Realization of GKM fibrations and new examples of Hamiltonian non-Kähler actions

Leopold Zoller

joint with Oliver Goertsches and Panagiotis Konstantis

Ludwig-Maximilians-Universität München

Mini-workshop on group actions in symplectic and Kähler geometry Köln, July 29, 2020

1 A remarkable Hamiltonian torus action

2 GKM graphs and geometric structures

In the mid-90s Tolman constructed an example of a simply-connected, closed 6-dim. Hamiltonian T^2 -manifold with discrete fixed points which does not admit a compatible invariant Kähler structure.

In the mid-90s Tolman constructed an example of a simply-connected, closed 6-dim. Hamiltonian T^2 -manifold with discrete fixed points which does not admit a compatible invariant Kähler structure.

Why is this special?

- If Tⁿ acts in Hamiltonian fashion on M²ⁿ then the manifold is already Tⁿ-invariantly Kähler (Delzant)
- The same holds for a Hamiltonian S^1 -action on M^4 (Karshon)

In the mid-90s Tolman constructed an example of a simply-connected, closed 6-dim. Hamiltonian T^2 -manifold with discrete fixed points which does not admit a compatible invariant Kähler structure.

Why is this special?

- If Tⁿ acts in Hamiltonian fashion on M²ⁿ then the manifold is already Tⁿ-invariantly Kähler (Delzant)
- The same holds for a Hamiltonian S^1 -action on M^4 (Karshon)

"Traditional Hamiltonian techniques are not rendered obsolete by more powerful algebraic methods"

Consider the right T^2 -action on SU(3) given by

$$A \cdot (s,t) = egin{pmatrix} s^2 t^2 & s \ 1 & 1 \ s & 1 \end{pmatrix}^{-1} \cdot A \cdot egin{pmatrix} s & s \ t & s \ s & st \end{pmatrix}$$

and let $E := SU(3) / T^2$ denote the orbit space. It is a smooth manifold known as *Eschenburg's twisted flag*.

Consider the right T^2 -action on SU(3) given by

$$A \cdot (s,t) = egin{pmatrix} s^2 t^2 & & \ & 1 & \ & & 1 \end{pmatrix}^{-1} \cdot A \cdot egin{pmatrix} s & & \ & t & \ & & st \end{pmatrix}$$

and let $E := SU(3) / T^2$ denote the orbit space. It is a smooth manifold known as *Eschenburg's twisted flag*.

- *E* admits a metric of positive sectional curvature (Eschenburg)
- *E* admits a Kähler structure (Eschenburg, Escher-Ziller)

• The T^2 -action extends to a free U(2) action on SU(3) via

$$A \cdot U = \begin{pmatrix} \det(U)^2 & & \\ & 1 & \\ & & 1 \end{pmatrix}^{-1} \cdot A \cdot \begin{pmatrix} U & & \\ & \det(U) & \end{pmatrix}$$

 \bullet The $\mathcal{T}^2\text{-}action$ extends to a free $\mathrm{U}(2)$ action on $\mathrm{SU}(3)$ via

$$A \cdot U = \begin{pmatrix} \det(U)^2 & & \\ & 1 & \\ & & 1 \end{pmatrix}^{-1} \cdot A \cdot \begin{pmatrix} U & & \\ & \det(U) & \end{pmatrix}$$

• There is a fibre bundle

$$\mathrm{U}(2)/T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ \mathrm{U}(2)$$

 \bullet The $\mathcal{T}^2\text{-}action$ extends to a free $\mathrm{U}(2)$ action on $\mathrm{SU}(3)$ via

$$A \cdot U = \begin{pmatrix} \det(U)^2 & & \\ & 1 & \\ & & 1 \end{pmatrix}^{-1} \cdot A \cdot \begin{pmatrix} U & & \\ & \det(U) & \end{pmatrix}$$

• There is a fibre bundle

$$\begin{array}{c} \mathrm{U}(2)/T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ \mathrm{U}(2) \\ \overset{\scriptstyle ||}{\mathbb{C}P^1} & \overset{\scriptstyle ||}{\mathbb{C}P^2} \end{array}$$

• The T^2 -action extends to a free $\mathrm{U}(2)$ action on $\mathrm{SU}(3)$ via

$$A \cdot U = \begin{pmatrix} \det(U)^2 & & \\ & 1 & \\ & & 1 \end{pmatrix}^{-1} \cdot A \cdot \begin{pmatrix} U & & \\ & \det(U) & \end{pmatrix}$$

• There is a fibre bundle

$$\begin{array}{c} \mathrm{U}(2)/T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ \mathrm{U}(2) \\ \overset{\scriptstyle ||}{\mathbb{C}P^1} & \overset{\scriptstyle ||}{\mathbb{C}P^2} \end{array}$$

E is the projectivization of V := SU(3) ×_{U(2)} C² → SU(3)//U(2).

