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ABSTRACT

Analogous to the density criterion for Gabor frames and Riesz
bases in the space of square integrable functions, we develop
a necessary density condition for time–frequency localized op-
erators in the realm of operator identification. The developed
framework can be seen as a generalization of both, the density
result for Gabor frames and Riesz bases, and the identifiability
theorem for so-called operator Paley–Wiener spaces.

Keywords— Operator identification, density criteria, Gabor
frames, atomic Hilbert–Schmidt operator decompositions.

1. INTRODUCTION

The goal of operator identification is to recover an incompletely
known operator taken from a given operator family through ob-
servation of a single input / output pair [5, 8]. In general, for
normed linear spaces X,Y and H ⊂ L(X,Y ), we wish to find
an element f ∈ X such that the evaluation map

Φf : H → Y, H 7→ Hf

is bounded and boundedly invertible on its range. Then H is
said to be identifiable by f . Identifiability is important, for ex-
ample, in mobile radio communications where an a-priori un-
known channel operator needs to be identified prior to informa-
tion transmission through a channel.

In this paper, we consider spaces of Hilbert-Schmidt opera-
tors which are defined by atomic decompositions. Then, f iden-
tifies the closed linear spanHΛ of {Hλ}λ∈Λ if

‖Hf‖L2(R) � ‖H‖HS , H ∈ HΛ = span {Hλ}λ∈Λ. (1)

If {Hλ}λ∈Λ is a Riesz basis sequence in the space of Hilbert–
Schmidt operators, then

‖H‖HS =
∥∥∑
λ∈Λ

cλHλ

∥∥
HS
� ‖c‖`2(Λ), {cλ} ∈ `2(Λ),

so identifiability by f is equivalent to establishing

‖Hf‖L2(R) =
∥∥∑
λ∈Λ

cλHλf
∥∥

2
� ‖{cλ}‖`2(Λ), {cλ} ∈ `2(Λ),

(2)
that is, to showing that {Hλf}λ∈Λ is a Riesz basis sequence in
L2(R). In this paper, we shall focus on establishing condition
(2) for given operator families {Hλ}λ∈Λ.

The operator Riesz basis sequences considered here are
defined via Gabor decompositions of the operators’ spread-
ing functions, or, equivalently, their Kohn-Nirenberg symbols
or time-varying impulse responses. We address the question
whether in this setting, identifiability of the operator class HΛ

depends on a notion of density on the time-frequency index set
Λ ⊆ R4. See Section 3 for two theorems that motivated this
body of work.

We would like to emphasize that the range of the opera-
tors considered consists of functions in one variable, while the
spreading functions of the operators are bivariate. This dimen-
sion mismatch in (1) implies that a single evaluation map Φf
cannot identify the space of Hlbert–Schmidt operators. Our
analysis in Sections 4 and 5 resolves this dimensionality mis-
match.

2. PRELIMINARIES

In this section we review some general properties of Gabor
Riesz bases and frames for the Hilbert space of square inte-
grable functions L2(Rd) and for the space of Hilbert-Schmidt
operators on L2(R).

Recall that a countable family of vectors {gλ}λ∈Λ in a sep-
arable Hilbert space H is called Riesz basis sequence if there
exist constants 0 < a ≤ b with

a‖cλ‖`2(Λ) ≤ ‖
∑
λ∈Λ

cλgλ‖H ≤ b‖cλ‖`2(Λ), {cλ} ∈ `2(Λ).

The existence of positive numbers permitting a double inequal-
ity such as the one above will be abbreviated in the following



by
‖cλ‖`2(Λ) � ‖

∑
λ∈Λ

cλgλ‖H , {cλ} ∈ `2(Λ).

A Riesz basis is a Riesz basis sequence which is complete in H .
The system {gλ}λ∈Λ is a frame for H if

‖f‖L2(Rd) �
∥∥{〈f, gλ〉}λ∈Λ

∥∥
`2(Λ)

, f ∈ H. (3)

If (3) holds only on the closed linear span of {gλ}λ∈Λ, that is,
span {gλ}λ∈Λ, then {gλ}λ∈Λ is a frame sequence.

