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Signal Analysis: Transformation and
Discretization

• Transform a signal to handle it, e.g. the STFT:

f 7→ F (ω, τ) =
∫
R

f (t)w(t − τ)e−iωt dt;

or the wavelet transform:

g 7→ G(a, t) = 1√
a

∫
R

g(x)ψ
(x − t

a

)
dx

• Discretize a signal, e.g. the Shannon-Whittaker
theorem:

f (t) =
∑
n∈Z

f (n) · sinc (t − n) , supp f̂ ⊂ [−1
2 ,

1
2].
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What is the Goal?

• Define smoothness spaces via transformations of signals
−→ coorbit theory

• Discretize these functions spaces, i.e., f =
∑

k ckϕk for
certain building blocks ϕk

• Applications: e.g. Besov spaces, modulation spaces,
development of new spaces

• Today: What is the role of the so-called kernel?
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Coorbit Theory
Let G be a group with Haar measure dg and π : G → U(H)
a unitary representation of G on a Hilbert space H. Consider
the voice transform

V : H → L∞(G) ∩ C(G), Vv(x) := 〈v , π(x)u〉H.

We assume that π is irreducible and u ∈ H is admissible, i.e.

V : H → L2(G) is an isometry.

We then call π square-integrable and V is injective and
self-adjoint.
An important ingredient is the kernel function

K (x) := Vu(x) = 〈u, π(x)u〉H ∈ L2(G),

which fulfills

Vv ∗ K = Vv .



Lukas Sawatzki

Introduction

Classic Theory

Examples

Coorbit Spaces
with
Non-Integrable
Kernel

Discretization
without Additional
Conditions

Discretization
under Additional
Conditions

Summary

References

Coorbit Spaces
At this point we assume:

K ∈ L1,w (G).

Consider the space

H1,w := {f ∈ H : Vf ∈ L1,w (G)}.

Setting ‖f ‖H1,w := ‖Vf ‖L1,w , this is a Banach space with
H1,w ⊂ H dense. Then we consider the extended voice
transform

VeT (x) := 〈T , π(x)u〉H′1,w×H1,w , T ∈ H′1,w .

We can now define the coorbit spaces with respect to
Lp,m(G) via

Co(Lp,m) := {T ∈ H′1,w : VeT ∈ Lp,m(G)},

where ‖T‖Co(Lp,m) = ‖VeT‖Lp,m .
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Coorbit Theory

The weights fulfill w(gh) ≤ w(g)w(h) as well as
m(ghk) ≤ w(g)m(h)w(k).

The most important property is

V−1
e F ∈ Co(Lp,m)⇐⇒ F ∈ Lp,m(G),F ∗ K = F .

Furthermore, by Schur’s lemma, it holds that

‖F ∗ K‖Lp,m ≤ CK‖F‖Lp,m ,

if K ∈ L1,w (G), what we assumed.

Main idea of the discretization: discretize this convolution!
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Discretization if K ∈ L1,w(G)

Theorem
Under additional conditions on K, we obtain for small U:
• Every T ∈ Co(Lp,m) can be written as

T =
∑

i∈I ci (T )π(xi )u with

‖(ci (T ))i∈I‖`p,m . ‖T‖Co(Lp,m).

• For (di )i∈I ∈ `p,m we have
T =

∑
i∈I diπ(xi )u ∈ Co(Lp,m) with

‖T‖Co(Lp,m) . ‖(di )i∈I‖`p,m .
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Example: Modulation Spaces

Consider the reduced Heisenberg group H1
r = R× R× T

with group law

(x , y , ξ) ◦ (x ′, y ′, ξ′) = (x + x ′, y + y ′, ξξ′e−πi(xy ′−yx ′)).

Then the Schrödinger representation

ρ(x , y , ξ)f (t) = ξe−πixy e2πiyt f (t − x)

is a unitary representation of H1
r on L2(R). The associated

coorbit spaces are the modulation spaces

f ∈ Ms
p,p(R) ⇐⇒∫

H1
r

|〈ρ(x , y , ξ)g , f 〉|p(1 + |y |)sp d(x , y , ξ) <∞
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Example: Besov Spaces
Consider the group

G = R× R∗, (b, a) ◦ (x , y) = (ax + b, ay)

with Haar measure d(x , y) = dxdy
y2 . Then

π(t, a)ϕ(x) := a−1/2ϕ

(x − t
a

)
is a unitary representation of G on L2(R).
The associated coorbit spaces are homogeneous Besov
spaces:

f ∈ Ḃs−1/2+1/p
p,p (R)⇐⇒

∫
R

∫
R∗
|〈LtDaϕ, f 〉|p|a|−sp da

a2 dt <∞,

ϕ suitable, LtDaϕ(x) = 1√
aϕ( x−t

a ), s ∈ R, 1 ≤ p ≤ ∞.
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What if K /∈ L1,w(G)?

