On 3-folds having a holomorphic torus action with 6-fixed points Nicholas Lindsay

July 29, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation

In a joint work with Dmitri Panov we have proven that a symplectic 6-manifold constructed by Tolman, having a Hamiltonian T²-action does not have a compatible Kähler metric. Part of the proof used Mori's minimal model program for projective 3-folds.

Motivation

- In a joint work with Dmitri Panov we have proven that a symplectic 6-manifold constructed by Tolman, having a Hamiltonian T²-action does not have a compatible Kähler metric. Part of the proof used Mori's minimal model program for projective 3-folds.
- ► I will discuss a recent work, in which I focused on the category of smooth projective 3-folds. My goal was explore the topology of complex projective 3-folds having a holomorphic C*-action with 6 fixed points (equivelantly b₂ = 2 and finite fixed point set), using Mori's contraction theorem.

Motivation

- In a joint work with Dmitri Panov we have proven that a symplectic 6-manifold constructed by Tolman, having a Hamiltonian T²-action does not have a compatible Kähler metric. Part of the proof used Mori's minimal model program for projective 3-folds.
- ► I will discuss a recent work, in which I focused on the category of smooth projective 3-folds. My goal was explore the topology of complex projective 3-folds having a holomorphic C*-action with 6 fixed points (equivelantly b₂ = 2 and finite fixed point set), using Mori's contraction theorem.

 In particular, I studied an invariant of the underlying 6-manifold, called the Δ-invariant. The Δ-invariant only depends on the integral cohomology ring of the manifold.

The Δ -invariant

• Let M be a closed, simply connected, 6-manifold with torsion free cohomology, and $b_2(M) = 2$. We may associate an invariant

 $\Delta(M) \in \mathbb{Z}.$

The Δ -invariant

• Let *M* be a closed, simply connected, 6-manifold with torsion free cohomology, and $b_2(M) = 2$. We may associate an invariant

$$\Delta(M) \in \mathbb{Z}.$$

▶ Let *a*, *b* form an integral basis of $H^2(M, \mathbb{Z})$, then let $a_0 = \int_M a^3$, $a_1 = \int_M a^2 b$, $a_2 = \int_M ab^2$ and $a_3 = \int_M b^3$. Then we may associate

$$\Delta(X) = (a_0a_3 - a_1a_2)^2 - 4(a_0a_2 - a_1^2)(a_1a_3 - a_2^2).$$

The Δ -invariant

• Let *M* be a closed, simply connected, 6-manifold with torsion free cohomology, and $b_2(M) = 2$. We may associate an invariant

$$\Delta(M) \in \mathbb{Z}.$$

▶ Let *a*, *b* form an integral basis of $H^2(M, \mathbb{Z})$, then let $a_0 = \int_M a^3$, $a_1 = \int_M a^2 b$, $a_2 = \int_M ab^2$ and $a_3 = \int_M b^3$. Then we may associate

$$\Delta(X) = (a_0a_3 - a_1a_2)^2 - 4(a_0a_2 - a_1^2)(a_1a_3 - a_2^2).$$

One may check that this does not depend on the choice of integral basis, hence is a topological invariant.

An Example (Okonek, Van-de-Ven)

Suppose E is a rank 2 holomorphic vector bundle over CP², then the Δ-invariant of the associated CP¹-bundle is given by a simple formula:

$$\Delta(\mathbb{P}(E)) = c_1(E)^2 - 4c_2(E).$$

An Example (Okonek, Van-de-Ven)

Suppose E is a rank 2 holomorphic vector bundle over CP², then the Δ-invariant of the associated CP¹-bundle is given by a simple formula:

$$\Delta(\mathbb{P}(E)) = c_1(E)^2 - 4c_2(E).$$

In particular, for the toric 3-folds X_n = P(O ⊕ O(n)), the Δ-invariant is:

$$\Delta(X_n)=n^2.$$

An Example (Okonek, Van-de-Ven)

Suppose E is a rank 2 holomorphic vector bundle over CP², then the Δ-invariant of the associated CP¹-bundle is given by a simple formula:

$$\Delta(\mathbb{P}(E)) = c_1(E)^2 - 4c_2(E).$$

In particular, for the toric 3-folds X_n = P(O ⊕ O(n)), the Δ-invariant is:

$$\Delta(X_n)=n^2.$$

► These 3-folds are examples of *conic bundles*, i.e. 3-folds having a morphism to an algebraic surface such that all of the fibres are isomorphic to conics in CP² (not neccessarily a topological S²-bundle).

