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Let us first recall the notion of ”x-ray”.

Let a torus T act on a
compact symplectic manifold M in a Hamiltonian fashion and let
µ : M → t∗ be the moment map. For any subgroup H ⊂ T denote
by MH the points fixed by whole H and by KH the set of
connected components of MH .

Definition

The x-ray is the set

K =
⋃
H⊂T

KH

together with the moment polytopes µ(X ) for X ∈ K .
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We now describe Tolman’s construction.
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This construction does not depend on the choice of the gluing map.
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Let M1, M2 be smooth oriented manifolds of dimension 2n and N
a compact, connected, smooth, oriented manifold of dimension
2(n − 1). Suppose moreover that there exist orientation preserving
embeddings i1, i2 : N → M1,M2.

The normal bundles ν1, ν2 of N in M1,M2 are then oriented and
their structure group can be assumed to be S1 using some fixed
metric. Thus, E1 := i∗1ν1 and E2 := i∗2ν2 are line bundles over N,
whose first Chern class we assume to have opposite sign.
We define an orientation reversing isomorphism

i : E2 \ 0E2 → E2 \ 0E2 , i(x) =
x

||x ||2
.

Nikolas Wardenski Equivariant Gompf gluing (and its applications)



Let M1, M2 be smooth oriented manifolds of dimension 2n and N
a compact, connected, smooth, oriented manifold of dimension
2(n − 1). Suppose moreover that there exist orientation preserving
embeddings i1, i2 : N → M1,M2.
The normal bundles ν1, ν2 of N in M1,M2 are then oriented and
their structure group can be assumed to be S1 using some fixed
metric.

Thus, E1 := i∗1ν1 and E2 := i∗2ν2 are line bundles over N,
whose first Chern class we assume to have opposite sign.
We define an orientation reversing isomorphism

i : E2 \ 0E2 → E2 \ 0E2 , i(x) =
x

||x ||2
.

Nikolas Wardenski Equivariant Gompf gluing (and its applications)



Let M1, M2 be smooth oriented manifolds of dimension 2n and N
a compact, connected, smooth, oriented manifold of dimension
2(n − 1). Suppose moreover that there exist orientation preserving
embeddings i1, i2 : N → M1,M2.
The normal bundles ν1, ν2 of N in M1,M2 are then oriented and
their structure group can be assumed to be S1 using some fixed
metric. Thus, E1 := i∗1ν1 and E2 := i∗2ν2 are line bundles over N,
whose first Chern class we assume to have opposite sign.

We define an orientation reversing isomorphism

i : E2 \ 0E2 → E2 \ 0E2 , i(x) =
x

||x ||2
.

Nikolas Wardenski Equivariant Gompf gluing (and its applications)



Let M1, M2 be smooth oriented manifolds of dimension 2n and N
a compact, connected, smooth, oriented manifold of dimension
2(n − 1). Suppose moreover that there exist orientation preserving
embeddings i1, i2 : N → M1,M2.
The normal bundles ν1, ν2 of N in M1,M2 are then oriented and
their structure group can be assumed to be S1 using some fixed
metric. Thus, E1 := i∗1ν1 and E2 := i∗2ν2 are line bundles over N,
whose first Chern class we assume to have opposite sign.
We define an orientation reversing isomorphism

i : E2 \ 0E2 → E2 \ 0E2 , i(x) =
x

||x ||2
.

Nikolas Wardenski Equivariant Gompf gluing (and its applications)



Theorem

Let V1,V2 be tubular neighborhoods of N in M1,M2. For any
orientation reversing isomorphism ψ : E1 → E2, the isomorphism
i ◦ ψ : E1 \ 0E1 → E2 \ 0E2 is orientation preserving.

It induces an
orientation preserving diffeomorphism f : V1 \ N → V2 \ N. We
can glue M1 \ N and M2 \ N using f and get an oriented smooth
manifold M1#ψM2, whose diffeomorphism type does not depend
on isotopies of embeddings i1, i2 or ψ.

Any two closed k-forms ω1, ω2 on M1,M2 with i∗1ω1 = i∗2ω2 induce
a canonical cohomology class Ω on M1#ψM2.
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Definition

Let M be a smooth manifold. An isotopy (of symplectic forms) is
a smooth family ωt , t ∈ [0, 1], of symplectic form being in the
same cohomology class.

We call two symplectic forms isotopic if they can be connected by
an isotopy.
If there is a group action on M and all ωt are invariant, we speak
of an equivariant isotopy respectively of symplectic forms being
equivariantly isotopic.

From now on, let G be a compact connected Lie group.