• The T^2 -action extends to a free $\mathrm{U}(2)$ action on $\mathrm{SU}(3)$ via

$$A \cdot U = \begin{pmatrix} \det(U)^2 & & \\ & 1 & \\ & & 1 \end{pmatrix}^{-1} \cdot A \cdot \begin{pmatrix} U & & \\ & \det(U) & \end{pmatrix}$$

• There is a fibre bundle

$$\begin{array}{c} \mathrm{U}(2)/T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ T^2 \longrightarrow \mathrm{SU}(3)/\!\!/ \mathrm{U}(2) \\ \overset{\scriptstyle ||}{\mathbb{C}P^1} & \overset{\scriptstyle ||}{\mathbb{C}P^2} \end{array}$$

- E is the projectivization of V := SU(3) ×_{U(2)} C² → SU(3)//U(2).
- the bundles are equivariant w.r.t the action of the diagonal maximal torus T ⊂ SU(3) induced by left multiplication on SU(3).

On E there is a Kähler form and a T-invariant symplectic form. The two are symplectomorphic.

On E there is a Kähler form and a T-invariant symplectic form. The two are symplectomorphic.

Sketch of proof: Every complex rank two bundle over $\mathbb{C}P^2$ is holomorphic thus there is a Kählerform on ω_K on $\mathbb{P}(V)$.

On E there is a Kähler form and a T-invariant symplectic form. The two are symplectomorphic.

Sketch of proof: Every complex rank two bundle over $\mathbb{C}P^2$ is holomorphic thus there is a Kählerform on ω_K on $\mathbb{P}(V)$.

 ω_K depends on holomorphic structure and is not *T*-invariant!

On E there is a Kähler form and a T-invariant symplectic form. The two are symplectomorphic.

Sketch of proof: Every complex rank two bundle over $\mathbb{C}P^2$ is holomorphic thus there is a Kählerform on ω_K on $\mathbb{P}(V)$.

 ω_K depends on holomorphic structure and is not *T*-invariant!

 ω_K can be built in such a way that $\widetilde{\omega}_K = \int_T t^* \omega_K dt$ is still symplectic.

 $T \curvearrowright E$ is Hamiltonian with momentum map $\mu \colon E \to \mathfrak{t}^*$.

 $T \curvearrowright E$ is Hamiltonian with momentum map $\mu \colon E \to \mathfrak{t}^*$. Up to rescaling of edges we have

 $T \curvearrowright E$ is Hamiltonian with momentum map $\mu \colon E \to \mathfrak{t}^*$. Up to rescaling of edges we have

- $E_1 = \{x \in E \mid \dim(T \cdot x) \le 1\}$
- vertices $\leftrightarrow \mu$ (fixed points)
- edges $\leftrightarrow \mu$ (invariant 2-spheres)

 $T \curvearrowright E$ is Hamiltonian with momentum map $\mu \colon E \to \mathfrak{t}^*$. Up to rescaling of edges we have

- $E_1 = \{x \in E \mid \dim(T \cdot x) \le 1\}$
- vertices $\leftrightarrow \mu$ (fixed points)
- edges $\leftrightarrow \mu$ (invariant 2-spheres)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Theorem (Tolman)

A closed Hamiltonian T^2 -manifold whose momentum map has the above form, does not admit an invariant Kähler structure.

