Some topological properties of monotone complexity one spaces

Silvia Sabatini University of Cologne

July 30, 2020

Based on:

"On topological properties of positive complexity one spaces" (with D. Sepe), Transformation Groups

and

"Tall and monotone complexity one spaces of dimension six" (with I. Charton and D. Sepe), in preparation. (M, ω) : compact symplectic manifold of dimension 2n

J: almost complex structure compatible with ω ($\omega(\cdot, J \cdot)$ is a Riemannian metric)

 c_1 : first Chern class of $(TM, J) \rightsquigarrow (TM, \omega)$

Definition

A symplectic manifold (M, ω) is called **(positive) monotone** if

 $c_1 = \lambda[\omega]$ (with $\lambda > 0$)

Henceforth consider positive monotone symplectic manifolds

Positive monotone symplectic manifolds $\ \ \sim$ Fano varieties:

Fano variety: smooth complex variety Y s.t. the anticanonical line bundle $\mathcal{L} = -K_Y$ (where $K_Y = \det(T^*M)$) is *ample*:

$$\exists \quad j: Y \to \mathbb{C}P^N \quad \text{and} \quad k >> 0 \text{ s.t. } \mathcal{L}^k = j^* \mathcal{O}(1)$$

Endow Y with $j^*(\omega_{FS}) \rightsquigarrow Y$ is positive monotone

Facts:

Fano varieties are simply connected and their Todd genus Td is 1.

(Example: dim_C(Y) = 1
$$\implies$$
 $Td(Y) = \frac{c_1}{2}[Y]$,
dim_C(Y) = 2 \implies $Td(Y) = \frac{c_1^2 + c_2}{12}[Y]$,
dim_C(Y) = 3 \implies $Td(Y) = \frac{c_1 + c_2}{24}[Y]$)

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- dim(M) = 2,4: always (McDuff, Gromov, Taubes)
- dim(M) ≥ 12: not always (Fine–Panov, Reznikov)

What if one assumes that (M, ω) has symmetries?

 (M, ω) : compact symplectic manifold of dimension 2nT: compact torus of dimension d

Assume $T \backsim M$ is Hamiltonian:

- $\exists \psi: M \to Lie(T)^* (moment map) \text{ s.t.}$
 - ψ is *T*-invariant
 - $\forall \xi \in Lie(T)$

$$d\langle\psi,\xi\rangle = \iota_{X_{\xi}}\omega$$

Definition:

- Hamiltonian T-space: (M, ω, T, ψ) , where the action is effective
- complexity of (M, ω, T, ψ) : dim(M)/2 dim(T)

Note: complexity is ≥ 0

Conjecture (Fine, Panov 2010)

Every positive monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every positive monotone Hamiltonian S^1 -space of dimension 6 is simply connected and has Todd genus 1

Theorem (S., Sepe 2020)

If (M, ω, T, ψ) is a positive monotone complexity one space then M is simply connected, its Todd genus is 1 and its odd Betti numbers vanish.

Specialization to low dimensions (I. Charton, D. Sepe):

- dim(M) = 4, dim(T) = 1: the circle action extends to a T² action and (M,ω, T,ψ) is S¹-equivariantly symplectomorphic to a Fano two-fold with holomorphic C*-action
- dim(M) = 6, dim(T) = 2: if (M, ω, T, ψ) is tall the T^2 action extends to a T^3 action and (M, ω, T, ψ) is T^2 -equivariantly symplectomorphic to a Fano three-fold with holomorphic $(\mathbb{C}^*)^2$ -action. Moreover there are 20 such examples.

Theorem (S., Sepe 2020)

If (M, ω, T, ψ) is a positive monotone complexity one space then M is simply connected, its Todd genus is 1 and its odd Betti numbers vanish.

Consequence of

(a) Theorem (Li)

Let (M, ω, T, ψ) be a compact Hamiltonian *T*-space. For any $\alpha \in \psi(M)$, $\pi_1(M) \simeq \pi_1(M_\alpha)$, where $M_\alpha = \psi^{-1}(\alpha)/T$ is the reduced space at α .

and

(b) Theorem (S., Sepe)

Let (M, ω, T, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^T are either points or spheres. How do (a) and (b) imply that $\pi_1(M)$ is trivial?

v is a vertex of $\psi(M) \implies \psi^{-1}(v)$ connected component of M^T .