Theorem

Let M be a G -manifold. Then any equivariant isotopy ωt with
compact support is induced by an isotopy of equivariant
diffeomorphisms ft : M → M, i.e. f ∗t ωt = ω0.
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Theorem

Suppose that M1 and M2 admit symplectic forms ω1 and ω2

satisfying i∗1ω1 = i∗2ω2. Then M1#ψM2 admits a canonical isotopy
class of symplectic forms of class Ω independent of isotopies of the
embeddings or ψ.

If furthermore M1, M2 and N are G -Hamiltonian and i1, i2, ψ are
equivariant, then M1#ψM2 is G -Hamiltonian with respect to some
equivariant isotopy class. The latter is independent of equivariant
isotopies of i1, i2 and ψ.
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This operation is reverse to Lerman’s ”symplectic cut”, which we
want to recall first.

Theorem

Let M be a symplectic manifold of dimension 2n with Hamiltonian
circle action and moment map µ : M → R. Let the circle act freely
on µ−1(t) for some t ∈ R. Assume further that M admits a
Hamiltonian G -action commuting with the circle action above.
Then there is a Hamiltonian G -manifold Mcut with the following
properties.

There is an open dense subset Mµ<t ⊂ Mcut which is
G -equivariantly symplectomorphic to µ−1((−∞, t)).

The complement of Mµ<t in Mcut is a 2(n − 1)-dimensional
Hamiltonian G -manifold, equivariantly symplectomorphic to
µ−1(t)/S1.

The S1-moment image of Mcut is µ(M) ∩ (−∞, t].
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The construction of Mcut is rather explicit. Endow M ×C with the
action of S1 via t · (p, z) = (t · p, tz), the canonical G -action and
the standard form.

The action of S1 is Hamiltonian with moment
map

H : M × C→ R, H(p, z) = µ(p) +
1

2
|z |2.

Since t is a regular value of µ, it is one of H, and so
Mcut = H−1(t)/S1 is a symplectic manifold (with the canonical
G -action).
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This works in both ways, i.e. after the symplectic cut we get two
cut pieces M1 and M2 corresponding to µ−1((−∞, t]) and
µ−1([t,∞)).

We have canonical embeddings i1 and i2 of
N := µ−1(t)/S1 in both M1 and M2.

Theorem

The first Chern classes of E1 and E2 have opposite sign and there
is a canonical orientation reversing isomorphism ψcut : E1 → E2.
Thus, if we assume N to be compact, the assumptions for
equivariant Gompf gluing are fulfilled and we have M1#ψM2 = M
as Hamiltonian G -manifold.
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If G = T is a torus, one can take any subcircle S as the circle
action, generated by X ∈ t.

Then

µS : M → t∗ → s∗

is a moment map of the circle action. We identify s∗ with R via X ,
i.e. α ∈ s∗ with α(X ). Let α be a regular value of µS , then the
moment image of Mcut under µT is

µT (M) ∩ {ξ ∈ t∗ | ξ(X ) ≤ α(X )}.
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We can now prove that Tolman’s example M does not depend on
the choice of equivariant symplectomorphism f .

Recall that M was
obtained by gluing an open manifold M̂, the lower piece, onto an
open manifold M̃, the upper piece. Now cut both of them at the
dashed line D and keep the lower piece M1 of M̂ and the upper
piece M2 of M̃.

Lemma

Any choice of f induces canonical embeddings j1, j2 : N → M1,M2

and an orientation reversing isomorphism ψ : E1 → E2, such that
M1#ψM2 = M as Hamiltonian T 2-manifolds.
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We want to show now that (in case of Tolman’s example) any two
isomorphisms ψ : E1 → E2 are isotopic.

Having fixed one, any
other choice corresponds uniquely to an isomorphism E1 → E1.
The latter acts by rotation on every fiber, so it corresponds
uniquely to a map N → S1. Thus the isotopy classes of
isomorphisms E1 → E2 are exactly the homotopy classes of maps
N → S1 and these are H1(N,Z).
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In our case N is equivariantly symplectomorphic to S2 × S2 with
the diagonal action and symplectic form

C1ωS2 ⊕ C2ωS2 , C1 6= C2,

where C1,C2 are certain positive constants and ωS2 the standard
form.

In particular H1(N,Z) = 0.
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It is left to show that any two occuring embeddings N → M2 are
isotopic. Having fixed one, any other comes from an equivariant
symplectomorphism of N into itself.

Lemma

Any equivariant symplectomorphism f : N → N is isotopic to the
identity through equivariant diffeomorphisms, all leaving the
moment map invariant.

Thus, the construction does not depend on the choice of f .
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It should be possible to show that any two Hamiltonian
T 2-manifolds with that x-ray are equivariantly symplectomorphic.
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