therefore be thought of as a list, consisting of alternating Items and full MVars,
terminated with a “hole” consisting of an empty MVar. The write end of the channel points to
this hole.

Creating a new channel is now just a matter of creating the read and write MVars, plus one
(empty) MVar for the stream itself:

newChan = do { read <- newEmptyMVar ;
write <- newEmptyMVar ;
hole <- newEmptyMVar ;
putMVar read hole ;
putMVar write hole ;

33

return (read,write) }

Putting into the channel entails creating a new empty Stream to become the hole, extracting
the old hole and replacing it with the new hole, and then putting an Item in the old hole.

putChan (read,write) val
= do { new_hole <- newEmptyMVar ;

old_hole <- takeMVar write ;
putMVar write new_hole ;
putMVar old_hole (MkItem val new_hole) }

Getting an item from the channel is similar. In the code that follows, notice that getChan
may block at the second takeMVar if the channel is empty, until some other process does a
putChan.

getChan (read,write)
= do { head_var <- takeMVar read ;

MkItem val new_head <- takeMVar head_var ;
putMVar read new_head ;
return val }

It is worth noting that any number of processes can safely write into the channel and read from
it. The values written will be merged in (non-deterministic, scheduling-dependent) arrival order,
and each value read will go to exactly one process.

Other variants are readily programmed. For example, consider a multi-cast channel, in which
there are multiple readers, each of which should see all the values written to the channel. All that
is required is to add a new operation:

dupChan :: Channel a -> IO (Channel a)

The idea is that the channel returned by dupChan can be read independently of the original, and
sees all (and only) the data written to the channel after the dupChan call. The implementation
is simple, since it amounts to setting up a separate read pointer, initialised to the current write
pointer:

dupChan (read,write)
= do { new_read <- newEmptyMVar ;

hole <- readMVar write ;
putMVar new_read hole ;
return (new_read, write) }

34

forkIO :: IO a -> IO ThreadId
threadDelay :: Int -> IO () -- Sleep for n microseconds

data MVar a -- Abstract
newEmptyMVar :: IO (MVar a) -- Created empty
newMVar :: a -> IO (MVar a) -- Initialised

takeMVar :: MVar a -> IO a -- Blocking take
putMVar :: MVar a -> a -> IO () -- Blocking put

tryTakeMVar :: MVar a -> IO (Maybe a) -- Non-blocking take
tryPutMVar :: MVar a -> a -> IO Bool -- Non-blocking put
isEmptyMVar :: MVar a -> IO Bool -- Test for emptiness

Figure 8: The most important concurrent operations

To make the code clearer, I have used an auxiliary function, readMVar, which reads the value
of an MVar, but leaves it full:

readMVar :: MVar a -> IO a
readMVar var = do { val <- takeMVar var ;

putMVar var val ;
return val }

But watch out! We need to modify getChan as well. In particular, we must change the call
“takeMVar head_var” to “readMVar head_var”. The MVars in the bottom row of
Figure 7 are used to block the consumer when it catches up with the producer. If there are two
consumers, it is essential that they can both march down the stream without intefering with each
other. Concurrent programming is tricky!

Another easy modification, left as an exercise for the reader, is to add an inverse to getChan:

unGetChan :: Channel a -> a -> IO ()

4.5 Summary

Adding forkIO and MVars to Haskell leads to a qualitative change in the sorts of applications
one can write. The extensions are simple to describe, and our operational semantics was readily
extended to describe them. Figure 8 lists the main operations in Concurrent Haskell, including
some that we have not discussed.

You will probably have noticed the close similarity between IORefs (Section 2.5) and MVars
(Section 4.2). Are they both necessary? Probably not. In practice we find that we seldom use

35

IORefs at all:

� Although they have slightly different semantics (an IORef cannot be empty) it is easy to
simulate an IORef with an MVar (but not vice versa).

� An MVar is not much more expensive to implement than an IORef.

� An IORef is fundamentally unsafe in a concurrent program, unless you can prove that
only one thread can access it at a time.

I introduced IORefs in these notes mainly as a presentational device; they allowed me to discuss
the idea of updatable locations, and the operational machinery to support them, before getting
into concurrency.

While the primitives are simple, they are undoubtedly primitive. MVars are surprisingly of-
ten useful “as is”, especially for holding shared state, but they are a rather low-level device.
Nevertheless, they provide the raw material from which one can fashion more sophisticated ab-
stractions, and a higher-order language like Haskell is well suited for such a purpose. Channels
are an example of such an abstraction, and we give several more in [35]. Einar Karlsen’s thesis
describes a very substantial application (a programming workbench) implemented in Concurrent
Haskell, using numerous concurrency abstractions [22].

It is not the purpose of these notes to undertake a proper comparative survey of concurrent
programming, but I cannot leave this section without mentioning two other well-developed ap-
proaches to concurrency in a declarative setting. Erlang is a (strict) functional language devel-
oped at Ericsson for programming telecommunications applications, for which purpose it has
been extremely successful [3]. Erlang must be the most widely-used concurrent functional lan-
guage in the world. Concurrent ML (CML) is a concurrent extension of ML, with a notion of
first-class events and synchronisation constructs. CML’s events are similar, in some ways, to
Haskell’s IO actions. CML lays particular emphasis on concurrency abstractions, and is well
described in Reppy’s excellent book [41].

5 Exceptions and timeouts

The next member of the Awkward Squad is robustness and error recovery. A robust program
should not collapse if something unexpected happens. Of course, one tries to write programs in
such a way that they will not fail, but this approach alone is insufficient. Firstly, programmers
are fallible and, secondly, some failures simply cannot be avoided by careful programming.

Our web server, for example, should not cease to work if

� A file write fails because the disk is full.

� A client requests a seldom-used service, and that code takes the head of an empty list or
divides by zero.

36

� A client vanishes, so the client-service thread should time out and log an error.

� An error in one thread makes it go into an infinite recursion and grow its stack without
limit.

All these events are (hopefully) rare, but they are all unpredictable. In each case, though, we
would like our web server to recover from the error, and continue to offer service to existing and
new clients.

We cannot offer this level of robustness with the facilities we have described so far. We could
check for failure on every file operation, though that would be rather tedious. We could try to
avoid dividing by zero — but we will never know that we have found every bug. And timeouts
and loops are entirely inaccessible.

This is, of course, exactly what exceptions were invented for. An exception handler can enclose
an arbitrarily large body of code, and guarantee to give the programmer a chance to recover from
errors arising anywhere in that code.

5.1 Exceptions in Haskell 98

Like many languages, Haskell’s IO monad offers a simple form of exception handling. I/O
operations may raise an exception if something goes wrong, and that exception can be caught by
a handler. Here are the primitives that Haskell 98 offers:

userError :: String -> IOError
ioError :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

You can raise an exception by calling ioError passing it an argument of type IOError.
You can construct an IOError from a string using userError. Finally, you can catch an
exception with catch. The call (catch a h) is an action that, when performed, attempts to
perform the action a and return its results. However, if performing a raises an exception, then a
is abandoned, and instead (h e) is returned, where e is the IOError in the exception.