Let Λ = MZ2d ⊂ R2d be a (not necessarily full rank) lattice,
that is,M is a 2d by 2dmatrix with real entries. A Gabor system
{gλ}λ∈Λ = (g,Λ) for L2(Rd) is the set of all time-frequency
shifts of the window function g by λ = (x, ω) ∈ Λ, that is

(g,Λ) := {gλ = π(λ)g : λ ∈ Λ},

for π(λ)g(t) = TxMωg = g(t − x)e2πi〈ω,t〉. Then, (g,Λ) is a
Gabor Riesz basis sequence if

‖cλ‖`2(Λ) � ‖
∑
λ∈Λ

cλπ(λ)g‖L2(Rd), {cλ} ∈ `2(Λ),

and a Gabor frame for L2(Rd) if

‖f‖2L2(Rd) �
∑
λ∈Λ

|〈f, π(λ)g〉|2 , f ∈ L2(Rd).

Hilbert-Schmidt operators are those bounded operators on
L2(R) with L2(R2) kernel, that is,

Hf(x) =

∫
κ(x, y)f(y) dy,

with κ ∈ L2(R2), that is, Hilbert-Schmidt operators are de-
fined through finiteness of the Hilbert-Schmidt norm ‖H‖HS =
‖κH‖L2(R2).

As operators are in 1-1 correspondents to their kernel, they
can also be represented by their time-varying impulse response
h, their Kohn-Nirenberg symbol σ and their spreading function
η. In fact, formally,

Hf(x) =

∫
hH(t, x) f(x− t) dt

=

∫∫
ηH(t, ν) e2πiν(x−t) f(x− t) dν dt

=

∫
σH(x, ξ)e2πixξ f̂(ξ) dξ,

where∫
ηH(t, ν)e2πiνx dν = hH(t, x) = κH(x, x− t)

=

∫
σH(x, ξ)e2πiξt dξ,

and the Fourier transform is normalized as Ff(ξ) = f̂(ξ) =∫
f(x)e−2πixξ dx. Clearly,

‖H‖HS = ‖κH‖L2(R2) = ‖hH‖L2(R2)

= ‖ηH‖L2(R2) = ‖σH‖L2(R2).

It is not difficult to see that the space of Hilbert–Schmidt op-
erators on L2(R), that is, HS(L2(R)), is not identifiable. Con-
sequently, we will restrict ourselves to closed subspaces H ⊆
HS(L2(R)). We shall use the fact that the domain of some sub-
spaces of operators considered below can be extended to include
spaces of distributions. For example, choosing γ(x) = e−x

2

,
we can define the modulation space M∞(R) as space of all dis-
tributions with

‖f‖M∞(R) = sup
λ∈R2

|〈f, π(λ)γ〉| <∞,

and note that, for example, operators in so-called operator
Paley–Wiener space

OPW2(M) = {H ∈ HS(L2(R)) : supp ηH ⊆M}

map boundedly M∞(R) to L2(R) whenever M is a compact
set [7].

We now recall the definition of Beurling density. Let Bd(R)
denote a ball in Rd centered at 0 with radius R. Let Λ ⊆ Rd.
Then the lower and upper Beurling densities of Λ are given by

D−(Λ) = lim inf
R→∞

inf
z∈Rd

|Λ ∩ {Bd(R) + z}|
πRd

,

D+(Λ) = lim sup
R→∞

sup
z∈Rd

|Λ ∩ {Bd(R) + z}|
πRd

.

Whenever D−(Λ) = D+(Λ), we speak of the Beurling density
of Λ, D(Λ).

Clearly, whenever Λ is a lattice, the Beurling density is the
inverse of the Lebesgue measure of any measurable fundamen-
tal domain of Λ.

3. MOTIVATING EXAMPLES

The work presented here is motivated by two important den-
sity phenomena in time-frequency analysis, namely, the density
criterion for Gabor frames and Riesz bases (here, Hλ = π(λ),
λ ∈ Λ, which is not Hilbert-Schmidt and therefore formally not
part of the here described theory), and a necessary identifiabil-
ity condition for operators in the operator Paley-Wiener space
OPW2(M) (where Hλ = π(λ)H0π(λ)∗, λ ∈ Λ and H0 cho-
sen appropriately).

Theorem 1. Let Λ ⊆ R2 be a lattice. If there exists f ∈ L2(R)
with {π(λ)f}λ∈Λ being a Riesz basis sequence in L2(R), then
D(Λ) ≤ 1.

Note that Theorem 1 can be adjusted to fit the framework
of Hilbert–Schmidt operators by replacing Hλ = π(λ) with
Hλ = π(λ) ◦ H0 with H0 being any fixed Hilbert–Schmidt
operator. Note that in this case, we can also consider f to be
in a distributional space (for example, f ∈ M∞(R) as long as
H0f ∈ L2(R) holds).