Consider $M_v = \psi^{-1}(v) / T = \psi^{-1}(v)$.

$$\pi_1(M) = \pi_1(M_v) = \pi_1(\psi^{-1}(v)) = \begin{cases} \pi_1(pt) \\ \pi_1(S^2) \end{cases}$$

Proof of (b)

Observations:

• (Local normal form – weights of the T action) Around $p \in M^T$ there exist complex coordinates z_1, \ldots, z_n on M and $\alpha_1, \ldots, \alpha_n \in \ell^* \subset Lie(T)^*$ s.t.

$$T \ni \exp(\xi) * (z_1, \ldots, z_n) = (e^{2\pi i \alpha_1(\xi)} z_1, \ldots, e^{2\pi i \alpha_n(\xi)} z_n)$$

and

$$\psi_{lin}(z_1,...,z_n) = \frac{1}{2} \sum_{j=1}^n \alpha_j |z_j|^2 + \psi(p)$$

• $C \coloneqq$ connected component of M^T

$$\dim(C) \leq 2 * \text{complexity}$$

(comes from $\operatorname{rank}_{\mathbb{C}}(N_C) \ge \dim(T)$ and effectiveness of the action). If complexity is 1, *C* is a point or a surface.

 If dim(C) = 2 * complexity then ψ(C) is a vertex of ψ(M) (moment map is open onto its image) Observations:

If ∃v vertex of ψ(M) s.t. ψ⁻¹(v) is a point ⇒ simple connectedness.
 Assume ψ⁻¹(v) is a surface, for all vertices v of ψ(M).

Duistermaat-Heckman density function $DH: \psi(M) \rightarrow \mathbb{R}$:

 $DH(\alpha) :=$ symplectic volume of $M_{\alpha} = \psi^{-1}(\alpha)/T$.

• *DH* attains its minimum *min* at a vertex *v* of $\psi(M)$ (Cho, Kim $\implies \log(DH)$ is concave, $\psi(M)$ convex)

Proof of (b)

$\Sigma \coloneqq \psi^{-1}(\min),$

 $\alpha_1, \ldots, \alpha_{n-1}$: weights of the *T* action on the normal bundle N_{Σ} e_1, \ldots, e_{n-1} : corresponding edges in $\psi(M)$

Proof of (b)

- N_{Σ} splits as direct sum of line bundles $N_1 \oplus \cdots \oplus N_{n-1}$, *T* acts on N_i with weight α_i .
- $M_i := \psi^{-1}(e_i)$: compact symplectic 4-dimensional submanifold with a Hamiltonian S^1 action, $\Sigma \subset M_i$, for all i = 1, ..., n-1
- Normal bundle to Σ in M_i is N_i

•
$$DH: \psi(M_i) = [v, v'] \rightarrow \mathbb{R}$$
 restricted to $[v, v + \epsilon)$ is:
 $DH(x) = \int_{\Sigma} \omega - c_1(N_i)[\Sigma](x - v)$

• DH attains its minimum at $v \implies$

$$c_1(N_i)[\Sigma] \leq 0 \quad \forall i = 1, \dots, n$$

•
$$c_1 = [\omega] \implies c_1[\Sigma] > 0$$

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(\Sigma)[\Sigma]$$

$$\implies c_1(\Sigma)[\Sigma] > 0, \text{ namely } \Sigma = S^2.$$

Hirzebruch genus: genus χ_y associated to the generating function

$$\frac{x(1+ye^{-x})}{1-e^{-x}}$$

Todd genus: Evaluation of χ_y at y = 0.

• If S^1 acts on $M \implies$ "Localization of the Hirzebruch genus":

$$\chi_y(M) = \sum_{j=1}^N (-y)^{d_j} \chi_y(F_j)$$

where: F_1, \ldots, F_N connected components of M^{S^1} d_j number of negative weights in the normal bundle to F_j

- If $d_j = 0$ and the action is Hamiltonian $\implies F_j$ is a minimum of the moment map
- Consider S¹ ⊂ T s.t. M^{S¹} = M^T; Theorem (b) ⇒ minimum F of the S¹ moment map is either a point or a sphere hence

$$Td(M) = \chi_0(M) = \chi_0(F) = 1.$$

It follows from

$$H^*(M;\mathbb{R}) = \bigoplus_{j=1}^N H^{*-2d_j}(F_j;\mathbb{R})$$

Thank you!