37

�
*

Exception

" ��� � � � � # ioError �
#
catch

� *
/ ��� � 0 $21 # / >>= � #

catch / �

� / 0ioError � >>=
� 1 �	� �
 � / 0ioError � 1 ��� ����
���#&#
�#��

� / 0 catch � ioError � � � 1 �	� �
 � / 0 � � 1 ��� ��������� -�� �
� / 0catch � return *0� � 1 �	� �
 � / 0return * 1 ��� ��������� -
	 �

Figure 9: Extensions for exceptions

Here is an example of how we might extend our main web-server loop:

acceptConnections :: Config -> Socket -> IO ()
acceptConnections config socket
= forever (do { conn <- accept socket ;

forkIO (service conn) }
where

service :: Connection -> IO ()
service conn = catch (serviceConn config conn)

(handler conn)

handler :: Connection -> Exception -> IO ()
handler conn e = do { logError config e ;

hClose (fst conn) }

Now the forked thread (service conn) has an exception handler wrapped around it, so that
if anything goes wrong, handler will be invoked. This handler logs the error (presumably by
sending a message to the error-logging thread through a channel held in config), and closes
the connection handle h.

Figure 9 gives the extra semantics required to support Haskell 98 exceptions, in a style that
by now will be familiar. The extra evaluation context says that we should evaluate inside a
catch. Rule (IOERROR) says that a call to ioError is propagated by (>>=); this is what
corresponds to “popping the stack” in a typical implementation. Rules (CATCH1) describes what
happens when the exception meets a catch: it is passed on to the handler. Lastly, (CATCH2)
explains that catch does nothing if execution of the protected code terminates normally with
return * .

The Haskell 98 design falls short in two ways:

� It does not handle things that might go wrong in purely-functional code, because an ex-

38

ception can only be raised in the IO monad. A pattern-match failure8, or division by zero,
brings the entire program to a halt. We address this problem in Section 5.2

� It does not deal with asynchronous exceptions. A synchronous exception arises as a di-
rect result of executing some piece of code — opening a non-existent file, for example.
Synchronous exceptions can be raised only at well-defined places. An asynchronous ex-
ception, in contrast, is raised by something in the thread’s environment: a timeout or user
interrupt is an asynchronous exception. It is useful to treat resource exhaustion, such as
stack overflow, in the same way. An asynchronous exception can strike at any time, and
this makes them much harder to deal with than their synchronous cousins. We tackle asyn-
chronous exceptions in Section 5.3

5.2 Synchronous exceptions in pure code

Why does Haskell 98 not allow the program to raise an exception in purely-functional code? The
reason is that, as with input/output, Haskell’s unconstrained order of evaluation makes it hard to
say what the program means. Suppose we invented a new primitive to raise an exception:

throw :: Exception -> a

(throw differs from ioError in that it lacks an IO on its result type.) There are two difficul-
ties:

(a) Consider the following expression:

length [throw ex1]

Does the expression raise exception ex1? Since length does not evaluate the elements of
its argument list, the answer is presumably “no”. So whether an exception is raised depends
on how much evaluation takes place.

(b) Which exception does the following expression raise, ex1 or ex2?

throw ex1 + throw ex2

The answer clearly depends on the order in which the arguments to (+) are evaluated. So
which exception is raised depends on evaluation order.

As with input/output (right back in Section 1), one possibility is to fully define evaluation order
and, as before, we reject that alternative.

8A pattern-match failure occurs when a function defined by pattern-matching is applied to a value for which no
pattern matches. Example: taking the head of an empty list.

39

5.2.1 Imprecise exceptions

The best approach is to take the hint from denotational semantics. The purely-functional part
of the language should have a straightforward denotational semantics, and that requires us to
answer the question: “what value does throw e return?”. The answer must be “an exceptional
value”. So we divide the world of values (or denotations) into ordinary values (like ’a’ or
True or 132) and exceptional values. This is not a new idea. The IEEE Floating Point standard
defines certain bit-patterns as “not-a-numbers”, or NaNs. A NaN is returned by a floating point
operation that fails in some way, such as division by zero. Intel’s IA-64 architecture extends this
idea to arbitrary data types, using “not-a-thing” (NaT) values to represent the result of speculative
operations that have failed. In our terminology, a NaN or NaT is an exceptional value.

So throw simply constructs an exceptional value. It is a perfectly well-behaved value provided
you never actually evaluate it; only then is the exception raised. The situation is very similar
to that for a divergent (non-terminating) expression in a lazy language. Useful programs may
contain such values; the program will only diverge if it actually evaluates the divergent term.

That deals with point (a) above, but how about (b)? A good solution is to say that the denotation
of an expression is

� A single ordinary value, or

� A set of exceptions.

By making the denotation into a set of exceptions we can finesse the question of which exception
is raised if many could be. Let us return to our troublesome example

throw ex1 + throw ex2

The denotation of this expression is now an exceptional value consisting of a set of two excep-
tions, ex1 and ex2. In saying this, we do not need to say anything about evaluation order.

I am not suggesting that an implementation should actually construct the set of exceptions. The
idea is that an implementation can use an entirely conventional exception-handling mechanism:
when it evaluates an exceptional value, it rolls back the stack looking for a handler. In effect it
chooses a single member of the set of exceptions to act as its representative [16].

5.2.2 Catching an imprecise exception

I describe this scheme as using “imprecise” exceptions, because we are deliberately imprecise
about which exception is chosen as the representative. How, then, can we catch and handle an
exception? At first we might try a non-IO version of catch:

bogusCatch :: a -> (Exception -> a) -> a -- Bogus

bogusCatch evaluates its first argument; if it is an ordinary value, bogusCatch just re-
turns it; if it is an exceptional value, bogusCatch applies the hander to the exception. But

40

bogusCatch is problematic if the exceptional value contains a set of exceptions – which mem-
ber of the set should be chosen? The trouble is that if the compiler decided to change evaluation
order (e.g. optimisation is switched on) a different exception might be encountered, and the
behaviour of the program would change.

A better approach is to separate the choice of which exception to throw from the exception-
catching business:

evaluate :: a -> IO a

evaluate x evaluates its argument x; if the resulting value is an ordinary value, evaluate
behaves just like return, and just returns the value. If x instead returns an exceptional value,
evaluate chooses an arbitrary member, say e, from the set of exceptions, and then behaves
just like ioError e; that is, it throws the exception e. So, for example, consider these four
actions:

a1, a2, a3, a4 :: IO ()
a1 = do { x <- evaluate 4; print x }
a2 = do { evaluate (head []); print "no" }
a3 = do { return (head []); print "yes" }
a4 = do { xs <- evaluate [1 ‘div‘ 0]; print (length xs) }

The first simply evaluates 4, binds it to x, and prints it; we could equally well have written
(return 4) instead. The second evaluates (head []), finds an exceptional value, and
throws an exception in the IO monad; the following print never executes. In contrast a3
instead returns the exceptional value, ignores it, and prints yes. Lastly, a4 evaluates the list
[1 ‘div‘ 0], binds it to xs, takes its length, and prints the result. The list contains an
exceptional value, but evaluate only evalutes the top level of its argument, and does not look
inside its recursive structure (c.f. the length example in Section 5.2).

