Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Prof. Dr. H. Upmeier M.Sc. Philipp Naumann

Übungen zur Analysis III

- Blatt 3-

Abgabe: Montag, den 13.05.2013, 12:00 - 12:15 Uhr, HG Seminarraum +2/0100

Aufgabe 1 (4 Punkte)

Sei $P \subset \mathbf{R}^n$ ein abg. Quader und $M \subset P$ ein abg. Teilquader, der auch ausgeartet sein kann (im Extremfall ein Punkt). Beweise durch direkte Anwendung der Definition, dass die charakteristische Funktion $\chi_M : P \to \mathbf{R}$ integrierbar ist, und bestimme das Integral

$$\int_{P} \chi_{M}$$

Aufgabe 2 (4 Punkte)

Sei $f: P \to \mathbf{R}$ integrierbar, und $M \subset P$ ein (nicht-ausgearteter) Teilquader. Beweise, dass auch $f \cdot \chi_M: P \to \mathbf{R}$ integrierbar ist, entweder durch direktes Nachrechnen, oder durch Zurückführung auf das Minimax-Lemma.

Aufgabe 3 (4 Punkte)

Sei P = [0,1] und $\chi_{\mathbf{Q}} : P \to \mathbf{R}$ die charakteristische Funktion von $\mathbf{Q} \cap P$. Beweise mit dem Satz von der monotonen Konvergenz: $\chi_{\mathbf{Q}}$ ist integrierbar mit Integralwert 0. Zeige allgemeiner, dass dies auch für $f \cdot \chi_{\mathbf{Q}}$ gilt, wobei $f : P \to \mathbf{R}$ eine beliebige, nicht notwendig integrierbare Funktion ist.

Aufgabe 4 (4 Punkte)

Eine beschränkte Funktion $f: P \to \mathbf{R}$ heisse Riemann-integrierbar mit Integralwert $\int_P f$, falls für jedes $\epsilon > 0$ ein (konstantes) $\delta > 0$ existiert mit der folgenden Eigenschaft: Ist

$$P = \bigcup_{\alpha} P_{\alpha}$$

eine Quader-Partition mit $diam(P_{\alpha}) \leq \delta$ für alle α , so gilt

$$\sum_{\alpha} |P_{\alpha}| \sup_{P_{\alpha}} f - \epsilon \le \int_{P} f \le \sum_{\alpha} |P_{\alpha}| \inf_{P_{\alpha}} f + \epsilon.$$

Zeige mit dieser Definition, dass die Funktion $\chi_{\mathbf{Q}}$ auf P = [0, 1] nicht Riemann integrierbar ist. Gilt der Satz von der monotonen Konvergenz auch im Kontext der Riemann-Integrierbarkeit?