

The soil bacterium Myxococcus xanthus moves with help of two gliding motility regulated systems by the MgIA-MgIB protein complex [3].

Scheme of *M. xanthus* reversing.

Differential equations

The assumptions yield a weakly-coupled reaction-diffusion system.

$$\frac{\partial}{\partial t}c_i(x) = \underbrace{d_i\Delta c_i}_{\text{diffusion}}, \quad x \in [0,1]$$

$$\frac{1}{d_i}\frac{d}{dt}\ell_i = \underbrace{\alpha_i(\ell)c_i(0)}_{\text{binding}} - \underbrace{\kappa_i(\ell)\ell_i}_{\text{unbinding}}$$

$$\frac{1}{d_i}\frac{d}{dt}r_i = \underbrace{\alpha_i(r)c_i(1)}_{\text{binding}} - \underbrace{\kappa_i(r)r_i}_{\text{unbinding}}, \quad i = 1, \dots, n$$

 $\alpha_i, \kappa_i \geq 0, i = 1, \dots, n$ assure positivity of concentrations at all times.

"Stalker" scenario Protein 1 is attracted to both poles; protein 2 follows it and repels it from the poles:

 $d_1 = d_2 = 1$ $\alpha_1(x_1, x_2) = 0.2 + 0.8x_1^2$ $\alpha_2(x_1, x_2) = 0.5 + 0.5x_1$ $\kappa_1(x_1,x_2) = x_2$ $\kappa_2(x_1, x_2) = \frac{1}{1+x_2}$

"Antagonist" scenario Both proteins cluster at opposite poles over an extended time period: $d_1 = d_2 = 1$ $\alpha_1(x_1, x_2) = 0.05 + 0.95x_1^2$ $\alpha_2(x_1, x_2) = (0.8 + 0.2x_1)x_2$ $\kappa_1(x_1,x_2) = \frac{2x_2}{1}$ $1 + x_2$ $\kappa_2(x_1,x_2) = \frac{1}{3+x_2}$

A Mathematical Model for Protein Oscillations in Bacteria

Peter Rashkov¹, Bernhard A. Schmitt¹, Stephan Dahlke¹, Peter Lenz², Lotte Søgaard-Andersen³

¹FB Mathematik und Informatik, Philipps-Universität Marburg ²FB Physik, Philipps-Universität Marburg ³Max-Planck-Institut für terrestrische Mikrobiologie

Protein oscillations in bacteria govern many fundamental processes, such as cell polarity which influences the direction of motion. Oscillatory

- Empirical evidence on MgIA, MgIB [1, 2, 3] shows that they
- set up correct polarity of motility proteins at the poles,
- can bind to both poles and diffuse through the cytoplasm,
- localize 'antagonistically' at opposite poles, whereby MgIA clusters near the leading pole and MgIB near lagging pole,
- interact only at localized sites at the cell poles.

Aim: develop a minimal model producing pole-to-pole oscillations under these assumptions without external triggers.

Boundary conditions

The following boundary conditions for c_i are imposed,

$$\frac{\partial}{\partial x}c_i(0) = \alpha_i(\ell)c_i(0) - \kappa_i(\ell)\ell_i,$$

$$\frac{\partial}{\partial x}c_i(1) = -\alpha_i(r)c_i(1) + \kappa_i(r)r_i, \quad i = 1, \dots, n,$$

so that for continuous α_i, κ_i the mass

$$m_i(t) := \ell_i(t) + \int_0^1 c_i(t, x) \, dx + r_i(t), \ i = 1, \dots, n,$$

is constant, $m_i(t) \equiv m_i(0), i = 1, \dots n$ for all $t \ge 0$.

Model assumptions

- Cell is modeled in 1-D as segment of length 1.

- Binding of the proteins to the cell poles occurs at a rate proportional to the cytoplasmic concentration near the pole.
- Unbinding of the proteins from the poles into the cytoplasm occurs at a rate proportional to their polar concentrations.
- Binding and unbinding rates depend on the concentrations of the pole-bound proteins.

- Design considerations: • Linearized system at the steady state exhibits eigenvalues with posi-
- tive real part.
- Nonlinear terms should limit growth of the solution and bend the trajectory into a limit cycle.
- Necessary conditions for unstable steady state based on linear stability analysis are given in [4].
- Interaction functions α_i, κ_i designed according to mathematical analysis to produce an unstable steady state.

Robustness of model

To make reliable predictions, it is necessary to verify that the model dynamics is robust against small variations in parameters or initial conditions.

- Diffusion coefficient of each protein is assumed constant.
- Conservation of mass holds for each protein.

Stability analysis Regular oscillations can occur as stable limit cycle of nonlinear system.

- The model should contain as few parameters
- A parameter scan is undertaken to define the parameter range where the qualitative behavior of the model remains unchanged.

Discussion

- Model produces self-sustained regular oscillations without external
- ✓ Dynamics of the model is *robust* against small variation in parameters and initial conditions.
- ✓ Different interaction functions produce *diverse* spatiotemporal concentration patterns.
- **Outlook** Study extensions of the model to higher number of proteins and incorporate stochastic effects in order to describe irregular oscillations characteristic of wild-type *M. xanthus*.

For the "stalker" scenario the parametrized interaction functions are

 $\alpha_1(x_1, x_2) = 1 - a_1 + a_1 x_1^2$ $\alpha_2(x_1, x_2) = 1 - a_2 + a_2 x_1$ $\kappa_1(x_1,x_2) = x_2$ $\kappa_2(x_1, x_2) = \frac{1}{1 + (a_3 - 1)x_2}$

Computations are performed under the assumption $d_1 = d_2 = 1$.

References

- *BioSys.* (2008)
- Bull. Math. Biol. (2012)

http://www.mathematik.uni-marburg.de/~rashkov/ http://www.synmikro.de

Bulyha et al. Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol. Micro. (2009)

[2] Leonardy et al. Reversing cells and oscillating proteins. Mol.

[3] Lenz and Søgaard-Andersen. Temporal and spatial oscillations in bacteria. Nat. Rev. Micro. (2011)

[4] Rashkov et al. A Model of Oscillatory Protein Dynamics in Bacteria.