Now consider the case where the argument of evaluate is a set of exceptions; for example

evaluate (throw ex1 + throw ex2)

Since evaluate x is an I/O action (of type IO t if x has type t), there is no reason to suppose
that it will choose the same member from the set of exceptions each time you run the program. It
is free to perform input/output, so it can consult some external oracle (whether it is raining, say)
to decide which member of the set to choose. More concretely, suppose we catch the exception
like this:

catch (evaluate (throw ex1 + throw ex2)) h

(Recall that catch and its semantics was defined in Section 5.1.) The handler h will be applied
to either ex1 or ex2, and there is no way to tell which. It is up to evaluate to decide. This
is different from bogusCatch, because the non-deterministic choice is made by an I/O action
(evaluate) and not by a pure function (bogusCatch). I/O actions are not required to return
the same result given the same input, whereas pure functions are. In practice, evaluate will
not really be non-deterministic; the decision is really taken by the evaluation order chosen by the
compiler when it compiles the argument to evaluate.

41

" ��� � � � � # evaluate �
� 0 0 � 1 1 ��� � "

� / 0 evaluate � 1 ��� �
 � / 0 return " 1 �	� � �
� �������

� 0 0 � 1 1 ����� J	� �
* �

� / 0 evaluate � 1 �	� �
 � / 0ioError � 1 ��� ���
� ����
3�

� 0 0 � 1 1 ��� � " � (� "
� / 0 � 1 ��� �
 � / 02" 1 ��� � � �����%�

� 0 0 � 1 1 ����!J	� �
* �

� / 0 � 1 ��� �
 � / 0ioError � 1 ��� ��� �%��
��
� (� �	* / >>= * 4 � � (� � catch * / * 4 �

� / / 0throwTo A � 1 ���,# � / 4 0 � 1 ��� �
 � / / 0return () 1 ��� # � / 4 0ioError � 1 ��� ���I� &�

Figure 10: Further extensions for exceptions

Notice what we have done:

� An exception can be raised anywhere, including in purely-functional code. This is tremen-
dously useful. For example, pattern-match failure can now raise an exception rather than
bringing execution to a halt. Similarly, Haskell 98 provides a function error:

error :: String -> a

When error is called, the string is printed, and execution comes to a halt. In our extended
version of Haskell, error instead raises an exception, which gives the rest of the program
a chance to recover from the failure.

� An exception can only be caught by catch, which is in the IO monad. This confines
recovery to the monadic-I/O layer of the program, unlike ML (say) where you can catch
an exception anywhere. In my view, this restriction is not irksome, and has great semantic
benefits. In particular, by confining the non-deterministic choice to the IO monad we have
prevented non-determinism from infecting the entire language.

5.2.3 Semantics of imprecise exceptions

This approach to synchronous exceptions in Haskell is described in much more detail in [37].
In particular, the paper describes how to extend a standard denotational semantics to include

42

exceptional values, something we have not treated formally here. We will not discuss that here,
for lack of space, but will content ourselves with saying that the meaning function

� 0 0 � 1 1 returns
either � � + for an ordinary value + , or ��� J	� for an exceptional value, where � is a non-empty
set of exceptions. For example, here is the semantics of addition:

� 0 0 � / + � 4 1 1 �
� 0 0 � / 1 1 �

� � 0 0 � 4 1 1
where �

�
is an addition function defined over the semantic domain of values, thus:

� � � + / � �
�
� � � + 4 � � � � � + / � + 4 �

� � � + / � �
�
� ��!J � 4 � � ��!J � 4

� ��� J � / � �
�
� � � + 4 � � ��!J � /

� ��!J � / � �
�
� ��!J � 4 � � ��!J$� � / �

� 4 �
The first equation deals with the normal case. The second and third deal with the case when
one or other of the arguments throws an exception. The last equation handles the case when both
arguments throw an exception; in this case �

�
takes the union of the exceptions that can be thrown

by the two arguments. The whole point is that �
�
is commutative, so that

� 0 0 � / + � 4.1 1 �
� 0 0 � 4 + � / 1 1 .

Given this, Figure 10 gives the extra semantics for evaluate. If the argument to evaluate
is an ordinary value, evaluate just returns that value (EVAL1); if the value is an exceptional
value, evaluate chooses an arbitrary member of the set of exceptions, and throws that ex-
ception using ioError. This deliberately-unconstrained choice is where the non-determinism
shows up in the operational semantics.

Since
� 0 0 1 1 has changed we must do something to rule (FUN). This is a place where our semantics

forces us to recognise something we might otherwise have forgotten. Rules (FUN1) and (FUN2)
replace (FUN). (FUN2) says that if the next action to perform is itself an exceptional value, then
we should just propagate that as an IO-monad exception using ioError. If it is not, then we
behave just like (FUN). Here is an example that shows the importance of this change:

catch (if (1/0) then a1 else a2) recovery_code

Before catch can perform the action that is its first argument, it must evaluate it; in this case,
evaluating it gives divide-by-zero exception, and rule (FUN2) propagates that into an ioError.

The Exception data type is really the same as IOError, except that “IOError” does not
seem an appropriate name any more. To keep things simple, we just say that IOError is a
synonym for Exception. To summarise, we now have the following primitives:

type IOError = Exception
throw :: Exception -> a
evaluate :: a -> IO a
ioError :: IOError -> IO a
catch :: IO a -> (Exception -> IO a) -> IO a

43

5.3 Asynchronous exceptions

We now turn our attention to asynchronous exceptions. For asynchronous exceptions, we add the
following new primitive:

throwTo :: ThreadId -> Exception -> IO ()

This allows one thread to interrupt another. So far as the interrupted thread is concerned, the
situation is just as if it abruptly called ioError; an exception is raised and propagated to the
innermost enclosing catch. This is where the ThreadId of a forked thread becomes really
useful: we can use it as a handle to send an interrupt to another thread. One thread can raise an
exception in another only if it has the latter’s ThreadId, which is returned by forkIO. So a
thread is in danger of interruption only from its parent, unless its parent passes on its ThreadId
to some other thread.

5.3.1 Using asynchronous exceptions

Using throwTo we can implement a variety of abstractions that are otherwise inaccessible.
For example, we can program the combinator parIO, which “races” its two argument actions
against each other in parallel. As soon as one terminates, it kills the other, and the overall result
is the one returned by the “winner”.

parIO :: IO a -> IO a -> IO a

How can we implement this? We can use an MVar to contain the overall result. We spawn two
threads, that race to fill the result MVar; the first will succeed, while the second will block. The
parent takes the result from the MVar, and then kills both children:

parIO :: IO a -> IO a -> IO a
parIO a1 a2
= do { m <- newEmptyMVar ;

c1 <- forkIO (child m a1) ;
c2 <- forkIO (child m a2) ;
r <- takeMVar m ;
throwTo c1 Kill ;
throwTo c2 Kill ;
return r

}
where

child m a = do { r <- a ; putMVar m r }

Using parIO we can implement a simple timeout:

timeout :: Int -> IO a -> IO (Maybe a)

The idea here is that (timeout n a) returns Nothing if a takes longer than nmicroseconds
to complete, and Just r otherwise, where r is the value returned by a:

44

timeout :: Int -> IO a -> IO (Maybe a)
timeout n a = parIO (do { r <- a; return (Just r) })

(do { threadDelay n; return Nothing })

Now we might want to answer questions like this: what happens if a thread is interrupted (via a
throwTo) while it is executing under a timeout? We can’t say for sure until we give a semantics
to throwTo, which is what we do next.

