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(with D. Sepe), Transformation Groups
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“Tall and monotone complexity one spaces of dimension six"
(with I. Charton and D. Sepe), in preparation.
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Positive monotone vs. Fano

(M, ω): compact symplectic manifold of dimension 2n

J: almost complex structure compatible with ω
(ω(⋅, J ⋅) is a Riemannian metric)

c1: first Chern class of (TM, J) ↝ (TM, ω)

Definition
A symplectic manifold (M, ω) is called (positive) monotone if

c1 = λ[ω] (with λ > 0)

Henceforth consider positive monotone symplectic manifolds
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Positive monotone vs. Fano

Positive monotone symplectic manifolds ¢ Fano varieties:

Fano variety: smooth complex variety Y s.t.
the anticanonical line bundle L = −KY (where KY = det(T ∗M)) is
ample:

∃ j ∶Y → CPN and k >> 0 s.t. Lk = j∗O(1)

Endow Y with j∗(ωFS)↝ Y is positive monotone

Facts:
Fano varieties are simply connected and their Todd genus Td is 1.

(Example: dimC(Y ) = 1 Ô⇒ Td(Y ) = c1
2 [Y ],

dimC(Y ) = 2 Ô⇒ Td(Y ) = c2
1+c2
12 [Y ],

dimC(Y ) = 3 Ô⇒ Td(Y ) = c1c2
24 [Y ])

Silvia Sabatini University of Cologne Properties of monotone complexity one spaces



Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω)
diffeomorphic to a Fano variety?

dim(M) = 2,4: always (McDuff, Gromov, Taubes)
dim(M) ≥ 12: not always (Fine–Panov, Reznikov )

What if one assumes that (M, ω) has symmetries?
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Symmetries

(M, ω): compact symplectic manifold of dimension 2n
T : compact torus of dimension d

Assume T ÀM is Hamiltonian:

∃ ψ∶M → Lie(T )∗ (moment map) s.t.
ψ is T -invariant
∀ξ ∈ Lie(T )

d⟨ψ, ξ⟩ = ιXξ
ω
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Symmetries

Definition:
Hamiltonian T -space: (M, ω,T , ψ), where the action is
effective
complexity of (M, ω,T , ψ): dim(M)/2 − dim(T )

Note: complexity is ≥ 0

Conjecture (Fine, Panov 2010)

Every positive monotone Hamiltonian S1-space of dimension 6 is
diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every positive monotone Hamiltonian S1-space of dimension 6 is
simply connected and has Todd genus 1
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Results

Theorem (S., Sepe 2020)

If (M, ω,T , ψ) is a positive monotone complexity one space then
M is simply connected, its Todd genus is 1 and its odd Betti
numbers vanish.

Specialization to low dimensions (I. Charton, D. Sepe):

dim(M) = 4, dim(T) = 1:
the circle action extends to a T 2 action and (M, ω,T , ψ) is
S1-equivariantly symplectomorphic to a Fano two-fold with
holomorphic C∗-action
dim(M) = 6, dim(T) = 2: if (M, ω,T , ψ) is tall
the T 2 action extends to a T 3 action and (M, ω,T , ψ) is
T 2-equivariantly symplectomorphic to a Fano three-fold with
holomorphic (C∗)2-action. Moreover there are 20 such
examples.
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Proof of:

Theorem (S., Sepe 2020)

If (M, ω,T , ψ) is a positive monotone complexity one space then
M is simply connected, its Todd genus is 1 and its odd Betti
numbers vanish.
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Proof of simple connectedness

Consequence of

(a) Theorem (Li)

Let (M, ω,T , ψ) be a compact Hamiltonian T -space. For any
α ∈ ψ(M), π1(M) ≃ π1(Mα), where Mα = ψ−1(α)/T is the
reduced space at α.

and

(b) Theorem (S., Sepe)

Let (M, ω,T , ψ) be a positive monotone complexity one space.
Then the connected components of the fixed point set MT are
either points or spheres.
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Proof of simple connectedness

How do (a) and (b) imply that π1(M) is trivial?

v is a vertex of ψ(M) Ô⇒ ψ−1(v) connected component of MT .

