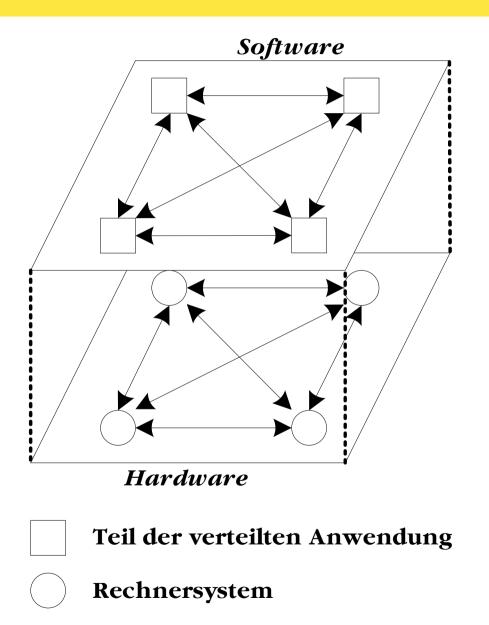
Kapitel 1: Architektur verteilter Systeme


Struktur eines verteilten Systems

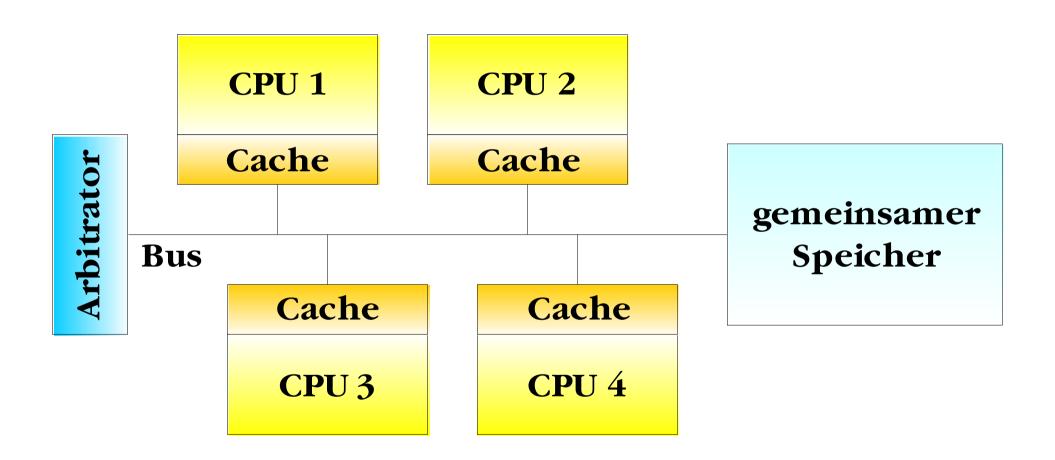
Ein verteiltes System besteht aus

- Menge unabhängiger
 Rechnersysteme
- Kommunikationsnetz

und erbringt eine

verteilte Anwendung

Vor- und Nachteile eines verteilten Systems


Vorteile:

- gemeinsame Nutzung von Hard- und Software-Ressourcen
- erhöhteAusfallsicherheit
- schnellerer Zugriff auf Daten
- neue Anwendungen

Nachteile:

- neue Sicherheitsrisiken
- verminderteAusfallsicherheit
- Konsistenzprobleme
- Performance-Schwankungen
- Wartung und Instandhaltung schwierig

Aufbau eines Multiprozessors (1)

Aufbau eines Multiprozessors (2)

CPU

- symmetrische Multiprozessorsysteme
- asymmetrische Multiprozessorsysteme

Cache

- Zwischenspeicher
- Kompensation unterschiedlicher Zugriffsgeschwindigkeiten

Bus

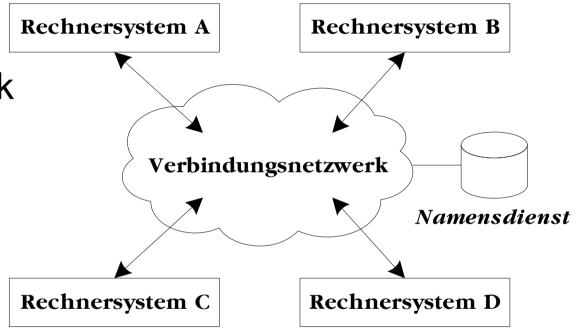
Verbindungsleitung zwischen einzelnen Komponenten

Aufbau eines Multiprozessors (3)

Arbitrator

regelt Zugriff auf gemeinsamen Bus

Speicher


- Ablegen von Daten
- Interprozesskommunikation

Struktur einer Multicomputers

Ein Multicomputersystem besteht aus

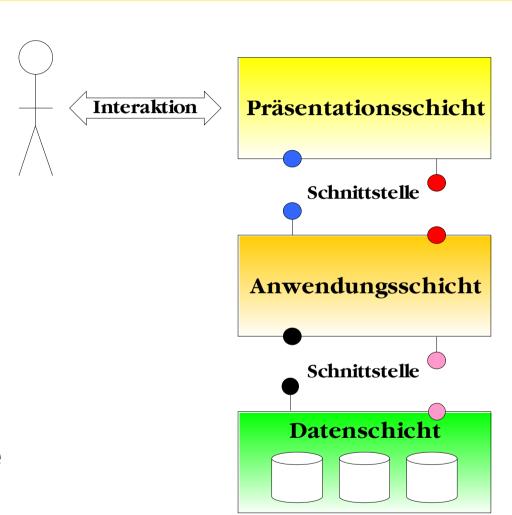
- Rechnersystemen
- Verbindungsnetzwerk
- Namensdienst

Die Rechnersysteme besitzen *keinen* gemeinsamen Speicher.