The second result motivating this paper is the following [5,
8].



Theorem 2. Let Λ ⊆ R2 be a lattice and H be a Hilbert–
Schmidt operator with smooth and compactly supported spread-
ing function. If there exists f ∈M∞(R) with
{π(λ)Hπ(λ)∗f}λ∈Λ being a Riesz basis sequence in L2(R),
then D(Λ) ≤ 1.

Note that Theorem 2 is proven similarly to the result that,
with M being a fundamental domain of Λ, OPW2(M) is iden-
tifiable if and only if the Lebesgue measure of M is less than or
equal to one, a condition which is equivalent to the density of Λ
being less than or equal to one.

In the following, we shall try to better understand the rela-
tionship of the results above by means of finding a common
generalization.

4. MAIN RESULT

Hilbert-Schmidt operators on L2(R) are characterized by ηH ∈
L2(R2d). Hence, we can obtain operator expansions through
Gabor Riesz basis sequence or Gabor frame expansions of ηH .

Proposition 3. For H0 ∈ HS(L2(R)), we write η0 = ηH0
.

Then the operator TAMBT−CH0TCMD has spreading func-
tion

ηTAMBT−CH0TCMD
= TA,B+DMB,Cη0, A,B,C,D ∈ R.

Hence, if

ηH =
∑

k,l,m,n

ck,l;m,nTam,bnMck,dlη0

with convergence in L2-norm, then

H =
∑

k,l,m,n

ck,l;m,nTamMckT−dlH0TdlMbn−ck.

with convergence in HS(L2(R)).

Note that Theorem 1 corresponds to choosing H0 to be the
identity operator and by restricting ourselves to two parame-
ter coefficient sequences, namely, to coefficient sequences with
ck,l;m,n = δ(k)δ(l)c̃m,n. Similarly, for Theorem 2 we consider
H0 with ηH smooth and compactly supported, and coefficient
sequences ck,l;m,n = δ(m)δ(n)c̃k,l.

For λ = (x1, x2;ω1, ω2) ∈ R4 andH0 Hilbert–Schmidt with
spreading function η0, we define Hλ by

ηHλ = π(λ)η0 = M(ω1,ω2)T(x1,x2)η0. (4)

Then, Theorem 1 corresponds to testing condition (2) for
{Hλ}λ∈Λ with

Λ =

(
a 0 0 0
0 b 0 0

)T
Z2,

while for Theorem 2 we choose

Λ =

(
0 0 c 0
0 0 0 d

)T
Z2.

This observation leads to the following question.

Question 4. Can we define a density D̃ on lattices Λ = MZ2 ⊆
R4, M a 4 by 2 real matrix, so that for some C > 0 we have

{Hλf}λ∈Λ is a Riesz basis sequence⇒ D̃(Λ) ≤ C.

By analogy we shall define a ‘Beurling-type’ 2-density for
sets of points Λ lying within general 2 dimensional subspaces S
of R4

Definition 5. The “2-dimensional” upper and lower Beurling
densities (or for short 2-density) of Λ ⊆ R4 are given by

D+
(2)(Λ) = lim inf

R→∞
inf
z∈S

|Λ ∩ {B4(R) + z}|
πR2

,

D−(2)(Λ) = lim sup
R→∞

sup
z∈S

|Λ ∩ {B4(R) + z}|
πR2

.

If D+
(2)(Λ) = D−(2)(Λ), then Λ has uniform 2-Beurling density

D(2)(Λ) = D−(2)(Λ).

Note that for this definition of density, it is easy to construct
examples implying that there exist no c > 0 with

D̃(Λ) < c⇒ {Hλf}λ∈Λ is not a Riesz basis sequence for all f.

In short, we cannot guarantee identifiability of HΛ by simply
requiring {Hλ}λ∈Λ being a Riesz basis sequence in the space
of Hilbert–Schmidt operators and requiring a high density. Ad-
ditional remarks regarding positive identification results are in-
cluded in Section 5.

As we shall restrict our attention to lattices which define a
2-dimensional plane in R4, we observe that with

Λ =

( a1 a2
b1 b2
c1 c2
d1 d2

)
Z2 =

(
a1m+a2n
b1m+b2n
c1m+c2n
d1m+d2n

)
: m,n ∈ Z,

we have

D(2)(Λ) =[(a1b2 − a2b1)2 + (a1c2 − a2c1)2

+ (a1d2 − a2d1)2 + (b1c2 − b2c1)2

+ (b1d2 − b2d1)2 + (c1d2 − c2d1)2]−1/2.