Leopold Zoller

Relization of GKM fibrations

July 29, 2020 7 / 20

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

• = • •

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

- vertices V(Γ) = {fixed points}
- edges $E(\Gamma) = \{2\text{-spheres in } M_1\}$

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

- vertices V(Γ) = {fixed points}
- edges $E(\Gamma) = \{2\text{-spheres in } M_1\}$
- $\alpha \colon E(\Gamma) \to \hom(T^k, S^1)/\pm$

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

- vertices V(Γ) = {fixed points}
- edges $E(\Gamma) = \{2\text{-spheres in } M_1\}$

•
$$\alpha \colon E(\Gamma) \to \hom(T^k, S^1)/\pm \cong \mathbb{Z}^k/\pm$$

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

- vertices V(Γ) = {fixed points}
- edges $E(\Gamma) = \{2\text{-spheres in } M_1\}$
- $\alpha : E(\Gamma) \to \hom(T^k, S^1)/\pm \cong \mathbb{Z}^k/\pm$ such that for an edge *e* starting at *p*, the T^k -representation on $T_p S_e^2$ is defined by $\alpha(e)$.

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

The **GKM graph** (Γ, α) of *M* is a labelled graph with

- vertices V(Γ) = {fixed points}
- edges $E(\Gamma) = \{2\text{-spheres in } M_1\}$
- α: E(Γ) → hom(T^k, S¹)/± ≃ Z^k/± such that for an edge e starting at p, the T^k-representation on T_pS_e² is defined by α(e).
- In the presence of a *T*-invariant ACS we naturally have $\alpha \colon E(\Gamma) \to \mathbb{Z}^k$. Then we speak of the signed GKM graph.

A (10) < A (10) < A (10) </p>

An integer GKM manifold is a closed orientable manifold M satisfying $H^{odd}(M; \mathbb{Z}) = 0$ with an action of a torus T^k with finite fixed point set such that M_1 is a finite union of invariant 2-spheres.

The **GKM graph** (Γ, α) of *M* is a labelled graph with

- vertices $V(\Gamma) = \{ fixed points \}$
- edges $E(\Gamma) = \{2\text{-spheres in } M_1\}$
- $\alpha : E(\Gamma) \to \hom(T^k, S^1)/\pm \cong \mathbb{Z}^k/\pm$ such that for an edge e starting at p, the T^k -representation on $T_p S_e^2$ is defined by $\alpha(e)$.
- In the presence of a *T*-invariant ACS we naturally have $\alpha \colon E(\Gamma) \to \mathbb{Z}^k$. Then we speak of the signed GKM graph.

Examples: toric manifolds, $T \curvearrowright G/H$ where $T \subset H \subset G$ max. torus

Example ($T^2 \curvearrowright S^4$)

$(s,t)\cdot(z_1,z_2,h)=(sz_1,tz_2,h)\in\mathbb{C}^2\oplus\mathbb{R}.$

Leopold Zoller

Relization of GKM fibrations

▶ ◀ Ē ▶ Ē ∽ ९. July 29, 2020 9/20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example ($T^2 \curvearrowright S^4$)

▶ ◀ 볼 ▶ 볼 ∽ ९. July 29, 2020 9/20

Image: A math a math

Example ($T^2 \curvearrowright S^4$)

 $(s,t) \cdot (z_1, z_2, h) = (sz_1, tz_2, h) \in \mathbb{C}^2 \oplus \mathbb{R}.$ $(S^4)_1 = \{(z_1, z_2, h) \in S^4 \mid z_1 = 0 \text{ or } z_2 = 0\}$

Example $(T^2 \frown E)$

label of an edge = primitive integral slope

linear realization of the GKM graph

Theorem (Goertsches, Konstantis, Z.)

In dimension 6, the diffeomorphism type of a simply-connected integer GKM manifold with connected stabilizers is encoded in its GKM graph.

Theorem (Goertsches, Konstantis, Z.)

In dimension 6, the diffeomorphism type of a simply-connected integer GKM manifold with connected stabilizers is encoded in its GKM graph.

Corollary

Tolman's example is diffeomorphic to the Eschenburg flag. In particular it admits a Kähler structure.

Theorem (Goertsches, Konstantis, Z.)

In dimension 6, the diffeomorphism type of a simply-connected integer GKM manifold with connected stabilizers is encoded in its GKM graph.

Corollary

Tolman's example is diffeomorphic to the Eschenburg flag. In particular it admits a Kähler structure.

Is there some correspondence between GKM graphs and GKM T-manifolds?