Before:

Co(Lp,m) := {T ∈ H′1,w : Ve ∈ Lp,m(G)},

where

H1,w := {f ∈ H : Vf ∈ L1,w (G)}.

In particular we necessarily assume

K = Vu ∈ L1,w (G).

What happens, if this condition is not fulfilled, e.g.

K ∈
⋂

1<p<∞
Lp,w (G)?
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New Coorbit Spaces
Consider the new space

Sw := {f ∈ H : Vf ∈
⋂

1<p<∞
Lp,w (G)} ⊂ H,

we then extend the voice transform to S ′w via

VeT (x) := 〈T , π(x)u〉S′w×Sw , T ∈ S ′w .

Then the coorbit space with respect to Lr ,m(G) is
analogously defined via

Co(Lr ,m) = {T ∈ S ′w : VeT ∈ Lr ,m(G)}.

Again we have

V−1
e F ∈ Co(Lr ,m)⇐⇒ F ∈ Lr ,m(G),F ∗ K = F .

It holds that K /∈ L1,w (G), but let us assume

RCK : Lr ,m(G)→ Lr ,m(G), RCK F = F ∗ K , is continuous,

which is necessary! This is restrictive.
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Theorem
Under technical assumptions on the kernel K we have:
• For all ε > 0, T ∈ Co(Lr ,m) there exists a

n∗ = n∗T ,ε ∈ N, such that for all n ≥ n∗ we have

‖T −
∑

x∈Xn

c(T )n,xπ(x)u‖Co(Lr,m) ≤ ε,

‖(c(T )n,x )x∈Xn‖`p,m ≤ Cn(1 + ε)‖T‖Co(Lr,m).

• For (dx )x∈Yn ∈ `q,m we have
T =

∑
x∈Yn dxπ(x)u ∈ Co(Lr ,m) with

‖T‖Co(Lr,m) ≤ Dn‖(dx )x∈Yn‖`q,m ,

where 1/q + 1/p = 1 + 1/r , p > 1.

Cn ∼w |Un|1−1/r‖T−1
n ‖

Dn ∼w |Un|1/q−1 · ‖oscUn (K ) + |K |‖Lp,w .
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Example

Consider the group G = (R,+) and Ω ⊂ R, and the Hilbert
space B2

Ω = {f ∈ L2(R) : supp f̂ ⊂ Ω}. The representation
π is given via

π(t)f (x) = f (x − t)

and as an admissible vector we choose

u = K = F−1χΩ ∈ B2
Ω.

It holds that K /∈ L1(R), but K ∈
⋂

1<p<∞ Lp(R) (under
certain conditions). However the operator

RCK : Lp(R)→ Lp(R), 1 < p <∞,

is not always bounded! But there exists a W ∈ L1(R) with
K ∗W = K , s.t. χΩ · FW = χΩ.
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Discretization under Additional Conditions
Previous idea: discretize the convolution RCK . Assume there
is a W ∈ L1,w (G) with K ∗W = K , then we have

F ∗W = F für alle V−1
e F ∈ Co(Lr ,m).

Therefore: discretize RCW instead!

Theorem
Under certain conditions on K and W we have:
• Each T ∈ Co(Lr ,m) can be written as

T =
∑

i∈I ci (T )π(xi )u with

‖(ci (T ))i∈I‖`r,m . ‖T‖Co(Lr,m).

• For (di )i∈I ∈ `r ,m we have
T =

∑
i∈I diπ(xi )u ∈ Co(Lr ,m) with

‖T‖Co(Lr,m) . ‖(di )i∈I‖`r,m .
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Example
Consider again the group G = (R,+) and Ω ⊂ R, and the
Hilbert space B2

Ω = {f ∈ L2(R) : supp f̂ ⊂ Ω}. The
representation π is given via

π(t)f (x) = f (x − t)

and as an admissible vector we choose

u = K = F−1χΩ ∈ B2
Ω.

Then there exists W as described above. Let xk = k/2π,
k ∈ N, and U = [−1/4π, 1/4π). Then we conclude

Mr 3 f =
∑
k∈Z

ckK (· − k/2π)⇐⇒ (ck)k∈Z ∈ `r (Z),

see also Nyquist-Shannon sampling theorem.
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Summary

• Coorbit theory connects smoothness spaces with an
underlying group structure and gives a universal access
as well as possible discretizations
• Normally we assume K ∈ L1,w (G), but the weaker case

K ∈
⋂

1<p<∞ Lp,w (G) also leads to meaningful
smoothness spaces
• However, discretization is only possible if RCK is

bounded on Lr ,m(G)
• A proper discretization is only possible if there exists an

additional kernel W ∈ L1,w (G) with K ∗W = W
• These additional assumptions need to be checked

individually!
• This can be extended to a generalized coorbit theory

without group structure.
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Thank you!
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