5.3.2 Semantics of asynchronous exceptions

We can express the behaviour of throwTo nicely in our semantics: a throwTo in one thread
makes the target thread abandon its current action and replace it with ioError:

� (� � * / >>= * 4 � � (� � catch * / * 4 �
� / / 0throwTo A � 1 ���,# � / 4 0 � 1 ��� �
 � / / 0return () 1 ��� # � / 4 0 ioError � 1 ��� �2�;� ��

(“(INT)” is short for “interrupt”.) The conditions above the line are essential to ensure that the
context / 4 is maximal; that is, it includes all the active catches.

It should be clear that external interrupts, such as the user pressing Control-C, can also be mod-
eled in this way. Before we can write the semantics we have to answer several questions. Does
a Control-C interrupt every thread, or just a designated thread? If the latter, how does a thread
get designated? These are good questions to be forced to answer, because they really do make a
difference to the programmer.

Having a semantics is very helpful in answering questions like: what happens if a thread is
interrupted when it is blocked waiting for an MVar? In the semantics, such a thread is simply
stuck, with a takeMVar at the active site, so (INT) will cause the takeMVar to be replaced
with ioError. So being blocked on an MVar doesn’t stop a thread receiving an interrupt.

Now we can say what happens to a thread that executes a sub-computation using timeout,
but is interrupted by throwTo while it is waiting for the sub-computation to complete. The
parent thread receives the interrupt while it is blocked on the “takeMVar m” inside parIO
(Section 5.3.1); so it abandons the wait and proceeds to the innermost catch handler. But that
means that the two threads spawned by parIO are not killed, and we probably want them to be.
So we have to go back to fix up parIO somehow. In fact this turns out to be tricky to do: we
have to make sure that there is no “window” in which the parent has spawned a child thread but
has not set up a handler that will kill the child if the parent is interrupted.

Indeed, programming in the presence of asynchronous exceptions is notoriously difficult, so
much so that Modula-3, for example, simply outlaws them. (Instead, well-behaved threads reg-
ularly poll an alert flag, and commit suicide if it is set [33].) Haskell differs from Modula in two
ways that are relevant here. First, there are fewer side effects, so there are fewer windows of vul-
nerability to worry about. Second, there are large parts of purely-functional code that we would
like to be able to interrupt — and can indeed do so safely — but where any polling mechanism
would be very undesirable. These considerations led us to define new primitive combinators to

45

allow a thread to mask and un-mask external interrupts. This further complicates the semantics,
but as a result we can write code where we have a chance of proving that it has no race hazards.
The details are in [29].

5.4 Summary

This section on exceptions is the most experimental of our main themes. Two papers, [37, 29],
give a great deal more detail on the design, which I have introduced here only in outline. Indeed,
some aspects of the asynchronous-exceptions design are still in flux at the time of writing.

Adding exceptions undoubtedly complicates the language and its semantics, and that is never
desirable. But they allow a qualitative change in the robustness of a program. Now, if there is
a pattern match failure almost anywhere in the code of the web server, the system can recover
cleanly. Without exceptions, such a failure would be fatal.

6 Interfacing to other programs

In the programming-language world, one rule of survival is simple: dance or die. It is not enough
to make a beautiful language. You must also make it easy for programs written in your beautiful
language to interact with programs written in other languages. Java, C++, and C all have huge,
and hugely useful, libraries available. For example, our web server makes extensive use of socket
I/O libraries written in C. It is fruitless to reproduce many of these libraries in Haskell; instead,
we want to make it easy to call them. Similarly, if we want to plug a small Haskell program into
a large project, it is necessary to enable other programs to call Haskell. It is hubristic to expect
the Haskell part to always be “on top”.

Haskell 98 does not specify any way to call foreign-language procedures, but there has been a lot
of progress on this front in the last few years, which I survey in this section. In particular, a pro-
posal has emerged for a Haskell language extension to support foreign-language interfacing. We
will call this proposal the Haskell Foreign Function Interface (FFI) proposal; it is documented
at http://haskell.org/definition/ffi.

6.1 Calling C from Haskell, and Haskell from C

Here is how you can call a C procedure from Haskell, under the FFI proposal:

foreign import ccall putChar :: Char -> IO ()

The foreign declaration brings into scope a Haskell function putChar with the specified
type. When this function is called, the effect is to call a C procedure, also called putChar.
Simple, eh? The complete syntax is given in Figure 11. The following points are worth noting:

46

J � ��� ��� � foreign import � ����� ���FE,+ 0 � � � �BAD5 1 H "�� � E9ADH�AD5 + �'@FH J :: �����	���#
foreign export � ����� ���FE,+ 0 � � � �BAD5 1 � � � � E,ADH AD5 + �'@	H2J :: ���
�����

� ����� � � E�+ ��� � ccall
#
stdcall

#
...other calling conventions...

� � � �BAD5 ��� � safe
#
unsafe

H "�� � E,ADH AD5 ��� � 0 � AD@FH2E� 1
� � � � E,ADH AD5 ��� � 0 � AD@FH2E� 1

��������� ��� � ()
#
IO

� ���
����� # � ���
����� # � �����	���
->

���
�����
� ��������� ��� � Int

#
Float

#
Double

#
Char

#
Bool#

Ptr AD5 � �
#
FunPtr AD5 � �

#
StablePtr AD5 � �#

Int8
#
Int16

#
Int32

#
Int64#

Word8
#
Word16

#
Word32

#
Word64#

A Haskell newtype of a � ���
�����#
A Haskell type synonym for a � ���
�����

Figure 11: The Haskell FFI proposal syntax

� As usual, we use the IO monad in the result type of putChar to indicate that putChar
may perform I/O, or have some other side effect. However, some foreign procedures may
have purely-functional semantics. For example, the C sin function really is a function: it
has no side effects. In this case it is extremely tiresome to force it to be in the IO monad.
So the Haskell FFI allows one to omit the “IO” from the return type, thus:

foreign import ccall sin :: Float -> Float

The non-IO type indicates that the programmer takes on a proof obligation, in this case
that foreign procedure is genuinely functional.

� The keyword “ccall” indicates the calling convention to use; that is, which arguments
are passed in which registers, which on the stack, where the result is returned, and so on.
The only other currently-defined calling convention at the moment is “stdcall”, used
on Win32 platforms.

� If the foreign procedure does not have the same name as its Haskell counterpart — for
example, it might start with a capital letter, which is illegal for Haskell functions — you
can specify the foreign name directly:

foreign import ccall "PutChar" putChar :: Char -> IO ()

47

� Foreign procedures may take several arguments. Their Haskell type is curried, as is usually
the case for multi-argument Haskell functions, but on the C side the arguments are passed
all at once, as is usual for C:

foreign import ccall drawLine :: Int -> Int -> IO ()

� There is a strictly limited range of Haskell types that can be used in arguments and results,
namely the “atomic” types such as Int, Float, Double, and so on. So how can we pass
structured types, such as strings or arrays? We address this question in Section 6.3.