Properties of GKM graphs

() connected, regular (each vertex has dim M/2 emanating edges)

Properties of GKM graphs

- **(**) connected, regular (each vertex has dim M/2 emanating edges)
- **②** For two edges $e, f \in E(\Gamma)_p$ emanating from p, the labels $\alpha(e)$ and $\alpha(f)$ are linearly independent

Properties of GKM graphs

- connected, regular (each vertex has dim M/2 emanating edges)
- **②** For two edges $e, f \in E(\Gamma)_p$ emanating from p, the labels $\alpha(e)$ and $\alpha(f)$ are linearly independent
- Solution
 If e is an edge from p to q, then there is a bijection
 ∇_e: E(Γ)_p → E(Γ)_q such that $\alpha(\nabla_e(f)) \equiv \pm \alpha(f) \mod \alpha(e)$

Properties of GKM graphs

- connected, regular (each vertex has dim M/2 emanating edges)
- **②** For two edges $e, f \in E(\Gamma)_p$ emanating from p, the labels $\alpha(e)$ and $\alpha(f)$ are linearly independent

If e is an edge from p to q, then there is a bijection $∇_e: E(Γ)_p → E(Γ)_q \text{ such that } α(∇_e(f)) ≡ ±α(f) \mod α(e)$

$$f$$
 \cdots $\nabla_e(f)$ e

Definition (Guillemin-Zara)

1

A graph Γ , together with $\alpha \colon E(\Gamma) \to \mathbb{Z}^k/\pm$ satisfying 1-3 above is called an *abstract GKM graph*.

Properties of GKM graphs

- connected, regular (each vertex has dim M/2 emanating edges)
- **②** For two edges $e, f \in E(\Gamma)_p$ emanating from p, the labels $\alpha(e)$ and $\alpha(f)$ are linearly independent

Solution
If e is an edge from p to q, then there is a bijection
∇_e: E(Γ)_p → E(Γ)_q such that $\alpha(\nabla_e(f)) \equiv \pm \alpha(f) \mod \alpha(e)$

$$f$$
 \cdots $\nabla_e(f)$ e

Definition (Guillemin-Zara)

/

A graph Γ , together with $\alpha \colon E(\Gamma) \to \mathbb{Z}^k/\pm$ satisfying 1-3 above is called an *abstract GKM graph*. If $\alpha \colon E(\Gamma) \to \mathbb{Z}^k$ such that $\alpha(e) = -\alpha(\overline{e})$ and 3 holds with "+", then (Γ, α) is a *signed GKM graph*.

< □ > < 凸

▶ ∢ ⊒

- (E

< □ > < □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ > < □ >

< □ > < □ > < □ > < □ > < □ > < □ >

The fiber bundle

$$\mathbb{C}P^1 \longrightarrow E \longrightarrow \mathbb{C}P^2$$

yields a GKM fibration (Guillemin-Sabatini-Zara)

The fiber bundle

$$\mathbb{C}P^1 \longrightarrow E \longrightarrow \mathbb{C}P^2$$

yields a GKM fibration (Guillemin-Sabatini-Zara)

A (signed) GKM fibration $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ between to abstract (signed) GKM graphs consists of

• a map $\varphi \colon V(\Gamma) \to V(B)$

A (signed) GKM fibration $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ between to abstract (signed) GKM graphs consists of

• a map $\varphi \colon V(\Gamma) \to V(B)$

A (signed) GKM fibration $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ between to abstract (signed) GKM graphs consists of

- a map $\varphi \colon V(\Gamma) \to V(B)$
- for every $p \in V(\Gamma)$ a bijection $\varphi_p \colon H_p \to E(B)_{\varphi(p)}$ satisfying $\alpha(e) = \alpha_B(\varphi_p(e))$

Some fibrations over a square

Some fibrations over a square

Some fibrations over a square

Let $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ be a signed GKM fibration of twisted type, in which Γ is 3-regular and (B, α_B) is 2-regular, effective, and of polytope type.

Let $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ be a signed GKM fibration of twisted type, in which Γ is 3-regular and (B, α_B) is 2-regular, effective, and of polytope type. Assume that B has n vertices, $n \neq 4$, Γ has n - 1 interior vertices. Then a GKM action with GKM graph (Γ, α) can not admit an invariant Kähler structure.