Hence, for

Λ =

(
a 0 0 0
0 b 0 0

)T
Z2.

we have D(2)(Λ) = |ab| and for

Λ =

(
0 0 c 0
0 0 0 d

)T
Z2

we have D(2)(Λ) = |cd|.

Theorem 6. Let Λ = MZ2, let H0 have a smooth and com-
pactly supported spreading function and let {Hλ}λ∈Λ be de-
fined by (4). If there exists f ∈ M∞(R) with {Hλf}λ∈Λ being
a Riesz basis sequence in L2(R), then D(2)(Λ) ≤

√
2,.

Consequently, if {Hλ}λ∈Λ is Riesz in the space of Hilbert–
Schmidt operators, then D(2)(Λ) >

√
2 implies that HΛ is not

identifiable.



We conclude this section by presenting the central ideas be-
hind the proof of Theorem 6.

Proof. For m,n ∈ Z and λ = M(m,n)T , we observe that

Hλ = T(a1−d1)m+(a2−d2)nMc1m+c2n

H0Td1m+d2nM(b1−c1)m+(b2−c2)n.

The condition ηH0 smooth and compactly supported implies
that for any f ∈M∞(R),

fλ = H0Td1m+d2nM(b1−c1)m+(b2−c2)nf

is time–frequency localized at 0. Hence, for any f ∈M∞(R),

{T(a1−d1)m+(a2−d2)nMc1m+c2nfM(m,n)T }m,n∈Z ⊆ L2(R)

is a system of Gabor molecules localized with respect to the
lattice

Λ′ =

(
a1 − d1 a2 − d2

c1 c2

)
Z2.

A Gabor molecule extension of Theorem 1 implies that {Hλf}λ∈Λ

being a Riesz basis sequence for L2(R) necessitates D(Λ′) ≤ 1
[2, 4, 6]. A computation shows that D(Λ′) > 1 follows from
D(2)(Λ) >

√
2.

5. SUFFICIENT CRITERIA FOR IDENTIFICATION

Recall that for a given Hilbert–Schmidt operator H0, a given
lattice Λ ⊆ R4, and Hλ, λ ∈ Λ, given by (4), we have HΛ =
span {Hλ}λ∈Λ. To establish identifiability of HΛ, we search
for an identifier f such that any choice of coefficients {cλ} ∈
`2(Λ), can be computed fromHf . Equivalently, we require that
{cλ} can be computed from the values of the inner products
vµ = 〈Hf, π(µ)γ〉, µ ∈ M, which are the Gabor coefficients
of Hf with respect to a Gabor frame {π(µ)γ}µ∈M for L2(R).
To succeed with this, we need to solve the system of equations

vµ = 〈Hf, π(µ)γ〉 =
∑
λ∈Λ

cλ〈Hλf, π(µ)γ〉 =
∑
λ∈Λ

cλAµ;λ.

(5)
If there exists f such that the mapA : Y → `2(Z2), Y ⊂ `2(Z4)
is invertible, then HΛ is identifiable. On the other hand, if for
every f belonging to a particular space of distributions (for ex-
ample, the modulation space M∞(R)), the map A is not invert-
ible, thenHΛ is not identifiable with identifiers from this space.

Designing f for identification can again be carried out on the
coefficient level. In fact, with {π(µ̃)γ̃}

µ̃∈M̃ being an appropri-
ately chosen Gabor frame for L2(R) (or, for example, an l∞

frame for M∞(R) [1]), we seek a coefficient sequence {dµ̃} so
that the biinfinite matrix with entries

Aµ;λ =
∑
µ̃∈M̃

dµ̃〈Hλπ(µ̃)γ̃, π(µ)γ〉.

Results obtained with this approach such as the explanatory
given below [3].

Fig. 1. The set (α, β) fulfilling the conditions in Proposition 7
lies in the shaded region.

Proposition 7. Let H0 be given by κ0(x, ω) = e−π(x2+ω2),
that is, η0(t, ν) = 1√

2
e−πi

√
2tνe−

π
2 (t2+ν2), and let Λ =(

α 0 0
0 β α 0

)T Z2. Ifα, β are such that |α(β+α
√

2)| ≥
√

2, |αβ| >√
2, |α| > 1, then the operator familyHΛ is identifiable.
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