� An implementation of the FFI proposal must provide a collection of new atomic types
(Figure 11). In particular, Ptr A is the type of uninterpreted9 machine addresses; for
example, a pointer to a malloc’d structure, or to a C procedure. The type A is a “phantom
type”, which allows the Haskell programmer to enforce the distinction between (say) the
types Ptr Foo and Ptr Baz. No actual values of type Foo or Baz are involved.

“foreign import” lets you call a C procedure from Haskell. Dually, “foreign export”
lets you expose a Haskell function as a C procedure. For example:

foreign export ccall "Foo" foo :: Int -> Int
foreign export ccall bar :: Float -> IO Float

These declarations are only valid if the same module defines (or imports) Haskell functions foo
and bar, which have the specified types. An exported function may have an IO type, but it does
not have to — here, bar does, and foo does not. When the module is compiled, it will expose
two procedures, Foo and bar, which can be called from C.

6.2 Dynamic calls

It is quite common to make an indirect call to an external procedure; that is, one is supplied with
the address of the procedure and one wants to call it. An example is the dynamic dispatch of a
method call in an object-oriented system, indirecting through the method table of the object.

To make such an indirect call from Haskell, use the dynamic keyword:

foreign import ccall "dynamic"
foo :: FunPtr (Int -> IO Int) -> Int -> IO Int

The first argument must be of type FunPtr A , and is taken to be the machine address of the
external procedure to be called. As in the case of Ptr A , the type A is used simply to express the
distinction between pointers to procedures of different types.

There is also a way to export a dynamic Haskell value:

9“Uninterpreted” in the sense that they are treated simply as bit patterns. The Haskell garbage collector does not
follow the pointer.

48

foreign import ccall "wrapper"
mkCB :: (Int -> IO Int) -> IO (FunPtr (Int -> IO Int)

This declaration defines a Haskell function mkCB. When mkCB is given an arbitrary
Haskell function of type (Int->IO Int), it returns a C function pointer (of type
FunPtr (Int -> IO Int)) that can be called by C. Typically, this FunPtr is then some-
how passed to the C program, which subsequently uses it to call the Haskell function using a C
indirect call.

6.3 Marshalling

Transferring control is, in some ways, the easy bit. Transferring data “across the border” is much
harder. For “atomic” types, such as Int and Float, it is clear what to do, but for structured
types, matters are much murkier.

For example, suppose we wanted to import a function that operates on strings:

foreign import ccall uppercase :: String -> String

� First there is the question of data representation. One has to decide either to alter the
Haskell language implementation, so that its string representation is identical to that of C,
or to translate the string from one representation to another at run time. This translation is
conventionally called marshalling.

Since Haskell is lazy, the second approach is required. In any case, it is tremendously
constraining to try to keep common representations between two languages. For example,
C terminates strings with a null character, but other languages may keep a length field.
Marshalling, while expensive, serves to separate the implementation concerns of the two
different languages.

� Next come questions of allocation and lifetime. Where should we put the translated string?
In a static piece of storage? (But how large a block should we allocate? Is it safe to re-use
the same block on the next call?) Or in Haskell’s heap? (But what if the called procedure
does something that triggers garbage collection, and the transformed string is moved? Can
the called procedure hold on to the string after it returns?) Or in C’s malloc’d heap? (But
how will it get deallocated? And malloc is expensive.)

� C procedures often accept pointer parameters (such as strings) that can be NULL. How is
that to be reflected on the Haskell side of the interface? For example, if uppercase did
something sensible when called with a NULL string (e.g. returns a NULL string) we might
like the Haskell type for uppercase to be

foreign import ccall uppercase :: Maybe String -> Maybe String

so that we can model NULL by Nothing.

49

The bottom line is this: there are many somewhat-arbitrary choices to make when marshalling
parameters from Haskell to C and vice versa. And that’s only C! There are even more choices
when we consider arbitrary other languages.

What are we to do? The consensus in the Haskell community is this:

We define a language extension that is as small as possible, and build separate tools
to generate marshalling code.

The foreign import and foreign export declarations constitute the language exten-
sion. They embody just the part of foreign-language calls that cannot be done in Haskell itself,
and no more. For example, suppose you want to import a procedure that draws a line, whose C
prototype might look like this:

void DrawLine(float x1, float y1, float x2, float y2)

One might ideally like to import this procedure with the following Haskell signature.

type Point = (Float,Float)
drawLine :: Point -> Point -> IO ()

The FFI proposal does not let you do this directly. Instead you have to do some marshalling
yourself (in this case, unpacking the pairs):

type Point = (Float,Float)

drawLine :: Point -> Point -> IO ()
drawLine (x1,y1) (x2,y2) = dl_help x1 y1 x2 y2

foreign import ccall "DrawLine"
dl_help :: Float -> Float -> Float -> Float -> IO ()

Writing all this marshalling code can get tedious, especially when one adds arrays, enumerations,
in-out parameters passed by reference, NULL pointers, and so on. There are now several tools
available that take some specification of the interface as input, and spit out Haskell code as
output. Notably:

Green Card [34] is a pre-processor for Haskell that reads directives embedded in a Haskell
module and replaces these directives with marshalling code. Using Green Card one could
write

type Point = (Float,Float)
drawLine :: Point -> Point -> IO ()
%call (float x1, float y1) (float x2, float y2)
%code DrawLine(x1, y1, x2, y2)

Green Card is C-specific, and doesn’t handle the foreign-export side of things at all.

50

C->Haskell [8] reads both a Haskell module with special directives (or “binding hooks”)
and a standard C header file, and emits new Haskell module with all the marshalling code
added. The advantage compared to Green Card is that less information need be specified
in the binding hooks than in Green Card directives.

H/Direct [10] instead reads a description of the interface written in Interface Definition Lan-
guage (IDL), and emits a Haskell module containing the marshalling code. IDL is a huge
and hairy language, but it is neither Haskell-specific nor C-specific. H/Direct deals with
both import and export, can read Java class files as well as IDL files, and can generate code
to interface to C, COM, and Java.

It is well beyond the scope of these notes to give a detailed introduction to any of these tools
here. However, in all cases the key point is the same: any of these tools can be used with any
Haskell compiler that implements the foreign declaration. The very fact that there are three
tools stresses the range of possible design choices, and hence the benefit of a clear separation.

6.4 Memory management

One of the major complications involved in multi-language programs is memory management.
In the context of the Haskell FFI, there are two main issues:

Foreign objects. Many C procedures return a pointer or “handle”, and expect the client to fi-
nalise it when it is no longer useful. For example: opening a file returns a file handle that
should later be closed; creating a bitmap may allocate some memory that should later be
freed; in a graphical user interface, opening a new window, or a new font, returns a handle
that should later be closed. In each case, resources are allocated (memory, file descriptors,
window descriptors) that can only be released when the client explicitly says so. The term
finalisation is used to describe the steps that must be carried out when the resource is no
longer required.

The problem is this: if such a procedure is imported into a Haskell program, how do we
know when to finalise the handle returned by the procedure?