First main result

The first main result is as follows:

Theorem

There is a constant K such that any smooth projective 3-fold X having a holomorphic \mathbb{C}^* -action with 6-fixed points satisfies one of the following two conditions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. X is a conic bundle over \mathbb{CP}^2
- 2. $\Delta(X) < K$.

First main result

The first main result is as follows:

Theorem

There is a constant K such that any smooth projective 3-fold X having a holomorphic \mathbb{C}^* -action with 6-fixed points satisfies one of the following two conditions:

- 1. X is a conic bundle over \mathbb{CP}^2
- 2. $\Delta(X) < K$.
- We remark that this gives a restriction on the cohomology ring of X, since a conic bundle Y contains a non-zero class α ∈ H₂(Y, Z), having ∫_Y α³ = 0.

First main Result

The first main result is as follows:

Theorem

There is a constant K such that any smooth projective 3-fold X having a holomorphic \mathbb{C}^* -action with 6-fixed points satisfies one of the following two conditions:

- 1. X is a conic bundle over \mathbb{CP}^2
- 2. $\Delta(X) < K$.
- We remark that this gives a restriction on the cohomology ring of X, since a conic bundle Y contains a non-zero class α ∈ H₂(Y, Z), having ∫_Y α³ = 0.
- The proof relies on the contraction theorem of Mori (which I will state shortly), and the boundedness of of Fano 3-folds with a certain class of (terminal) singularities.

We will need the following Theorem of Mori:

Theorem (Mori)

Let X be a smooth projective 3-fold such that K_X is not nef. Then, there exists a projective variety Y and a morphism $\phi: X \to Y$ associated to a ray in $R \subset H_2(X, \mathbb{R})$. A curve C is sent to a point by $\phi \iff [C] \in R$. Moreover one of the following possibilities occur:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We will need the following Theorem of Mori:

Theorem (Mori)

Let X be a smooth projective 3-fold such that K_X is not nef. Then, there exists a projective variety Y and a morphism $\phi: X \to Y$ associated to a ray in $R \subset H_2(X, \mathbb{R})$. A curve C is sent to a point by $\phi \iff [C] \in R$. Moreover one of the following possibilities occur:

• dim(Y) = 0 and X is a Fano 3-fold with $b_2(X) = 1$.

We will need the following Theorem of Mori:

Theorem (Mori)

Let X be a smooth projective 3-fold such that K_X is not nef. Then, there exists a projective variety Y and a morphism $\phi: X \to Y$ associated to a ray in $R \subset H_2(X, \mathbb{R})$. A curve C is sent to a point by $\phi \iff [C] \in R$. Moreover one of the following possibilities occur:

• dim(Y) = 0 and X is a Fano 3-fold with $b_2(X) = 1$.

• $\dim(Y) = 1$, Y is a smooth, projective curve.

We will need the following Theorem of Mori:

Theorem (Mori)

Let X be a smooth projective 3-fold such that K_X is not nef. Then, there exists a projective variety Y and a morphism $\phi: X \to Y$ associated to a ray in $R \subset H_2(X, \mathbb{R})$. A curve C is sent to a point by $\phi \iff [C] \in R$. Moreover one of the following possibilities occur:

- dim(Y) = 0 and X is a Fano 3-fold with $b_2(X) = 1$.
- dim(Y) = 1, Y is a smooth, projective curve.
- dim(Y) = 2, Y is a smooth, projective surface, φ is a conic bundle.