Let $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ be a fiberwise signed GKM fibration, with Γ 3-regular and (B, α_B) 2-regular and effektive.

Let $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ be a fiberwise signed GKM fibration, with Γ 3-regular and (B, α_B) 2-regular and effektive. Then it is realized as the projectivization of a rank 2 complex T^2 -equivariant vector bundle $V \rightarrow X$ where X is a quasi toric manifold or S^4 .

Let $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ be a fiberwise signed GKM fibration, with Γ 3-regular and (B, α_B) 2-regular and effektive. Then it is realized as the projectivization of a rank 2 complex T^2 -equivariant vector bundle $V \rightarrow X$ where X is a quasi toric manifold or S^4 .

• If the fibration is signed, then realizations admit T²-invariant almost complex structures.

Let $(\Gamma, \alpha) \rightarrow (B, \alpha_B)$ be a fiberwise signed GKM fibration, with Γ 3-regular and (B, α_B) 2-regular and effektive. Then it is realized as the projectivization of a rank 2 complex T^2 -equivariant vector bundle $V \rightarrow X$ where X is a quasi toric manifold or S^4 .

- If the fibration is signed, then realizations admit T²-invariant almost complex structures.
- If (B, α_B) is of polytope type, then the realizing actions are Hamiltonian. In this case there also exists a Kähler structure on P(V) which is symplectomorphic to a T²-invariant symplectic form.

Step 1: find realization X for the base

start with the suitable n-gon of 2-spheres which will be X_1 and glue inside a free 2-cell $D^2 \times T^2$.

Step 1: find realization X for the base

start with the suitable n-gon of 2-spheres which will be X_1 and glue inside a free 2-cell $D^2 \times T^2$.

Step 2: construct V over X_1

Construct V over every 2-sphere in X_1 separately and glue those bundles together over the fixed points such that $\mathbb{P}(V|_{X_1})$ has the desired 1-skeleton.

Step 1: find realization X for the base

start with the suitable n-gon of 2-spheres which will be X_1 and glue inside a free 2-cell $D^2 \times T^2$.

Step 2: construct V over X_1

Construct V over every 2-sphere in X_1 separately and glue those bundles together over the fixed points such that $\mathbb{P}(V|_{X_1})$ has the desired 1-skeleton.

Step 3: extend V over all of X

Step 1: find realization X for the base

start with the suitable n-gon of 2-spheres which will be X_1 and glue inside a free 2-cell $D^2 \times T^2$.

Step 2: construct V over X_1

Construct V over every 2-sphere in X_1 separately and glue those bundles together over the fixed points such that $\mathbb{P}(V|_{X_1})$ has the desired 1-skeleton.

Step 3: extend V over all of X

Step 4: construct geometric structures on $\mathbb{P}(V)$

Classification of GKM fibrations

In the situation of the main theorem: for a fixed base graph (B, α_B) with *n* vertices

 $\{\text{fibrations } \Gamma \to B\} \longleftrightarrow ((\mathbb{Z} - 0)^n / \pm) \times \{0, 1\}$

Classification of GKM fibrations

In the situation of the main theorem: for a fixed base graph (B, α_B) with *n* vertices

$${\text{fibrations }\Gamma \to B} \longleftrightarrow ((\mathbb{Z} - 0)^n / \pm) \times {0,1}$$

If *B* is of polytope type, the **Tolman-type examples** correspond to the elements $([k_1, \ldots, k_n], 1)$ where k_i and k_{i-1} have the same sign for all *i* except one (setting $k_0 = -k_n$)

Classification of GKM fibrations

In the situation of the main theorem: for a fixed base graph (B, α_B) with *n* vertices

$$\{\text{fibrations } \Gamma \to B\} \longleftrightarrow ((\mathbb{Z} - 0)^n / \pm) \times \{0, 1\}$$

If *B* is of polytope type, the **Tolman-type examples** correspond to the elements $([k_1, \ldots, k_n], 1)$ where k_i and k_{i-1} have the same sign for all *i* except one (setting $k_0 = -k_n$)

Even over $\mathbb{C}P^2$, this produces infinitely many Tolman-type examples with 6 fixed points (pairwise not homotopy equivalent).

Thank you for your attention!