Stable pointers. Dually, we may want to pass a Haskell value into the C world, either by
passing it as a parameter to a foreign import, or by returning it as a result of a
foreign export. Here, the danger is not that the value will live too long, but that
it will die too soon: how does the Haskell garbage collector know that the value is still
needed? Furthermore, even if it does know, the garbage collector might move live ob-
jects around, which would be a disaster if the address of the old location of the object is
squirreled away in a C data structure.

In this section we briefly survey solutions to these difficulties.

51

6.4.1 Foreign objects

One “solution” to the finalisation problem is simply to require the Haskell programmer to call
the appropriate finalisation procedure, just as you would in C. This is fine, if tiresome, for I/O
procedures, but unacceptable for foreign libraries that have purely functional semantics.

For example, we once encountered an application that used a C library to manipulate bit-maps
[39]. It offered operations such as filtering, thresholding, and combining; for example, to ‘and’
two bit-maps together, one used the C procedure and_bmp:

bitmap *and_bmp(bitmap *b1, bitmap *b2)

Here, and_bmp allocates a new bit-map to contain the combined image, leaving b1 and b2
unaffected. We can import and_bmp into Haskell like this:

data Bitmap = Bitmap -- A phantom type
foreign import ccall

and_bmp :: Ptr Bitmap -> Ptr Bitmap -> IO (Ptr Bitmap)

Notice the way we use the fresh Haskell type Bitmap to help ensure that we only give to
and_bmp an address that is the address of a bitmap.

The difficulty is that there is no way to know when we have finished with a particular bit-map.
The result of a call to and_bmp might, for example, be stored in a Haskell data structure for
later use. The only time we can be sure that a bitmap is no longer needed is when the Haskell
garbage collector finds that its Ptr is no longer reachable.

Rather than ask the garbage collector to track all Ptrs, we wrap up the Ptr in a foreign pointer,
thus:

newForeignPtr :: Ptr a -> IO () -> IO (ForeignPtr a)

newForeignPtr takes a C-world address, and a finalisation action, and returns a
ForeignPtr. When the garbage collector discovers that this ForeignPtr is no longer ac-
cessible, it runs the finalisation action.

To unwrap a foreign pointer we use withForeignPtr:

withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b

(We can’t simply unwrap it with a function of type ForeignPtr a -> IO Ptr a because
then the foreign pointer itself might be unreferenced after the unwrapping call, and its finaliser
might therefore be called before we are done with the Ptr.)

So now we can import add_bmp like this:

foreign import ccall "and_bmp"
and_bmp_help :: Ptr Bitmap -> Ptr Bitmap -> IO (Ptr Bitmap)

foreign import ccall free_bmp :: Ptr Bitmap -> IO ()

52

and_bmp :: ForeignPtr Bitmap -> ForeignPtr Bitmap -> IO (ForeignPtr Bitmap)
and_bmp b1 b2 = withForeignPtr b1 (\ p1 ->

withForeignPtr b2 (\ p2 ->
do { r <- and_bmp_help p1 p2

newForeignObj r (free_bmp r) }))

The function and_bmp unwraps its argument ForeignPtrs, calls and_bmp_help to get
the work done, and wraps the result back up in a ForeignPtr.

6.4.2 Stable pointers

If one wants to write a Haskell library that can be called by a C program, then the situation
is reversed compared to foreign objects. The Haskell library may construct Haskell values and
return them to the C caller. There is not much the C program can do with them directly (since
their representation depends on the Haskell implementation), but it may manipulate them using
other Haskell functions exported by the library.

As we mentioned earlier, we cannot simply return a pointer into the Haskell heap, for two rea-
sons:

� The Haskell garbage collector would not know when the object is no longer required.
Indeed, if the C program holds the only pointer to the object, the collector is likely to treat
the object as garbage, because it has no way to know what Haskell pointers are held by the
C program.

� The Haskell garbage collector may move objects around (GHC’s collector certainly does),
so the address of the object is not a stable way to refer to the object.

The straightforward, if brutal, solution to both of these problems is to provide a way to convert a
Haskell value into a stable pointer:

newStablePtr :: a -> IO (StablePtr a)
deRefStablePtr :: StablePtr a -> IO a
freeStablePtr :: StablePtr a -> IO ()

The function newStablePtr takes an arbitrary Haskell value and turns it into a stable pointer,
which has two key properties:

� First, it is stable; that is, it is unaffected by garbage collection. A StablePtr can be
passed to C as a parameter or result to a foreign import or a foreign export.
From the C side, a StablePtr looks like an int. The C program can subsequently
pass the stable pointer to a Haskell function, which can get at the original value using
deRefStablePtr.

� Second, calling newStablePtr v registers the Haskell value as a garbage-collection
root, by installing a pointer to v in the Stable Pointer Table (SPT). Once you have called

53

newStablePtr v, the value v will be kept alive indefinitely by the SPT, even if v, or
even the StablePtr itself are no longer reachable.

How, then, can v ever die? By calling freeStablePtr: This removes the entry from
the SPT, so v can now die unless it is referenced some other way.

Incidentally, the alert reader may have noticed that foreign import "wrapper", de-
scribed in Section 6.2, must use stable pointers. Taking the example in that section, mkCB turns
a Haskell function value into a plain Addr, the address of a C-callable procedure. It follows that
mkCB f must register f as a stable pointer so that the code pointed to by the Addr (which the
garbage collector does not follow) can refer to it. Wait a minute! How can we free the stable
pointer that is embedded inside that Addr? You have to use this function:

freeHaskellFunctionPtr :: Addr -> IO ()

6.5 Implementation notes

It is relatively easy to implement the foreign import declaration. The code generator needs
to be taught how to generate code for a call, using appropriate calling conventions, marshalling
parameters from the small, fixed range of types required by the FFI. The dynamic variant of
foreign import is no harder.

A major implementation benefit is that all the I/O libraries can be built on top of such
foreign imports; there is no need for the code generator to treat getChar, say, as a prim-
itive.

Matters are not much harder for foreign export; here, the code generator must produce a
procedure that can be called by the foreign language, again marshalling parameters appropriately.
foreign import "wrapper" is tricker, though, because we have to generate a single,
static address that encapsulates a full Haskell closure. The only way to do this is to emit a little
machine code at run-time; more details are given in [11]10.

6.6 Summary and related work

So far I have concentrated exclusively on interfacing to programs written in C. Good progress
has also been made for other languages and software architectures:

COM is Microsoft’s Component Object Model, a language-independent, binary interface for
composing software components. Because of its language independence COM is a very
attractive target for Haskell. H/Direct directly supports both calling COM objects from
Haskell, and implementing COM objects in Haskell [36, 10, 11, 26].

10In that paper, foreign import "wrapper" is called “foreign export dynamic”; the nomencla-
ture has changed slightly.

54

CORBA addresses similar goals to COM, but with a very different balance of design choices.
H/Direct can read CORBA’s flavour of IDL, but cannot yet generate the relevant mar-
shalling and glue code. There is a good CORBA interface for the functional/logic language
Mercury, well described in [20].

Lambada [30] offers a collection of Haskell libraries that makes it easy to write marshalling
code for calling, and being called by, Java programs. Lambada also offers a tool that reads
Java class files and emits IDL that can then be fed into H/Direct to generate the marshalling
code. There is ongoing work on extending the foreign declaration construct to support
Java calling conventions.

