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Abstract:

Time–invariant communication channels are usually mod-
elled as convolution with a fixed impulse–response func-
tion. As the name suggests, such a channel is completely
determined by its action on a unit impulse. Time–varying
communication channels are modelled as pseudodiffer-
ential operators or superpositions of time and frequency
shifts. The function or distribution weighting those time
and frequency shifts is referred to as the spreading func-
tion of the operator. We consider the question of whether
such operators are identifiable, that is, whether they are
completely determined by their action on a single func-
tion or distribution. It turns out that the answer is depen-
dent on the size of the support of the spreading function,
and that when the operators are identifiable, the input can
be chosen as a distribution supported on an appropriately
chosen grid. These results provide a sampling theory for
operators that can be thought of as a generalization of the
classical sampling formula for bandlimited functions.

1. Channel Models and Identification

A communications channel is said to bemeasurableor
identifiableif its characteristics can be determined by its
action on a single fixed input signal. A general model for
linear (time-varying) communication channels is as oper-
ators of the form

Hf(x) =
∫

hH(t, x) f(x− t) dt.

The functionhH(t, x) is referred to as theimpulse re-
sponseof the channel and is interpreted as the response of
the channel at timex to a unit impulse at timex − t, that
is, originatingt time units earlier. IfhH(t, x) = hH(t)
then the characteristics of the channel are time-invariant
and in this case the channel is modelled as a convolution
operator. Such channels are identifiable sincehH(t) can
be recovered as the response of the channel to the input
signalδ0(t), the unit-impulse att = 0.

There are two representations ofH that will be convenient
for our purposes.

1. LettingηH(t, ν) =
∫

hH(t, x) e−2πiν(x−t) dx gives

Hf(x) =
∫∫

ηH(t, ν) e2πiν(x−t) f(x− t) dν dt

=
∫∫

ηH(t, ν)Tt Mνf(x) dν dt.

ηH(t, ν) is the spreading functionof H. If supp ηH ⊆
[0, a]× [−b/2, b/2] for somea, b > 0 thena is called the
maximum time-delayandb themaximum Doppler spread
of the channel.

2. LettingσH(x, ξ) =
∫

hH(t, x) e2πitξ dt gives

Hf(x) =
∫

σH(x, ξ)f̂(ξ) e2πixξ dξ.

σH(x, ξ) is theKohn-Nirenberg(KN) symbol of H and
we have the relation

ηH(t, ν) =
∫∫

σH(x, ξ) e−2πi(νx−ξt) dx dξ.

In other words, the spreading functionηH is thesymplectic
Fourier transformof the KN symbol ofH.
In 1963, T. Kailath [3, 4, 5] asserted that for time-variant
communication channels to be identifiable it is neces-
sary and sufficient that the maximum time-delay,a, and
Doppler shift,b, satisfyab ≤ 1 and gave an argument for
this assertion based on counting degrees of freedom. In
the argument, Kailath looks at the response of the channel
to a train of impulses separated by at leasta time units,
so that in this sense the channel is being “sampled” by a
succession of evenly-spaced impulse responses. The con-
dition ab ≤ 1 allows for the recovery of sufficiently many
samples ofhH(t, x) to determine it uniquely.
Kailath’s conjecture was given a precise mathematical
framework and proved in [6]. The framework is as fol-
lows. Choose normed linear spacesD(R) andY (R) of
functions or distributions onR, and a normed linear space
of bounded linear operatorsH ⊂ L(D(R), Y (R)). Each
fixed elementg ∈ D(R) induces a mapΦg : H −→
Y (R), H 7→ Hg. If for someg ∈ D(R), Φg is bounded
above and below, that is, there are constants0 < A ≤ B
such that for allH ∈ H,

A‖H‖H ≤ ‖Hg‖Y ≤ B ‖H‖H



then we say thatH is identifiable with identifierg ∈
D(R).
Taking D = S′0, Y = L2, and HS = {H ∈
HS(L2) : ηH ∈ S0(R × R̂), supp ηH ⊆ S} where
S ⊆ R× R̂, HS(L2) is the class of Hilbert-Schmidt op-
erators, andS0 is the Feichtinger algebra (defined below),
the following was proved in [6].