We will need the following Theorem of Mori:

Theorem (Mori)

Let X be a smooth projective 3-fold such that K_X is not nef. Then, there exists a projective variety Y and a morphism $\phi: X \to Y$ associated to a ray in $R \subset H_2(X, \mathbb{R})$. A curve C is sent to a point by $\phi \iff [C] \in R$. Moreover one of the following possibilities occur:

- dim(Y) = 0 and X is a Fano 3-fold with $b_2(X) = 1$.
- $\dim(Y) = 1$, Y is a smooth, projective curve.
- dim(Y) = 2, Y is a smooth, projective surface, φ is a conic bundle.
- dim(Y) = 3, ϕ is birational, which is an isomorphism away from a smooth divisor $E \subset X$. There is two cases:
 - 1. $\phi(E)$ is a curve. Here, Y is smooth ϕ is the inverse of a blow-up in a smooth curve.
 - 2. $\phi(E)$ is a point. In this case, either $E = \mathbb{CP}^2$ or $E = \mathbb{CP}^1 \times \mathbb{CP}^1$. ϕ is called a divisorial contraction.

Blanchard's theorem

Due to the following theorem of Blanchard, the morphisms given by Mori's contraction theorem may be made \mathbb{C}^* -equivariant.

Blanchard's theorem

Due to the following theorem of Blanchard, the morphisms given by Mori's contraction theorem may be made \mathbb{C}^* -equivariant.

Theorem (Blanchard)

Suppose that X is a smooth projective variety with an action of a holomorphic torus T and $\phi : X \to Y$ is a Mori extremal contraction. Then there is an action of T on Y, making ϕ equivariant.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let X be a smooth projective 3-fold with a \mathbb{C}^* -action with 6 fixed points. We note that since X is rational (BB-decomposition), K_X is not nef, hence by Mori's contraction theorem there is an extremal contraction $\phi : X \to Y$. We deal first with the case that $\dim(Y) < \dim(X)$.

Let X be a smooth projective 3-fold with a \mathbb{C}^* -action with 6 fixed points. We note that since X is rational (BB-decomposition), K_X is not nef, hence by Mori's contraction theorem there is an extremal contraction $\phi : X \to Y$. We deal first with the case that $\dim(Y) < \dim(X)$.

Firstly we recall that if dim(Y) = 0 then X is a Fano 3-fold with b₂(X) = 1. Since X has 6 fixed points, b₂(X) = 2, hence this is impossible.

Let X be a smooth projective 3-fold with a \mathbb{C}^* -action with 6 fixed points. We note that since X is rational (BB-decomposition), K_X is not nef, hence by Mori's contraction theorem there is an extremal contraction $\phi : X \to Y$. We deal first with the case that $\dim(Y) < \dim(X)$.

Firstly we recall that if dim(Y) = 0 then X is a Fano 3-fold with b₂(X) = 1. Since X has 6 fixed points, b₂(X) = 2, hence this is impossible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If dim(Y) = 1, then the fibre [F] ∈ H²(X, ℤ) satisfies [F]² = 0, the existence of such an element implies that Δ(X) = 0 (Okonek, Van-de-Ven).

Let X be a smooth projective 3-fold with a \mathbb{C}^* -action with 6 fixed points. We note that since X is rational (BB-decomposition), K_X is not nef, hence by Mori's contraction theorem there is an extremal contraction $\phi : X \to Y$. We deal first with the case that $\dim(Y) < \dim(X)$.

- Firstly we recall that if dim(Y) = 0 then X is a Fano 3-fold with b₂(X) = 1. Since X has 6 fixed points, b₂(X) = 2, hence this is impossible.
- If dim(Y) = 1, then the fibre [F] ∈ H²(X, ℤ) satisfies [F]² = 0, the existence of such an element implies that Δ(X) = 0 (Okonek, Van-de-Ven).
- If dim(Y) = 2, then φ is a conic bundle. By Blanchard's theorem the C*-action descends to X, making φ equivariant. Since the preimage of every fixed point in X contains at least two fixed points, implying that X has exactly 3 fixed points. Hence, X ≅ CP², as required.

Now we proceed to prove the main theorem in the case that $\dim(X) = \dim(Y)$. First we suppose that the extremal contraction $\phi: X \to Y$ is a blow-down to a smooth curve.

Now we proceed to prove the main theorem in the case that $\dim(X) = \dim(Y)$. First we suppose that the extremal contraction $\phi: X \to Y$ is a blow-down to a smooth curve.

• We first note $b_2(X) = 1$, implying that X is a Fano 3-fold.