The actual Haskell FFI differs slightly from the one give here; in particular, there are many
operations over the types Addr, ForeignObj and StablePtr that I have omitted. Indeed,
some of the details are still in flux.

Finalisation can be very useful even if you are not doing mixed language working, and many
languages support it, including Java, Dylan, Python, Scheme, and many others. Hayes gives
a useful survey [13], while a workshop paper gives more details about the Glasgow Haskell
Compiler’s design for finalisers [28].

This section is notably less thorough and precise than earlier sections. I have given a flavour
of the issues and how they can be tackled, rather than a detailed treatment. The plain fact is
that interfacing to foreign languages is a thoroughly hairy enterprise, and no matter how hard
we work to build nice abstractions, the practicalities are undoubtedly complicated. There are
many details to be taken care of; important aspects differ from operating system to operating
system; there are a variety of interface definition languages (C header files, IDL, Java class files
etc); you have to use a variety of tools; and the whole area is moving quickly (e.g. the recent
announcement of Microsoft’s .NET architecture).

7 Have we lost the plot?

Now that we have discussed the monadic approach in some detail, you may well be asking the
following question: once we have added imperative-looking input/output, concurrency, shared
variables, and exceptions, have we not simply re-invented good old procedural programming?
Have we “lost the plot” — that is, forgotten what the original goals of functional programming
were?

I believe not. The differences between conventional procedural programming and the monadic
functional style remain substantial:

� There is a clear distinction, enforced by the type system, between actions which may have
side effects, and functions which may not. The distinction is well worth making from a
software engineering point of view. A function can be understood as an independent entity.

55

It can only affect its caller through the result it returns. Whenever it is called with the same
arguments it will deliver the same result. And so on.

In contrast, the interaction of an action with its caller is complex. It may read or write
MVars, block, raise exceptions, fork new threads... and none of these things are explicit in
its type.

� No reasoning laws are lost when monadic I/O is added. For example, it remains uncondi-
tionally true that

let � = � in G � G�0 � � � 1
There are no side conditions, such as “ � must not have side effects”. (There is an important
caveat, though: I am confident that this claim is true, but I have not proved it.)

� In our admittedly-limited experience, most Haskell programs consist almost entirely of
functions, not actions: a small monadic-I/O “skin” surrounds a large body of purely-
functional code. While it is certainly possible to write a Haskell program that consists
almost entirely of I/O, it is unusual to do so.

� Actions are first class values. They can be passed as arguments to functions, returned as
results, stored in data structures, and so on. This gives unusual flexibility to the program-
mer.

Another good question is this: is the IO monad a sort of “sin-bin”, used whenever we want to
do something that breaks the purely-functional paradigm? Could we be a bit more refined about
it? In particular, if we argue that it is good to know from the type of an expression that it has
no side effects, would it not also be useful to express in the type some limits on the side effects
it may cause? Could we have a variant of IO that allowed exceptions but not I/O? Or I/O but
not concurrency? The answer is technically, yes of course. There is a long history of research
into so-called effect systems, that track what kind of effects an expression can have [21]. Such
effect systems can be expressed in a monadic way, or married with a monadic type system [51].
However, the overhead on the programmer becomes greater, and I do not know of any language
that uses such a system11. An interesting challenge remains, to devise a more refined system that
is still practical; there is some promising work in this direction [6, 51, 45, 5]. Meanwhile I argue
that a simple pure-or-impure distinction offers an excellent cost/benefit tradeoff.

8 Summary

We have surveyed Haskell’s monadic I/O system, along with three significant language exten-
sions12. It is easy to extend a language, though! Are these extensions any good? Are they just

11Some smart compilers use type-based effect systems to guide their optimisers, but that is different from the
programmer-visible type system.

12I describe them all as “language extensions” because, while none has a significant impact on Haskell’s syntax
or type system, all have an impact on its semantics and implementation

56

an ad hoc set of responses to an ad hoc set of demands? Will every new demand lead to a new
extension? Could the same effect be achieved with something simpler and more elegant?

I shall have to leave these judgments to you, gentle reader. These notes constitute a status re-
port on developments in the Haskell community at the time of writing. The extensions I have
described cover the needs of a large class of applications, so I believe we have reached at least a
plateau in the landscape. Nevertheless the resulting language is undeniably complicated, and the
monadic parts have a very imperative feel. I would be delighted to find a way to make it simpler
and more declarative.

The extensions are certainly practical — everything I describe is implemented in the Glasgow
Haskell compiler — and have been used to build real applications.

You can find a great deal of information about Haskell on the Web, at

http://haskell.org

There you will find the language definition, tutorial material, book reviews, pointers to free
implementations, details of mailing lists, and more besides.

Acknowledgements

These notes have been improved immeasurably by many conversations with Tony Hoare. Thank
you Tony! I also want to thank Peter Aachten, Ken Anderson, Richard Bird, Paul Callaghan,
Andy Cheese, Chiyan Chen, Olaf Chitil, Javier Deniz, Tyson Dowd, Conal Elliott, Pal-Kristian
Engstad, Tony Finch, Sigbjorn Finne, Richard Gomes, John Heron, Stefan Karrmann, Richard
Kuhns, Ronald Legere, Phil Molyneux, Andy Moran, Anders Lau Olsen, Andy Pitts, Tom
Pledger, Martin Pokorny, Daniel Russell, George Russell, Tim Sauerwein, Julian Seward, Chris-
tian Sievers, Dominic Steinitz, Jeffrey Straszheim, Simon Thompson, Mark Tullsen, Richard
Uhtenwoldt, and Don Wakefield, for their extremely helpful feedback.

References

[1] ALLISON, L. A Practical Introduction to Denotational Semantics. Cambridge University Press,
Cambridge, England, 1986.

[2] ARIOLA, Z., AND SABRY, A. Correctness of monadic state: An imperative call-by-need calculus.
In 25th ACM Symposium on Principles of Programming Languages (POPL’98) (San Diego, Jan.
1998), ACM.

[3] ARMSTRONG, J., VIRDING, R., , WIKSTROM, C., AND WILLIAMS, M. Concurrent programming
in Erlang (2nd edition). Prentice Hall, 1996.

[4] BARENDSEN, E., AND SMETSERS, S. Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6 (1996), 579–612.

57

[5] BENTON, N., AND KENNEDY, A. Monads, effects, and transformations. In Higher Order Opera-
tional Techniques in Semantics: Third International Workshop (1999), no. 26 in Electronic Notes in
Theoretical Computer Science, Elsevier, pp. 1–18.

[6] BENTON, N., KENNEDY, A., AND RUSSELL, G. Compiling Standard ML to Java bytecodes. In
ICFP98 [18], pp. 129–140.

[7] BIRD, R., AND WADLER, P. Introduction to Functional Programming. Prentice Hall, 1988.

[8] CHAKRAVARTY, M. C -> Haskell: yet another interfacing tool. In Koopman and Clack [23].

[9] FELLEISEN, M., AND HIEB, R. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science 103 (1992), 235–271.

[10] FINNE, S., LEIJEN, D., MEIJER, E., AND PEYTON JONES, S. H/Direct: a binary foreign language
interface for Haskell. In ICFP98 [18], pp. 153–162.