Theorem 1. If S = [0, a] × [−b/2, b/2] thenHS is iden-
tifiable if and only ifab ≤ 1. In this case an identifier is
given byg =

∑
n δna.

2. Distributional Spreading Functions and
Operator Sampling

The requirement thatηH ∈ S0 excludes some very natural
operators from consideration in this formalism, for exam-
ple the identity operator (ηH(t, ν) = δ0(t)δ0(ν)), convo-
lution operators (ηH(t, ν) = h(t)δ0(ν) giving Hf = f ∗
h), and multiplication operators, (ηH(t, ν) = δ0(t)m̂(ν)
giving Hf = m · f ).
A more natural setting for operator identification is the
modulation spaces(see [2] for a full treatment of the sub-
ject). For convenience we give the definitions below for
modulation spaces onR, but all definitions and results can
be extended toRd. Forϕ ∈ S(R) define forf ∈ S ′(R)
theshort-time Fourier transform (STFT)of f by

Vϕf(t, ν) = 〈f, TtMνϕ〉
=

∫
f(x) e−2πiν(x−t) ϕ(x− t) dx.

For 1 ≤ p, q ≤ ∞ define the modulation spaceMp,q(R)
by

Mp,q(R) = {f ∈ S ′(R) : Vϕf ∈ Lp,q(R)},
that is, for which

‖Vϕ‖Lp,q =
(∫ (∫

|Vϕf(t, ν)|p dt

)q/p)1/q

is finite. The usual modifications are made ifp or q =
∞. Mp,q is a Banach space with respect to the norm
‖f‖Mp,q = ‖Vϕf‖Lp,q and different nonzero choices of
ϕ ∈ S define equivalent norms. The spaceM1,1 is the
Feichtinger algebra denotedS0 andM∞,∞ is its dualS′0.
The spaceS′0 contains the Dirac impulsesδx : f 7→ f(x)
for x ∈ R as well as distributions of the formg =∑

j cjδxj , xj ∈ R and{cj} ⊆ C a bounded sequence.
In our next step toward operator sampling we observe that
it is possible to takeD = S′0, Y = S′0, andHS = {H ∈
L(D, Y ) : ηH ∈ S′0, supp ηH ⊆ S} in the operator iden-
tification formalism. Indeed the following theorem was
shown in [10].
Theorem 2. The operator classHS (defined above) is
identifiable ifS = [0, a]× [−b/2, b/2] andab < 1, and is
not identifiable ifab > 1.

3. A Theory of Operator Sampling

In discussing identifiability of operators in various set-
tings, we have been content to show that an operator is

completely determined by its actions on a fixed input in
terms of a norm inequality. The next step is to find an
explicit reconstruction formula for the impulse response
of the channel operator directly from its response to the
identifier. Such formulas illustrate a connection between
operator identification and classical sampling theory and
lead to a definition ofoperator sampling.
If, in the operator identification formalism described ear-
lier, an operator classH is identified by a distribution of
the formg =

∑
j cjδxj

, then we call{xj} a set of sam-
pling for H and g a sampling functionfor the operator
classH. In the results obtained so far, operator sampling
is possible only for operators with compactly supported
spreading function, and in order to interpret Theorem 1 in
this context we make the following definition.
Given a Jordan domainS ⊆ R2, define theoperator
Paley-Wiener spaceOPW 2(S) by

OPW 2(S) = {H ∈ HS(L2) : supp ηH ⊆ S}.
OPW 2 is a Banach space with respect to the Hilbert-
Schmidt norm‖H‖OPW 2 = ‖ηH‖L2 . Then Theorem 1
can be extended as follows ([8]).
Theorem 3.Let Ω, T, T ′ > 0 with T ′ < T andΩT < 1.
ThenOPW 2([0, T ′] × [−Ω/2, Ω/2]) is identifiable with
identifierg =