Now we proceed to prove the main theorem in the case that $\dim(X) = \dim(Y)$. First we suppose that the extremal contraction $\phi: X \to Y$ is a blow-down to a smooth curve.

- We first note $b_2(X) = 1$, implying that X is a Fano 3-fold.
- There are 4 Fano 3-folds X with b₂(X) = 1 having a C^{*}-action: CP³, Q the quadric 3-fold, V₅ and V₂₂ (Tolman).

Now we proceed to prove the main theorem in the case that $\dim(X) = \dim(Y)$. First we suppose that the extremal contraction $\phi: X \to Y$ is a blow-down to a smooth curve.

- We first note $b_2(X) = 1$, implying that X is a Fano 3-fold.
- There are 4 Fano 3-folds X with b₂(X) = 1, having a C^{*}-action: CP³, Q the quadric 3-fold, V₅ and V₂₂ (Tolman).
- There are finitely many possibilities for smooth curve blow-ups of V₅ and V₂₂ due to a result of Tolman which states that if we normalise the Kähler form so that [ω] is the positive generator of H²(X, ℤ), then the range of the Hamiltonian is precisely [−6, 6]. Hence, by the Duistermaat-Heckman −K_X. C ≤ 24 for any smooth invariant curve. Implying there are at most 24 possibilities for the blow-up, up to diffeomorphism.

Now we proceed to prove the main theorem in the case that $\dim(X) = \dim(Y)$. First we suppose that the extremal contraction $\phi: X \to Y$ is a blow-down to a smooth curve.

- We first note $b_2(X) = 1$, implying that X is a Fano 3-fold.
- ▶ There are 4 Fano 3-folds X with $b_2(X) = 1$ having a \mathbb{C}^* -action: \mathbb{CP}^3 , Q the quadric 3-fold, V_5 and V_{22} (Tolman).
- ▶ There are finitely many possibilities for smooth curve blow-ups of V_5 and V_{22} due to a result of Tolman which states that if we normalise the Kähler form so that $[\omega]$ is the positive generator of $H^2(X, \mathbb{Z})$, then the range of the Hamiltonian is precisely [-6, 6]. Hence, by the Duistermaat-Heckman $-K_X.C \le 24$ for any smooth invariant curve. Implying there are at most 24 possibilities for the blow-up, up to diffeomorphism.
- In the cases Q, and CP³, then all of the possibilities are exhausted by Y_n = Bl_{Cn}(CP³) and a similar family of examples in the quadric 3-fold, Y'_n = Bl_{Cn}(Q). By direct calculation we may check that

Proof of main result 3: divisorial blow downs with exceptional divisor $E = \mathbb{CP}^1 \times \mathbb{CP}^1$

Here we may show that a smooth projective 3-fold with a \mathbb{C}^* -action may not have a extremal contraction with exceptional divisor $E = \mathbb{CP}^1 \times \mathbb{CP}^1$, using a geometric argument involving the Bialynicki-Birula decomposition.

In this case, we have once again that b₂(X) = 1 and X is rational, hence X is a Fano 3-fold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- In this case, we have once again that b₂(X) = 1 and X is rational, hence X is a Fano 3-fold.
- ► Either E = CP² is mapped to a smooth point or a cyclic quotient singularity of the form C³/±1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- In this case, we have once again that b₂(X) = 1 and X is rational, hence X is a Fano 3-fold.
- ► Either E = CP² is mapped to a smooth point or a cyclic quotient singularity of the form C³/±1.
- This cyclic quotient singularity is terminal, hence the relevant class of Fano 3-folds forms a bounded family (Borisov) (although are not classified to my knowledge).

- In this case, we have once again that b₂(X) = 1 and X is rational, hence X is a Fano 3-fold.
- ► Either E = CP² is mapped to a smooth point or a cyclic quotient singularity of the form C³/±1.
- This cyclic quotient singularity is terminal, hence the relevant class of Fano 3-folds forms a bounded family (Borisov) (although are not classified to my knowledge).
- This in turn show that there is finitely many possibilities for Y up to diffeomorphism, in particular the Δ-invariant is bounded above, hence proving the main theorem.