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Scope
Parameter identification related to nonlinear parabolic equations

(1) g′−div(Dgradg)+λg = RΦ(Wg),

on bounded Lipschitz domains U ⊂Rd with nonlinear signal response function Φ

Goals
• Reconstruction of reaction parameters p = (D,λ ,R,W ) from noisy data gδ

• Application to embryogenesis of Drosophila [10]

Ansatz
Ill-posed problem 3 regularization needed 3 minimization problem

• Tikhonov regularization with Besov penality term

(2) pδ
α = argmin

p=(D,λ ,R,W)

∥

∥

∥
S (p)−gδ

∥

∥

∥

2
+α|p|s,

with p 7→ S (p) := solution to (1) with parameters p

• Besov penality term promotes sparse solutions

Tasks

• Efficient solver for the forward problem with optimal convergence rates for prescribed tolerance

• Efficient mimimization strategy for (2)

Numerical treatment of the forward problem
I. Parabolic problem

• Solution space for PDE (1)

W = {u ∈ Lq(0,T,V1) : u′ ∈ Lq(0,T,V2)},

where V1 =W 1
q (U,Rd), V2 = (W 1

q′(U,Rd))′

• Implicit discretization by Rothes method: 3 first in time, then in space 3 system of elliptic equations
per time step:

(3)
g(tn+1)≈ g(n+1) = g(n)+m1g1

(
1

hγ11
I − J)g1 = div(Dgradg(n))−λg(n)+RΦ(Wg(n))

• Strategy: employ adaptive methods (in time/space) to increase efficiency

II. Elliptic problems
Ansatz: adaptive algorithms based on tensor wavelets 3 dimension-independent convergence rates

• Construction of generalized anisotropic tensor wavelets

Theorem. Let U be decomposable into cubes �i. Let Ψi be an anisotropic tensor wavelet basis
for L2(�i), scaled: W s

2(�i). Let E be a combination of univariate extension operators, bounded
on ∏m

i=1L2(�i) and ∏m
i=1W s

2(�i).
Then

ΨU := E{Ψi}
m
i=1,Ψ̃U := E−∗{Ψ̃i}

m
i=1

defines a (biorthogonal) wavelet basis for L2(U), scaled: W s
2(U).

3 advantages: constructions retains

◦ tensor structure ◦ global/local smoothness
◦ vanishing moments ◦ piecewise polynomiality

3 dimension-independent approximation rates

Theorem. Given u ∈W m
2 (U) there exists an N-term approximation uN = ∑N

i=1cλ ψλ from ΨU , such
that

‖u−uN‖W m
2 (U) . N−(τ−m)

(

∏
�i⊂U

‖u‖2
H τ

m,θ (�i)

)
1
2

whenever u is contained in the weighted Sobolev spaces H τ
m,θ(�i).

• Design of adaptive method

◦ main building block of adaptive methods: approximation of biinfinite matrix/vector-multiplication
APPLY[A,x,δ ]→ vδ finitly supported with ‖Ax− vδ‖ ≤ δ

◦ design of APPLY possible if A is compressible

Theorem. Let A be the stiffness matrix according to (3) with respect to ΨU . Then there exist
matrices AM with O(M

1−ε
2 d) many entries per column, such that

‖A−AM‖. 2−M.

3 Adaptive method converges with optimal order!

Parameter identification problem

I. Parameter-to-state map

• Parameters p = (D,λ ,R,W )

◦ D ∈ L∞([0,T ],L∞(U,Rd)) ◦ λ ,R ∈ Lr([0,T ],Lr(U,Rd)), W ∈ Lr([0,T ],Lr(U,Rd×d))

◦ pointwise global bounds, r ∈ (2,∞) chosen respectively for λ ,R,W 3 admissible sets are non-
complete metric spaces

• In practice: noisy data measurements gδ
t ∈ L(t,L2(U,Rd)) at discrete time points t = {ti}k

i=1 ⊂ [0,T ]k

3 need sampling operator P : L2([0,T ],L2(U,Rd))→ L2(t,L2(U,Rd))

• Resulting parameter identification problem

(4) PS (p) = gδ
t

Theorem. The parameter-to-state map S is continuously differentiable with Hölder continuous
derivative S ′ on convex, bounded, admissible sets.

II. Regularization

• Tikhonov approach yields regularization scheme: pδ
α → p for a suitable parameter choice rule for α

• Minimization problem (2) is solved by generalized conditional gradient method (iterative soft-
shrinkage)

pn+1 = Shrinkα(pn− (S ′(pn))
∗
P

∗(PS (pn)−gδ
t ))→ pδ

α

with Besov ℓs penality term on coefficients with respect to wavelet basis/frame

Numerical realization

α = 2.8 ·10−6,δ = 2 ·10−4 α = 1.8 ·10−6,δ = 2 ·10−4 α = 1.2 ·10−6,δ = 10−7 unknown solution
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discrepancy vs ℓ1, d = 2

• Linearized model problem, d = 1,2

• Reconstruction of coupling parameter W (t,x)

• Adaptive (tensor) wavelet approach

• Based on Marburg software library

Objectives and work schedule
Forward problem: adaptive tensor product wavelet schemes f or elliptic/parabolic equations

I. Finetuning of adaptive algorithms

• Vector-valued case
• Parallelization strategies

II. Generalization to nonlinear problems

• Sparse evaluation of nonlinear functionals applied to tensor wavelet expansions
• Generalization to vector-valued case

III. Theoretical justification

• Investigate regularity of solution in generalized weighted Sobolev spaces
• Generalizations to nonlinear problems

Inverse problem: parameter identification with sparsity co nstraints

I. Convergence aspects

• Convergence theory and rates in case of inexact solution of forward problem

• Exploration of different approaches encompassing positivity constraints

II. Accelaration strategies

• Speed-up for iterated soft shrinkage 3 decreasing thresholding

• Investigate alternative minimization procedures

Numerical realization and application

I. Fully adaptive solver in time and space

• Efficient sparse evaluation of nonlinearity Φ • Vector-valued case

• Adaptive discretization in time • Parallelization

• Based on Marburg software library

II. Application to full embryogenesis model

• Combination of new forward solver with iterated soft shrinkage • Complex geometry

• High-dimensional parameter space
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