Consider Mv = ψ−1(v)/T = ψ−1(v).

π1(M) ==
(a)

π1(Mv) = π1(ψ−1(v)) ==
(b)

⎧⎪⎪⎨⎪⎪⎩

π1(pt)
π1(S2)
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Proof of (b)

Observations:
(Local normal form – weights of the T action)
Around p ∈MT there exist complex coordinates z1, . . . , zn on
M and α1, . . . , αn ∈ `∗ ⊂ Lie(T )∗ s.t.

T ∋ exp(ξ) ∗ (z1, . . . , zn) = (e2πiα1(ξ)z1, . . . , e
2πiαn(ξ)zn)

and

ψlin(z1, . . . , zn) =
1
2

n

∑
j=1
αj ∣zj ∣2 + ψ(p)

C ∶= connected component of MT

dim(C) ≤ 2 ∗ complexity

(comes from rankC(NC) ≥ dim(T ) and effectiveness of the
action). If complexity is 1, C is a point or a surface.

If dim(C) = 2 ∗ complexity then ψ(C) is a vertex of ψ(M)
(moment map is open onto its image)
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Proof of (b)

Observations:

If ∃v vertex of ψ(M) s.t. ψ−1(v) is a point
(a)
Ô⇒ simple

connectedness.
Assume ψ−1(v) is a surface, for all vertices v of ψ(M).

Duistermaat-Heckman density function DH ∶ψ(M)→ R:

DH(α) ∶= symplectic volume of Mα = ψ−1(α)/T .

DH attains its minimum min at a vertex v of ψ(M)
(Cho, Kim Ô⇒ log(DH) is concave, ψ(M) convex)
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Proof of (b)

Σ ∶= ψ−1(min),
α1, . . . , αn−1: weights of the T action on the normal bundle NΣ

e1, . . . , en−1: corresponding edges in ψ(M)

Silvia Sabatini University of Cologne Properties of monotone complexity one spaces



Proof of (b)

NΣ splits as direct sum of line bundles N1 ⊕⋯⊕Nn−1,
T acts on Ni with weight αi .
Mi ∶= ψ−1(ei): compact symplectic 4-dimensional submanifold
with a Hamiltonian S1 action, Σ ⊂Mi , for all i = 1, . . . ,n − 1
Normal bundle to Σ in Mi is Ni
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Proof of (b)

DH ∶ψ(Mi) = [v , v ′]→ R restricted to [v , v + ε) is:

DH(x) = ∫
Σ
ω − c1(Ni)[Σ](x − v)

DH attains its minimum at v Ô⇒

c1(Ni)[Σ] ≤ 0 ∀i = 1, . . . ,n
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Proof of (b)

c1 = [ω] Ô⇒ c1[Σ] > 0

c1[Σ]
´¹¹¸¹¹¶
>0

=
n−1
∑
i=1

c1(Ni)[Σ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

+c1(Σ)[Σ]

Ô⇒ c1(Σ)[Σ] > 0, namely Σ = S2.
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Todd genus = 1

Hirzebruch genus: genus χy associated to the generating function

x(1 + ye−x)
1 − e−x

Todd genus: Evaluation of χy at y = 0.

If S1 acts on M Ô⇒ “Localization of the Hirzebruch genus”:

χy(M) =
N

∑
j=1

(−y)djχy(Fj)

where: F1, . . . ,FN connected components of MS1

dj number of negative weights in the normal bundle to Fj
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Todd genus = 1

If dj = 0 and the action is Hamiltonian Ô⇒ Fj is a minimum
of the moment map
Consider S1 ⊂ T s.t. MS1 =MT ;
Theorem (b) Ô⇒ minimum F of the S1 moment map is
either a point or a sphere hence

Td(M) = χ0(M) = χ0(F ) = 1.
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Odd Betti numbers vanish

It follows from

H∗(M;R) =
N

⊕
j=1

H∗−2dj (Fj ;R)
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Thank you!
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