AUSZUG aus prelude.hs

Standardfunktionen, Standardlistenfunktionen,
Monadische Ein-/Ausgabe

__ 3
fst (a,b) -> a

fst (x,)) =X

snd iz (a,b) -=> b

snd (_.Y) =y

curry . ((@,b) >¢c) ->((@a->b ->c)
curry f x y =T x,¥)

uncurry . (a@a->b->c¢c) -> ((a,b) -> 0
uncurry f p = f (fst p) (snd p)

id Ia->a

id X = X

) (b ->c¢c) >@->b) > (a->c)
f .9 x =f (@

flip i (@a->b->¢c) >b->a->c
flip f xy =Ffyx

(€)) :t(@a->b)y ->a->b

f$x =fx

until :: (a ->Bool) -> (a->a) ->a->a
until p £ x = if p x then x else until p £ (f x)
-- Standard list functlons {PreludeList} ------
head i [a] -> a

head (x:_) =

last : [a] -> a

last [x] =X

last (_:xs) = last xs

tail : [a] -> [a]

tail (:xs) = Xxs

init : [a] -> [a]

init [x] =0

init (x:xs) = init xs

null : [a] -> Bool

null [] = True

null C:)) = False

Gy : [a] -> [a] -> [a]

[H] ++ ys = ys

y
(X:xs) ++ ys X 1 (Xs ++ ys)

map :(@a->b) -> [a] -> [b]
map f xs =[fx]| x<-xs1]
filter : (a -> Bool) -> [a] -> [a]
filter p xs =[x] x<-xs, px]
concat : [[a1l -> [a]
concat = foldr (++) []
length : [a]l -> Int
length = foldl® (\n _ ->n + 1) 0
2 [b] -> Int > Db
1o =X

n|] n>0 = xs Il (n-1)

_ = error "Prelude.!!: negative index"

_ = error "Prelude.!!: index too large"”
foldl :(@a->b->a) ->a->1[b] ->a
foldl ¥ z [1 =z
foldl £ z (x:xs) = foldl ¥ (f z x) xs

foldll
foldll ¥ (x:xs)

(a ->a->a) ->[a] > a
foldl T x xs

scanl :(@a->b->a) ->a->[b] -> [a]
scanl f q xs = g : (case xs of

o -0

x:xs -> scanl ¥ (F g x) xs)
foldr (a ->b->b) ->b ->[a] ->b
foldr f z [1

foldr £ z (x:xs) f x (foldr f z xs)
foldrl

foldrl ¥ [x]
foldrl £ (x:xs)

(a->a->a) ->[a] > a
X

f x (foldrl f xs)

scanr :(@a->b->b) ->b ->[a] -> [b]
scanr ¥ g0 [1 = [q0]
scanr ¥ q0 (x:xs) = fx q : gs

where gs@(q:_) = scanr f g0 xs

iterate :(a->a) > a->[a]
iterate T x = x : iterate T (F x)
repeat :a -> [a]

repeat Xx = xs where xs = x:xs
replicate Int -> a -> [a]

replicate n x take n (repeat x)

cycle

cycle []
cycle xs

take
take 0 _
take

_]
take n (x xs) | n>0 = x :

take _ _
drop
drop 0 xs
drop

| .
drop n (:xs) | n>O

drop _

splitAt
splitAt 0 x
splitAt _ [

splitAt n (x:xs) |
where (xs®,xs") = splitAt (n-1) xs

S

1

iz [a] -> [a] .
error "Prelude.cycle: empty list"”
xs" where xs"=xs++xs"

22 Int -> [a] -> [a]

f[]

take (n-1) xs

= error "Prelude.take: negative argument"

Int -> [a] -> [a]
XS

= drop (n-1) xs
= error "Prelude.drop: negative argument"

Int -> [a] -> ([al, [a])
([.xs)
([] m
n>

(X:xs",xs" ")

splitAt _ _ error "Prelude.splitAt: negative argument™
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] =0
takeWhile p (x:xs) I p x = x : takeWhile p xs
| otherwise = []
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] =0
dropWhile p xs@(x:xs") | p x = dropWhile p xs*
| otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([al.[al)
span p [1 = .0
span p xs@(x:xs") | X = (x:ys, zs)
| otherwise = ([],xs)
where (ys,zs) = span p xs”
break p = span (not . p)
lines :: String -> [String]
lines " =[1
lines s = let (1,s") = break ("\n"==) s
in 1 : case s" of [] -> 0
(:s"") -> lines s"*

words :: String -> [String]
words s = case dropWhile isSpace s of

">

s* ->w : words s""

where (w,s"") = break isSpace s”

unlines :: [String] -> String
unlines = concatMap (\1 -> I ++ "\n")
unwords :: [String] -> String

unwords []
unwords ws

reverse :
reverse

and, or H
and
or

any, all :

any p
all p

elem, notElem

elem
notElem

lookup
lookup k []

lookup k ((X,y):xys) | k==x

sum, produc
sum
product

maximum, minimum

maximum
minimum

concatMap
concatMap f

t

foldrl (\w s -> w ++ " ":s) ws

[a] —> [a]
foldl (flip () [
[Bool] -> Bool

foldr (&&) True
foldr (]]) False

(a -> Bool) -> [a] -> Bool
or . map p
and . map p

:: Eq a => a -> [a] -> Bool
any . (==)
all . (/=)

:: Eq a => a -> [(a,b)] -> Maybe b
= Nothing

Just y

lookup k xys

| otherwise

2 Num a => [a] -> a
foldl™ (+) O
foldl® (*) 1

22 0rd a=>[a] -> a
foldll max
foldll min

ot (a > [b]) > [a] -> [b]
concat . map f

zip iz [a] -> [b] -> [(a.D)]

zip = zipWith Q\a b -> (a,b))

zipWith T (a >b >c) -> [a]->[b]->[c]

zipWith z (a:as) (b: =z ab : zipWith z as bs

zipWith _ =0

unzip : [(a,0)] -> ([al.[bD)

unzip = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs)) (1. [D

-- Predefined Monadic 1/0 Functions -------————————-
Char -=> 10 O
10 Char

putChar ::
getChar ::

putStr, putStrLn :: String -> 10 O
10 String

getLine ::

