Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Prof. Dr. H. Upmeier

Übungen zur Analysis III

- Blatt 8 -

Abgabe: Montag, den 01.07.2013, 12:00 - 12:15 Uhr, HG Seminarraum +2/0100

Aufgabe 1 (4 Punkte)

M. Sc. Philipp Naumann

Die Gruppe $GL_n(\mathbf{R})$ ist eine offene Teilmenge von $\mathbf{R}^{n\times n}$. Definiere die orthogonale Untergruppe

$$O(n) := \{ g \in GL_n(\mathbf{R}) : g^T g = id \}.$$

- a) Beweise, dass O(n) eine Untermannigfaltigkeit von $GL_n(\mathbf{R})$ ist.
- b) Bestimme den Tangentialraum

$$T_g(O(n)) \subset \mathbf{R}^{n \times n}$$
 an $g \in O(n)$

c) Bestimme die Dimension und Codimension von O(n)

Hinweis: Berechne das Differential der Abbildung $g \mapsto \Phi(g) := gg^T$ mit Hilfe der Produktregel. Betrachte zunächst g = id. Der allgemeine Fall kann durch eine Matrix-Transformation der Form $h \mapsto gh$ auf den Fall g = id zurückgeführt werden.

Aufgabe 2 (4 Punkte)

Der Hodge *-Operator $\Omega^p(U) \to \Omega^{n-p}(U)$ ist linear über $\mathcal{C}^{\infty}(U)$ und erfüllt

$$dx^I \wedge *dx^I = dx^N = dx^1 \wedge ... \wedge dx^n$$

- a) Finde eine explizite Formel für $*dx^I$
- b) Bestimme die Abbildung $\omega \mapsto **\omega$ auf $\Omega^p(U)$

Aufgabe 3 (4 Punkte)

Seien x_i^j die Koordinaten des Matrix-Raumes $\mathbf{R}^{m \times n}$, mit Zeilenindex $1 \leq i \leq m$ und Spaltenindex $1 \leq j \leq n$. Betrachte die Matrixmultiplikationen

$$GL_m(\mathbf{R}) \times \mathbf{R}^{m \times n} \to \mathbf{R}^{m \times n} : (a, x) \mapsto L_a x := ax$$

$$\mathbf{R}^{m \times n} \times GL_n(\mathbf{R}) \to \mathbf{R}^{m \times n} : (x, b) \mapsto R_b x = xb$$

von links bzw. rechts. Bestimme das Pullback $L_a^*\omega$ und $R_b^*\omega$, für festes $a \in GL_m(\mathbf{R})$ und $b \in GL_n(\mathbf{R})$, der mn-Form

$$\omega = \bigwedge_{ij} dx_i^j$$

auf $\mathbf{R}^{m\times n}$, wobei die Reihenfolge der Doppelindizes (i,j) geeignet festgelegt werden soll. Hinweis: Schreibe $\mathbf{R}^{m\times n}$ als Produktraum, sodass die Transformationen L_a bzw. R_b Diagonalgestalt haben.

Aufgabe 4 (4 Punkte)

Betrachte die Inversions-Abbildung $g \mapsto I(g) := g^{-1}$ auf $GL_n(\mathbf{R})$.

- a) Bestimme die Ableitung I'(id) an id mittels geometrischer Reihe
- b) Bestimme die Ableitung $h \mapsto I'(g)h$ für beliebiges $g \in GL_n(\mathbf{R})$ und $h \in \mathbf{R}^{n \times n}$ durch Zurückführung auf den Fall g = id mittels einer geeigneten Transformation L_a oder R_h .
- c) Bestimme die Determinante det I'(g) und den Pullback $I^*\omega$ wie in der obigen Aufgabe (für m=n).
- d) Es gilt die Formel

$$I \circ L_a = R_{a^{-1}} \circ I$$

und analog für $I \circ R_b$. Verifiziere die Funktoreigenschaft für den pullback von ω mittels der expliziten Formeln für L_a^*, R_b^*, I^* .