Kommunikation innerhalb eines Multicomputers

- Da kein gemeinsamer Speicher vorhanden ist, kann die Kommunikation nur über Austausch von Nachrichten (message passing) erfolgen.
- Eine Nachricht besteht aus
 - Senderadresse
 - Empfängeradresse
 - Umschlag
- Ein Namensdienst realisiert die Abbildung der Sender- und Empfängeradressen auf die physikalischen Adressen der Rechnersysteme (mapping).

Verteilungs- und Programmierparadigmen


Verteilungsparadigmen: Programmierparadigmen:

- Dateien
 - Dokumente
- Funktionalität
 - Prozeduren
 - Objekte
 - Berechnungen

- Sockets
- Remote Procedure Call (RPC)
- Remote Method Invocation (RMI)
- nachrichtenbasierte
 Kommunikation

3-tier-architecture

- Zerlegung der Anwendung in drei disjunkte Schichten
 - Präsentationsschicht
 - Anwendungsschicht
 - Datenschicht
- Austausch von Daten zwischen Schichten erfolgt durch definierte Schnittstellen

Transparenz

• Eine wichtige Eigenschaft verteilter Systeme ist die Realisation von verschiedenen *Transparenzarten*.

- Unter Transparenz versteht man das Verstecken einer bestimmten *Eigenschaft* bzw. *Funktion* vor dem Benutzer, nicht aber deren *Effekt*.
- Man unterscheidet verschiedene Arten von Transparenz.

Transparenzarten (1)

Positionstransparenz

Speicherort einer Ressource muss nicht bekannt sein

Migrationstransparenz

Ressourcen k\u00f6nnen zwischen Rechnersystemen verschoben werden

Replikationstransparenz

- replizierte Ressourcen erscheinen als eine einzige

Skalierungstransparenz

verteiltes System kann einfach wachsen

Fehlertransparenz

Systemfehler werden verborgen

Transparenzarten (2)

Relokationstransparenz

 Ressource kann während Umzug zwischen Rechnersystemen genutzt werden

Parallelitätstransparenz

 versteckt gleichzeitigen Zugriff mehrerer Benutzer auf gleiche Ressource

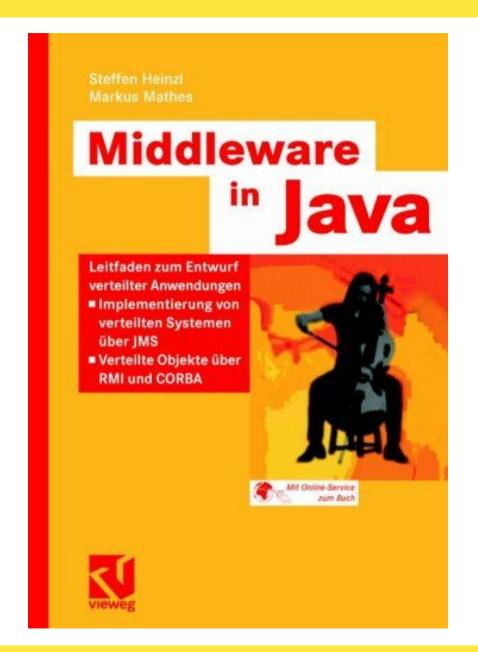
Leistungstransparenz

 Verteilung von Aufgaben auf verschiedene Rechnersysteme (load balancing)

Zugriffstransparenz

 Heterogenität von Betriebs- und Rechnersystemen verstecken

Literatur


- Günther Bengel: Grundkurs Verteilte Systeme (3. Auflage);
 vieweg 2004; http://www.vts.fh-mannheim.de
- George Coulouris, Jean Dollimore, Tim Kindberg: Verteilte Systeme – Konzepte und Design (3., überarbeitete Auflage); Pearson Studium 2002
- Schahram Dustdar, Harald Gall, Manfred Hauswirth: Software-Architekturen für Verteilte Systeme; Springer 2003
- Andrew S. Tanenbaum: Computernetzwerke (3. überarbeitete Auflage); Pearson Studium 2002; http://www.cs.vu.nl/~ast
- Andrew Tanenbaum, Marten van Steen: Verteilte Systeme Grundlagen und Paradigmen; Pearson Studium 2003
- Michael Weber: Verteilte Systeme; Spektrum Akademischer Verlag 1998

Aufgaben

In "*Middleware in Java*" finden Sie

- Wiederholungs-,
- Vertiefungs-,
- Programmieraufgaben zu den vorgestellten Themen.

Zur Festigung und Vertiefung des Erlernten wird eine Bearbeitung der Aufgaben empfohlen.

