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Figure 11.1  An 8-puzzle problem instance: (a) initial configuration; (b) final configuration; and (c)
a sequence of moves leading from the initial to the final configuration.
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Figure 11.3  Two examples of unfolding a graph into a tree.
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Figure 11.4  States resulting from the first three steps of depth-first search applied to an instance
of the 8-puzzle.
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Figure 11.5 Representing a DFStree: (a) the DFS tree; successor nodes shown with dashed lines
have already been explored; (b) the stack storing untried alternatives only; and (c) the stack storing
untried alternatives along with their parent. The shaded blocks represent the parent state and the
block to the right represents successor states that have not been explored.



(O] Blank Tile

4165 4/5]6
1 8|0 71 8]0 D The last tile moved
(a) (b)

7123 7123
6 |4/6|5 6 |4]6|s
RE NEE
/ \Stepl / \Step]
7[ 23] [7]2]3 7] 23] [7]2]3
7 |4l 465 7 7 4|60 |4]6 5| 7
IRERNEER NEEREE
Stepz/[
7] 2 7] 2] 3
8 4|63 06 6
18 s| [1]s]s
(7] 2] 3] 7023
6 14/6|5 6 [4/6|5
1 8|0 1 8|0
/\Stepl /\SNPJ
7l 23] [7]2]3 7] 23] [7]2]3
71460 |a]6]s]|7 7 4|60 [4]6 5|7
18 5| [1]0]s NEERER
StepZ/ j SrcpZ/ J l \Srep4
200 [7]2]3 2i0] [7]2]3] [7[273] [7]2]3
8§ [4/6/3 [alO 6|6 8 [4/6 3| [4O[6| [4]6]5] [4]0s
1sls| [1/8]s 1s/s| |18 s| [O1]s] [1]e s
6 8 8
Step 3 J\
/LN SR
213 [7]O0 7] 2 20 3] [7]O 7] 2] 3
7 al8le [4]2[6 [O4]6 7 7 |als 6| 426 |Ol4 6 7
1ols) [1sls |1]s8]s 1ols| [1]ss [1]8]s
7 7

(c)

Figure 11.6  Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configura-
tion; and (c) states resulting from the first four steps of best-first search. Each state is labeled with
its ~-value (that is, the Manhattan distance from the state to the final state).
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Figure 11.7  The unstructured nature of tree search and the imbalance resulting from static parti-
tioning.
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Figure 11.8 A generic scheme for dynamic load balancing.
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Figure 11.9  Splitting the DFS tree in Figure 11.5. The two subtrees along with their stack repre-
sentations are shown in (a) and (b).
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Figure 11.14 A general schematic for parallel best-first search using a centralized strategy. The
locking operation is used here to serialize queue access by various processors.
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Figure 11.15 A message-passing implementation of parallel best-first search using the ring com-
munication strategy.
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Figure 11.17 The difference in number of nodes searched by sequential and parallel formulations
of DFS. For this example, parallel DFS reaches a goal node after searching fewer nodes than se-
quential DFS.
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Figure 11.18 A parallel DFS formulation that searches more nodes than its sequential counterpart.
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