Tall and monotone complexity one spaces of dimension six

Isabelle Charton

July 30, 2020

Isabelle Charton Tall and monotone complexity one spaces of dimension six

- Proof of Main Proposition
- Ideas behind the Main Theorem

5 An Example

Hamiltonian T-spaces and their Complexity

- (M^{2n}, ω) : **compact** symplectic manifold
- $\mathcal{T}^d\cong (S^1)^d \curvearrowright (M,\omega)$ effective and Hamiltonian

with moment map $\phi: M \to \left(\mathsf{Lie}(\mathcal{T}^d) \right)^*$, i.e., for $\xi \in \mathsf{Lie}(\mathcal{T}^d)$

$$\omega(X_{\xi},\cdot) = -d \langle \phi, \xi \rangle$$

- the **complexity** of this action is k := n d
- (M, ω, T, ϕ) is called a complexity k space

Theorem (Atiyah, Guillemin-Sternberg '82) $\phi(M) = \Delta_M$ is a convex polytope and the fibers of ϕ are connected.

Basic Definitions Results Proof of Main Proposition

Proof of Main Proposition Ideas behind the Main Theorem An Example

Monotone

Monotone:

- (M, ω) is monotone if $c_1(M) = \lambda[\omega]$ for some $\lambda \in \mathbb{R}$.
- Fact: monotone $(M, \omega, T, \phi) \rightsquigarrow$ positive monotone, i.e., $\lambda > 0$.

 \rightsquigarrow Assume $c_1(M) = [\omega]$.

Tall

- (Karshon '98): Classification of four-dimensional complexity one spaces
- (Karshon-Tolman '03): Classification of **tall** complexity one spaces

Tall:

- Given a complexity one space (M, ω, T, ϕ) , for each $x \in \Delta_M$ M_x : $= \phi^{-1}(x)/T$ is a point or a topological surface.
- (M, ω, T, ϕ) is **tall** if M_x is a topological surface for all $x \in \Delta_M$.

Results

The moment map polytope

Proposition (C.-Sabatini-Sepe)

Let $(M^{2n}, \omega, T^{n-1}, \phi)$ be a tall complexity one space with $c_1(M) = [\omega]$. Then $\phi(M) = \Delta_M$ is a reflexive Delzant polytope.

<u>Fact</u>: There exist just finitely many reflexive (Delzant) polytopes in any dimension.

Two-dimensional reflexive Delzant polytopes

Main Result

Theorem (C.-Sabatini-Sepe)

Let (M^6, ω, T^2, ϕ) be a tall and monotone complexity one space . Then:

- (Uniqueness) (M, ω, T, φ) is determined by its Duistermaat-Heckman function.
- (Extension) The T²-action can be extended to a complexity zero action.
- (Finiteness) There exist exactly 20 tall and monotone complexity one spaces of dimension six such that c₁(M) = [ω].

Proof of the Main Proposition

The preimage of a vertex

$$(M, \omega, T, \phi)$$
 : complexity one space v : vertex of $\Delta_M = \phi(M)$

- Then φ⁻¹(v) is a connected component of M^T, so it is a symplectic submanifold of (M, ω).
- (M, ω, T, ϕ) is tall $\implies \Sigma_{\nu} := \phi^{-1}(\nu)$ is a fixed surface.

Given a surface $\Sigma \subset M^T$ and $p \in \Sigma$, \exists complex coordinates $(z_1, ..., z_n)$ centered at p, s.t. for $\xi \in \text{Lie}(T)$

$$\exp(\xi)(z_1,...,z_n) = (e^{2i\pi\alpha_1(\xi)}z_1,...,e^{2i\pi\alpha_{n-1}(\xi)}z_{n-1}, z_n)$$

$$\phi(z) = \phi(\Sigma) + \sum_{i=1}^{n-1} \alpha_i |z_i|^2,$$

where the α_i 's are the weights of $T \curvearrowright N\Sigma$. The α_i 's form a \mathbb{Z} -basis of the dual lattice $\subset (\text{Lie}(T))^*$.

$$\begin{array}{c} \text{small} \\ \text{neighborhoods} \\ \text{of } \Sigma \end{array} \xrightarrow{\phi} \begin{array}{c} \alpha_2 \\ \alpha_1 \end{array}$$

Since the fibers of ϕ are connected:

- $\Sigma = \phi^{-1}(v)$ for a vertex v of Δ_M
- the edges at v are of the form $v + t\alpha_i$, t > 0 and i = 1, ..., n - 1, where the α_i 's the weights of $T \frown N\Sigma$ \rightsquigarrow the primitive direction vectors (pointing into the polytope) (the weights at v) are the same as those of $T \frown N\Sigma$.
- the preimages of these edges are symplectic submanifolds of dimension 4

Lemma

The moment map polytope of a tall complexity one space is Delzant and $v \mapsto \phi^{-1}(v)$ defines a bijection between the vertices of Δ_M and the fixed surfaces. The weights of $T \frown N\Sigma_v$ are the same the ones of the vertex v.

<u>Fact</u>: For Delzant polytopes : reflexive \iff vertex-Fano-condition

Proof of the Main-Proposition.

Given a tall complexity one space (M, ω, T, ϕ) , such that $c_1(M) = [\omega]$.