[11] FINNE, S., LEIJEN, D., MEIJER, E., AND PEYTON JONES, S. Calling Hell from Heaven and
Heaven from Hell. In ICFP99 [19], pp. 114–125.

[12] HAMMOND, K., AND MICHAELSON, G., Eds. Research Directions in Parallel Functional Pro-
gramming. Springer-Verlag, 1999.

[13] HAYES, B. Finalization in the collector interface. In International Workshop on Memory Man-
agement, Y. Bekkers and J. Cohen, Eds., no. 637 in Lecture Notes in Computer Science. Springer
Verlag, St. Malo, France, Sept. 1992, pp. 277–298.

[14] HUDAK, P. The Haskell school of expression. Cambridge University Press, 2000.

[15] HUDAK, P., AND SUNDARESH, R. On the expressiveness of purely-functional I/O systems. Tech.
Rep. YALEU/DCS/RR-665, Department of Computer Science, Yale University, Mar. 1989.

[16] HUGHES, R., AND O’DONNELL, J. Expressing and reasoning about non-deterministic functional
programs. In Functional Programming, Glasgow 1989, K. Davis and R. Hughes, Eds. Workshops in
Computing, Springer Verlag, 1989, pp. 308–328.

[17] HUTTON, G., Ed. Proceedings of the 2000 Haskell Workshop, Montreal (Sept. 2000), no. NOTTCS-
TR-00-1 in Technical Reports.

[18] ACM SIGPLAN International Conference on Functional Programming (ICFP’98) (Baltimore, Sept.
1998), ACM.

[19] ACM SIGPLAN International Conference on Functional Programming (ICFP’99) (Paris, Sept.
1999), ACM.

[20] JEFFERY, D., DOWD, T., AND SOMOGYI, Z. MCORBA: a CORBA binding for Mercury. In
Practical Applications of Declarative Languages (San Antonio, Texas, 1999), Gupta, Ed., no. 1551
in Lecture Notes in Computer Science, Springer Verlag, pp. 211–227.

[21] JOUVELOT, P., AND GIFFORD, D. Algebraic reconstruction of types and effects. In 18’th ACM
Symposium on Principles of Programming Languages (POPL), Orlando. ACM, Jan. 1991.

58

[22] KARLSEN, E. Tool integration in a functional programming language. PhD thesis, University of
Bremen, Nov. 1998.

[23] KOOPMAN, P., AND CLACK, C., Eds. International Workshop on Implementing Functional Lan-
guages (IFL’99) (Lochem, The Netherlands, 1999), no. 1868 in Lecture Notes in Computer Science,
Springer Verlag.

[24] LAUNCHBURY, J. A natural semantics for lazy evaluation. In POPL93 [40], pp. 144–154.

[25] LAUNCHBURY, J., LEWIS, J., AND COOK, B. On embedding a microarchitectural design language
within Haskell. In ICFP99 [19], pp. 60–69.

[26] LEIJEN, D., AND HOOK, E. M. J. Haskell as an automation controller. In Third International School
on Advanced Functional Programming (AFP’98) (Braga, Portugal, 1999), no. 1608 in Lecture Notes
in Computer Science, Springer Verlag.

[27] MARLOW, S. Writing high-performance server applications in haskell. In Hutton [17].

[28] MARLOW, S., PEYTON JONES, S., AND ELLIOTT, C. Stretching the storage manager: weak point-
ers and stable names in Haskell. In Koopman and Clack [23].

[29] MARLOW, S., PEYTON JONES, S., AND MORAN, A. Asynchronous exceptions in Haskell. In ACM
Conference on Programming Languages Design and Implementation (PLDI’99) (Snowbird, Utah,
June 2001), ACM, pp. 274–285.

[30] MEIJER, E., AND FINNE, S. Lambada: Haskell as a better Java. In Hutton [17].

[31] MILNER, R. Communicating and Mobile Systems : The Pi-Calculus. Cambridge University Press,
1999.

[32] MOGGI, E. Computational lambda calculus and monads. In Logic in Computer Science, California.
IEEE, June 1989.

[33] NELSON, G., Ed. Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

[34] NORDIN, T., PEYTON JONES, S., AND REID, A. Green Card: a foreign-language interface for
Haskell. In Haskell workshop (Amsterdam, 1997), J. Launchbury, Ed.

[35] PEYTON JONES, S., GORDON, A., AND FINNE, S. Concurrent Haskell. In 23rd ACM Symposium
on Principles of Programming Languages (POPL’96) (St Petersburg Beach, Florida, Jan. 1996),
ACM, pp. 295–308.

[36] PEYTON JONES, S., MEIJER, E., AND LEIJEN, D. Scripting COM components in Haskell. In
Fifth International Conference on Software Reuse (Los Alamitos, CA, June 1998), IEEE Computer
Society, pp. 224–233.

[37] PEYTON JONES, S., REID, A., HOARE, C., MARLOW, S., AND HENDERSON, F. A semantics for
imprecise exceptions. In ACM Conference on Programming Languages Design and Implementation
(PLDI’99) (Atlanta, May 1999), ACM, pp. 25–36.

[38] PEYTON JONES, S., AND WADLER, P. Imperative functional programming. In POPL93 [40],
pp. 71–84.

59

[39] POOLE, I. Public report of the SADLI project: safety assurance in diagnostic laboratory imaging.
Tech. rep., MRC Human Genetics Unit, Edinburgh, Mar. 1995.

[40] 20th ACM Symposium on Principles of Programming Languages (POPL’93) (Jan. 1993), ACM.

[41] REPPY, J. Concurrent programming in ML. Cambridge University Press, 1999.

[42] ROSCOE, B. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[43] SCHMIDT, D. Denotational Semantics: A Methodology for Language Development. Allyn and
Bacon, 1986.

[44] THOMPSON, S. Haskell: the craft of functional programming. Addison Wesley, 1999.

[45] TOLMACH, A. Optimizing ML using a hierarchy of monadic types. In Workshop on Types in
Compilation ’98, Kyoto (Mar. 1998), Lecture Notes in Computer Science, Springer Verlag, pp. 97–
113.

[46] TRINDER, P., HAMMOND, K., LOIDL, H.-W., AND PEYTON JONES, S. Algorithm + strategy =
parallelism. Journal of Functional Programming 8 (Jan. 1998), 23–60.

[47] WADLER, P. Comprehending monads. Mathematical Structures in Computer Science 2 (1992),
461–493.

[48] WADLER, P. The essence of functional programming. In 20th ACM Symposium on Principles of
Programming Languages (POPL’92). ACM, Albuquerque, Jan. 1992, pp. 1–14.

[49] WADLER, P. Monads for functional programming. In Advanced Functional Programming, J. Jeuring
and E. Meijer, Eds., vol. 925 of Lecture Notes in Computer Science. Springer Verlag, 1995.

[50] WADLER, P. How to declare an imperative. ACM Computing Surveys 29, 3 (1997).

[51] WADLER, P. The marriage of effects and monads. In ICFP98 [18], pp. 63–74.

[52] WRIGHT, A., AND FELLEISEN, M. A syntactic approach to type soundness. Information and
Computation 115 (Nov. 1994), 38–94.

60

