0| 5] 2 1 2] 3
183 456
4176 7] 8D
(a) (b)
O 152 15 o L . 152
u u c own
18] 3] -2=|0] Pl 8] 3| —=[4] 8] 3|=[4]00]3
4 4 O 7] 6 7/0] 6 718] 6
left ldown
1 2] 3 1[2]3 1[2]0] | [1]C
4 s[e| <[4] s[O] <" 4]5]3]=—[4]5
7] 8|0 7] 8] 6 70 8] 6 708

I:l Last tile moved m Blank tile
(©)

Figure 11.1 An 8-puzzle problem instance: (a) initial configuration; (b) final configuration; and (c)
a sequence of moves leading from the initial to the final configuration.

(a)

/\(8\/ J\9\ /X\S/ 9‘(\

10(, 10 10U 10(L 10(10(“10’[) 100)
(b)

Figure 11.3 Two examples of unfolding a graph into a tree.

Al 4, 6|5

1] 8]0]
down — T right
Slcpl // \
7123 71213
Bl 4 6|[] C 41 6| 5
1 8] 5 1[L]] 8
Step2] own
7,23 7120 7123
D 4|6/ 5 E|4 6|3 F 411 6 .
(]| Blank tile
1| 8 L] 1 85 1| 8|5 u
Step 3 ui/ \:g]" || The last tile moved
70213] [7]0]2
G 6] H 4/ 6|3
1| 8|5 1 85

Figure 11.4 States resulting from the first three steps of depth-first search applied to an instance
of the 8-puzzle.

;) Bottom of the stack
2\N
oS I Y = 5)
\2) \3) W &) 1 4 3
/ N 4
4 P N £
(6) (7) (8) (9) 3 8 9
NN Ry
;I. 9
(0) (11 < 7 | 1
SN
7 1
, 12/ ";\.I 2/ 14 10 14
/N
‘ 14
(1s) (e (7)] B3| 16 | 17
/0 17
R (19 .
(18) (19) 6 15 | 19
A 19
20 @y .
24
6N (3 () ;
22) 23) 24 21 | 23 24
r 23
Current State ‘ .
~ Top of the stack ~
(a) (b) (©)

Figure 11.5 Representing a DFStree: (a) the DFS tree; successor nodes shown with dashed lines
have already been explored; (b) the stack storing untried alternatives only; and (c) the stack storing
untried alternatives along with their parent. The shaded blocks represent the parent state and the
block to the right represents successor states that have not been explored.

(O] Blank Tile

4165 4/5]6
1 8|0 71 8]0 D The last tile moved
(a) (b)

7123 7123
6 |4/6|5 6 |4]6|s
RE NEE
/ \Stepl / \Step]
7[23] [7]2]3 7] 23] [7]2]3
7 |4l 465 7 7 4|60 |4]6 5| 7
IRERNEER NEEREE
Stepz/[
7] 2 7] 2] 3
8 4|63 06 6
18 s| [1]s]s
(7] 2] 3] 7023
6 14/6|5 6 [4/6|5
1 8|0 1 8|0
/\Stepl /\SNPJ
7l 23] [7]2]3 7] 23] [7]2]3
71460 |a]6]s]|7 7 4|60 [4]6 5|7
18 5| [1]0]s NEERER
StepZ/ j SrcpZ/ J l \Srep4
200 [7]2]3 2i0] [7]2]3] [7[273] [7]2]3
8§ [4/6/3 [alO 6|6 8 [4/6 3| [4O[6| [4]6]5] [4]0s
1sls| [1/8]s 1s/s| |18 s| [O1]s] [1]e s
6 8 8
Step 3 J\
/LN SR
213 [7]O0 7] 2 20 3] [7]O 7] 2] 3
7 al8le [4]2[6 [O4]6 7 7 |als 6| 426 |Ol4 6 7
1ols) [1sls |1]s8]s 1ols| [1]ss [1]8]s
7 7

(c)

Figure 11.6 Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configura-
tion; and (c) states resulting from the first four steps of best-first search. Each state is labeled with
its ~-value (that is, the Manhattan distance from the state to the final state).

(a) (b)

Figure 11.7 The unstructured nature of tree search and the imbalance resulting from static parti-
tioning.

Service any pending

messages

Do a fixed amount of work

Finished
available
work

Processor active

Processor idle

Select a processor and Service any pending

request work from it messages

Got a reject

Issued a request

Figure 11.8 A generic scheme for dynamic load balancing.

(3) (@
5 4
(1) ®
9 8
(10)
11 14
(13) (14
17 16
(16)
19
“““““““ Cootdepn |
23
T @) @)
Current State
(a) (b)

Figure 11.9 Splitting the DFS tree in Figure 11.5. The two subtrees along with their stack repre-
sentations are shown in (a) and (b).

Global list maintained
at designated processor

Put expanded
Get

current
best node

o /‘: / '
Lock the list Lock the list

Lock the list

nodes

Place generated Place generated

nodes in the list) nodes in the list

- \ [J w
Pick the best node Place generated Pick the best node
. fromthe st | __nodes in the list o . from the list)
Unlock the list Pick the best node Unlock the list

from the list

— :) —

Expand the node to) Expand the node to
Unlock the list
generate SUCCessors generate SUCcessors
Expand the node to |)
Py ate s p—1
generate successors

]
P

Figure 11.14 A general schematic for parallel best-first search using a centralized strategy. The
locking operation is used here to serialize queue access by various processors.

o - — — _“"“"“--‘

~ — —— —

o _— T —
////"

T
P Exchange T

/ best nodes \““\\

Local list Local list
;_\:\\ Local list =
P R
Exchange =
best nodes —
Exchange
best nodes
Py Py
Py

Figure 11.15 A message-passing implementation of parallel best-first search using the ring com-
munication strategy.

Start node S Start node S

/}‘Q ;O>O
/\ Ny /\ N

2 (O

// //
/\\ /\\

L4 ()
/ \ Goal node G / \ Goal node G
Total number of nodes generated by Total number of nodes generated by
sequential formulation = 13 two-processor formulation of DFS =9

(a) (b)

Figure 11.17 The difference in number of nodes searched by sequential and parallel formulations
of DFS. For this example, parallel DFS reaches a goal node after searching fewer nodes than se-
quential DFS.

Start node S Start node S

10 RIO)
QO/ \Q R2 () LI
30/ 40 >O R3 O/ >Q ?@

/6 O\ - / - R/6 Q\ - ? O
70 O O R7(0 O L5 O
Goal node G Goal node G
Total number of nodes generated by Total number of nodes generated by
sequential DFS =7 two-processor formulation of DFS = 12
(a) (b)

Figure 11.18 A parallel DFS formulation that searches more nodes than its sequential counterpart.

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12