- Δ_M is Delzant.
- By results of (Kirwan '84) in equivariant cohomology
 ⇒ φ satisfies the weight sum formula, i.e., φ(F) is equal to minus the sum of the weights along F for all F ⊂ M^T
- weight sum formula \implies vertex-Fano-condition

Ideas behind the Main Theorem

We need to understand the Duistermaat-Heckman function and the behavior of the isolated fixed points!

The DH-function near its minimum

 (M, ω, T, ϕ) : tall complexity one space $DH_M: \Delta_M \to \mathbb{R}_{>0}$: DH-function v: vertex of Δ_M with edges $e_i \subset v + t\alpha_i$

 $c_1(L_i)$: first Chern class of the normal bundle of Σ_v in $\phi^{-1}(e_i)$

near v :

 $DH_{M}(v + t_{1}\alpha_{1} + ... + t_{n-1}\alpha_{n-1}) = -\sum_{i=1}^{n-1} t_{i} \cdot c_{1}(L_{i})[\Sigma_{v}] + \int_{\Sigma_{v}} \omega$

Lemma

Assume (M, ω, T, ϕ) to be monotone and that DH_M attains its minimum at v, then either,

- $c_1(L_i)[\Sigma_v] = 0$ for all i = 1, ..., n 1 or
- c₁(L_j)[Σ_ν] = −1 for one j = 1, ..., n − 1 and c₁(L_i)[Σ_ν] = 0 for i ≠ j.

Proof.

- DH_M attains its minimum at v ⇒ ∀ i: c₁(L_i)[Σ_ν] ≤ 0
- Monotonicity \implies $1 \le c_1(\mathcal{M})[\Sigma_{\nu}] = c_1(\Sigma_{\nu})[\Sigma_{\nu}] + \sum_i c_1(L_i)[\Sigma_{\nu}]$
- (Sabatini-Sepe '19) $\implies \Sigma_{\nu}$ is 2-sphere, so $c_1(\Sigma_{\nu})[\Sigma_{\nu}] = 2$

Consequence:

Given a tall complexity one space (M, ω, T, ϕ) with $c_1(M) = [\omega]$ and without isolated fixed points. Then:

- All points in the interior of Δ_M are regular values of ϕ .
- (Duistermaat-Heckman '82) \implies DH_M is a polynomial of degree ≤ 1
- (Cho-Kim '12) $\implies DH_M$ is log-concave $\implies DH_M$ attains its minimum at a vertex of Δ_M .

\longrightarrow Finitely many DH-functions!

Example

 (M^6, ω, T^2, ϕ) tall complexity one space with $c_1(M) = [\omega]$, without isolated fixed points and

About isolated fixed points

Rigidity of the isolated fixed points

Given $(M^{2n}, \omega, T^{n-1}, \phi)$ tall and monotone, s.t. ϕ satisfies the weight sum formula. Then for $p \in M^T$ isolated

$$\phi(\mathbf{p}) = -\alpha_1 - \ldots - \alpha_n \in \Delta_M \cap \mathbb{Z}^{n-1},$$

where $\alpha_1, ..., \alpha_n$ are the weights of $T \curvearrowright T_p M$.

 \longrightarrow Rigidity of $\phi(p)$ and of the weights of $T \curvearrowright T_p M$

An upper bound for $\# p \in M^T$ isolated

Key Lemma

Let (M, ω, T, ϕ) be a tall and monotone complexity one space of dimension six. Then:

#vertices of $\Delta_M \geq \#p \in M^T$ isolated

Ideas of the Proof.

- (Godinho-Sabatini '12) and (Lindsay-Panov '18) $\implies \int_M c_1(M)c_2(M) = 24$
- Use the ABBV localization formula due to (Atiyah-Bott '84) and (Berline-Vergne '82) to express $\int_M c_1(M)c_2(M) = 24$ as a sum of contributions coming from the connected components of M^T .

We can recover the number of $p \in M^T$ isolated exactly.

$\#$ vertices of Δ_M	# isolated $p \in M^T$
3	0 or 2
4	0, 2 or 4
5	0
6	0

We also know $\phi(p)$ and the weights of $T \curvearrowright T_p M$ for all $p \in M^T$ isolated.

Verification in an example

Example:

Let (M^6, ω, T^2, ϕ) be a tall complexity one space with $c_1(M) = [\omega]$ and such that Δ_M is a triangle. This space has no or 2 isolated fixed points $p_1, p_2 \in M^T$:

The Duistermaat-Heckman function is one of the following:

In particular, the Duistermaat-Heckmann function determines the space of exceptional orbits M_{exc} , which is as topological space the empty set or a compact interval.

Uniqueness:

- Since monotonicity implies that the genus is zero (Sabatini-Sepe '19):
- (Karshon-Tolman '03) ⇒ ∃ at most 3 tall and monotone complexity one spaces of dimension six, such that c₁(M) = [ω] and Δ_M is a triangle. These spaces are determined by their DH-functions.

Existence and Extension:

Consider the monotone symplectic toric manifolds of dimension six (M, ω, T^3, ϕ) given by the following Delzant polytopes:

By forgetting the last S^1 -factor, we obtain three different tall complexity one spaces of dimension six, such that $c_1(M) = [\omega]$ and such that Δ_M is a triangle.

Thank you!