∑
n δnT and moreover we have the formula

hH(t, x) = r(t)
∑

k∈Z

(Hg)(t + kT )ϕ(x− t− kT )

unconditionally inL2(R2), wherer ∈ S(R) is such that
r = 1 on [0, T ′] and vanishes outside a sufficiently small
neighborhood of[0, T ′], and whereϕ ∈ S(R) is such that
ϕ̂ = 1 on [−Ω/2,Ω/2] and vanishes outside a sufficiently
small neighborhood of[−Ω/2, Ω/2].
In the more general modulation space setting we can de-
fine the operator Paley-Wiener spaceOPW p,q(S) by

OPW p,q(S) = {H ∈ L(S0, S
′
0)

: supp ηH ⊆ S, σH ∈ Mpq,11}
where σH(x, ξ) ∈ Mpq,11 means that the two-
dimensional STFT ofσH satisfies

∫ (∫ (∫
|Vϕ⊗ϕσH(t1, t2, ν1, ν2)|pdt1

)q/p

dt2

)1/p

dν1dν2

is finite. Here

Vϕ⊗ϕ(t1, t2, ν1, ν2) = 〈f, Tt1Mν1ϕ⊗ Tt2Mν2ϕ〉.
OPW p,q is a Banach space with respect to the norm
‖H‖OPW p,q = ‖σH‖Mpq,11 . In this case, Theorem 3 gen-
eralizes as follows ([8]).
Theorem 4. Let 1 ≤ p, q ≤ ∞, Ω, T, T ′ > 0 with T ′ <
T andΩT < 1. ThenOPW p,q([0, T ′]× [−Ω/2, Ω/2]) is
identifiable with identifierg =

∑
n δnT and moreover we

have the formula

hH(t, x) = r(t)
∑

k∈Z

(Hg)(t + kT )ϕ(x− t− kT )

unconditionally inM1p,q1(R2) and in the weak-* sense if
p or q = ∞, wherer andϕ are as in Theorem 3.



Example 1. If we takeH to be ordinary convolution by
hH(t), this means thathH(t, x) depends only ont, that is,
hH(t, x) = hH(t). In this caseH can be identified in prin-
ciple byg = δ0, the unit impulse, sinceHg(x) = hH(x).
Translating this into our operator sampling formalism re-
sults in something slightly different.
Assume thath ∈ M1,q is supported in the interval[0, T ′]
and thatT > T ′, andΩ > 0 are chosen so thatΩT < 1.
In this case,ηH(t, ν) = h(t) δ0(ν) andσH(x, ξ) = ĥ(ξ).
ThereforeσH ∈ M∞q,11 andH ∈ OPW∞,q([0, T ′] ×
{0}).
If g =

∑
n δnT thenHg is simply theT–periodized im-

pulse responseh(t), and it follows that

r(t)
∑

k∈Z

(Hg)(t + kT )ϕ(x− t− kT )

= r(t) h(t)
∑

k∈Z

ϕ(x− t− kT ) = h(t)

sincer(t) = 1 on [0, T ′] and vanishes outside a neighbor-
hood of[0, T ′] and since

∑
k ϕ(x − t − kT ) = 1 by the

Poisson Summation Formula and in consideration of the
support constraints on̂ϕ. Indeed the theorem says that the
sum

∑
k ϕ(x− t− kT ) converges to1 in theM∞,1 norm

and in particular uniformly on compact sets.

Example 2. If we takeH to be multiplication by some
fixed functionm ∈ Mp,1 with supp m̂ ⊆ [−Ω/2, Ω/2]
thenηH(t, ν) = δ0(t)m̂(ν), h(t, x) = δ0(t)m(x − t),
and σH(x, ξ) = m(x). ThereforeσH ∈ Mp∞,11 and
H ∈ OPW p,∞({0} × [−Ω/2, Ω/2]).
If g =

∑
n δnT , with T > 0 chosen small enough that

ΩT < 1, thenHg =
∑

n m(nT ) δnT , and it follows from
Theorem 4 that

δ0(t)m(x− t)

= r(t)
∑

k∈Z

(Hg)(t + kT )ϕ(x− t− kT )

= r(t)
∑

k∈Z

∑

n∈Z

m(nT ) δ(n−k)T (t)ϕ(x− t− kT )

=
∑

n∈Z

m(nT ) ϕ(x− nT )

by support considerations on the functionr(t). Therefore
we have the summation formula

m(x) =
∑

n

m(nT )ϕ(x− nT )

where the sum converges unconditionally inMp,1 if 1 ≤
p < ∞ and weak-* ifp = ∞, and moreover there are
constants0 < A ≤ B such that for all suchf ,

A‖f‖Mp,1 ≤ ‖{f(nT )}‖`p ≤ B‖f‖Mp,1 .

