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Scope
Parameter identification related to nonlinear parabolic equations
(1) g —div(Dgradg) + Ag = R®(Wg),

on bounded Lipschitz domains U  RY with nonlinear signal response function ®

Goals
e Reconstruction of reaction parameters p = (D,A,R W) from noisy data g°

e Application to embryogenesis of Drosophila [10]

Ansatz
lll-posed problem « regularization needed - minimization problem

e Tikhonov regularization with Besov penality term

(2) py = argmin Hy(p)—gﬂ\zw\pls,
p=(D,A,RW)

with p— . (p) := solution to (1) with parameters p
e Besov penality term promotes sparse solutions

Tasks

e Efficient solver for the forward problem with optimal convergence rates for prescribed tolerance
e Efficient mimimization strategy for (2)

Numerical treatment of the forward problem

e Solution space for PDE (1)

where V; =Wz (U,RY), Vo = (qu,(U RY))

e Implicit discretization by Rothes method: & first in time, then in space « system of elliptic equations
per time step:

g(tn+1) ~ g(n+1) — g<”) + M Q1

(3) 1 J)g: = div(Dgradg™) — A g™ + Rp(Wg™)

Py

e Strategy: employ adaptive methods (in time/space) to increase efficiency

Ansatz: adaptive algorithms based on tensor wavelets = dimension-independent convergence rates
e Construction of generalized anisotropic tensor wavelets

Theorem. Let U be decomposable into cubes L];. Let W; be an anisotropic tensor wavelet basis
for Lo(C;), scaled: W5(LJ;). Let E be a combination of univariate extension operators, bounded
on iy L2(thi) and %, W ().
Then 5 5

Wy =E{W}",, Wy =E{WY}",

defines a (biorthogonal) wavelet basis for L,(U ), scaled: W3(U ).

¢ advantages: constructions retains

o tensor structure
o vanishing moments

o global/local smoothness
o piecewise polynomiality

¢ dimension-independent approximation rates

Theorem. Given uc WI(U) there exists an N-term approximation Uy = Y-, C) , from Wy, such

that
. m —(T—m) 2
I UNHW2 (U) SN ([EL U%@(DQ)

whenever u is contained in the weighted Sobolev spaces 77, o(LJ;).
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e Design of adaptive method

o main building block of adaptive methods: approximation of biinfinite matrix/vector-multiplication
APPLY [A X, 8] — vj finitly supported with ||[AX —v;s|| < O
o design of APPLY possible if A is compressible

Theorem. Let A be the stiffness matrix according to (3) with respect to W,. Then there exist
matrices A™ with &(M™2 d) many entries per column, such that

|A-AY <27,

c Adaptive method converges with optimal order!

Parameter identification problem

e Parameters p= (D,A,RW)

0D € Lu([0,T],Lu(U,RY)) o0 A,R€L([0,T],L:(U,RY)), W € L([0,T], L, (U, R4*%))
o pointwise global bounds, r € (2,0) chosen respectively for A,RW « admissible sets are non-
complete metric spaces

e In practice: noisy data measurements g € L(t,L,(U,RRY)) at discrete time points t = {t;}¥_, C [0, T|¥
> need sampling operator & : L,([0,T],Lo(U,RY)) — Ly(t,Lo(U,RY))

e Resulting parameter identification problem

(4) PSP =

Theorem. The parameter-to-state map . is continuously differentiable with Holder continuous
derivative .’ on convex, bounded, admissible sets.

e Tikhonov approach yields regularization scheme: pg — p for a suitable parameter choice rule for a

e Minimization problem (2) is solved by generalized conditional gradient method (iterative soft-
shrinkage)

Pni1 = Shrinkg (pn— (7' (pn))* Z* (2.7 (pn) — &) — P

with Besov /5 penality term on coefficients with respect to wavelet basis/frame

Numerical realization

unknown solution

a=28-10%6=2.10" a=18-10%6=2.10" a=12-10°%06=10"

e Linearized model problem,d =1,2
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e Reconstruction of coupling parameter W(t, X)
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J e Adaptive (tensor) wavelet approach

]] | e Based on Marburg software library
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Objectives and work schedule

Forward problem: adaptive tensor product wavelet schemes f or elliptic/parabolic equations

e \Vector-valued case
e Parallelization strategies

e Sparse evaluation of nonlinear functionals applied to tensor wavelet expansions
e Generalization to vector-valued case

e Investigate regularity of solution in generalized weighted Sobolev spaces
e Generalizations to nonlinear problems

Inverse problem: parameter identification with sparsity co nstraints
e Convergence theory and rates in case of inexact solution of forward problem

e Exploration of different approaches encompassing positivity constraints

e Speed-up for iterated soft shrinkage ~ decreasing thresholding
e Investigate alternative minimization procedures
Numerical realization and application

e Efficient sparse evaluation of nonlinearity @ e Vector-valued case
e Adaptive discretization in time e Parallelization

e Based on Marburg software library

e Combination of new forward solver with iterated soft shrinkage e Complex geometry

¢ High-dimensional parameter space
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