Takingp = 2, this recovers the classical sampling formula
when the sampling is above the Nyquist rate.

4. Spreading functions with nonrectangular
support and Bello’s conjecture

In 1969, P. A. Bello [1] argued that what is important for
channel identification is not the productab of the maxi-
mum time-delay and Doppler shift of the channel but the

area of the support of the spreading function. It is notable
that Kailath also asserted something along these lines.
This means that a time-variant channel whose spreading
function has essentially arbitrary support is identifiable as
long as the area of that support is smaller than one.
Using ideas from [6], Bello’s conjecture was proved in [9].

Theorem 5. HS is identifiable ifvol+(S) < 1, and not
identifiable if vol−(S) > 1. Herevol+(S) is the outer
Jordan content andvol−(S) the inner Jordan content ofS.
In this case, the channel is identified byg =

∑
n cn δn/L

whereL ∈ N and theL–periodic sequence{cn} is chosen
based on the geometry ofS.

We next present a generalization of Theorem 4 to this case.
Before stating the result, a few preliminaries are required.

Definition 1. GivenL ∈ N, let ω = e−2πi/L and define
thetranslation operatorT on (x0, . . . , xL−1) ∈ CL by

Tx = (xL−1, x0, x1, . . . , xL−2),

and themodulation operatorM onCL by

Mx = (ω0x0, ω
1x1, . . . , ωL−1xL−1).

Given a vectorc ∈ CL thefinite Gabor system with win-
dowc is the collection{T qMpc}L−1

q,p=0.

Note that the discrete Gabor system defined above consists
of L2 vectors inCL so is necessarily overcomplete.

Definition/Proposition 2. The Zak Transform is defined
for f ∈ S(R) by Zf(t, ν) =

∑
n

f(t− n) e2πinν .

Zf(t, ν) satisfies the quasi-periodicity re-
lations Zf(t + 1, ν) = e2πiν Zf(t, ν) and
Zf(t, ν + 1) = Zf(t, ν). Z can be extended to a
unitary operator fromL2(R) ontoL2([0, 1]2).
If the spreading function ofH, ηH(t, ν), is supported in
a bounded Jordan regionS ⊆ R × R̂ with vol+(S) <
1, then by appropriately shifting and scalingηH we can
assume without loss of generality that for someL ∈ N,
S ⊆ [0, 1] × [0, L] and thatS meets at mostL of theL2

rectanglesRq,m = ([0, 1/L] × [0, 1]) + (q/L, m), 0 ≤
q, m < L whose union is[0, 1] × [0, L]. We can further
assume thatS does not meet any of the rectanglesRq,m on
the “edge” of the larger rectangle, specifically it does not
meetRq,m with q = 0, m = 0, q = L− 1 or m = L− 1.
The following Lemma connects the outputHg(x) where
g =

∑
n cn δn/L to the spreading functionηH(t, ν). From

this a reconstruction formula analogous to that in Theo-
rem 4 can be derived.

Lemma 1. Given a period-L sequence(cn) and g =∑
n cn δn/L, then for(t, ν) in a sufficiently small neigh-

borhood of[0, 1/L]× [0, 1],

e−2πiνp/L (Z ◦H)g(t + p/L, ν)

=
L−1∑
q=0

L−1∑
m=0

(T q Mmc)p e−2πiνq/L ηH(t + q/L, ν + m).

In other words, the spreading function can be realized as
coefficients on the vectors of a finite Gabor system. The
system is in general underdetermined since there areL



equations andL2 unknowns. If, however, the support set
S of the spreading functionηH(t, ν) satisfiesvol+(S) < 1
and sinceS meets at mostL of the rectanglesRq,m, there
are at mostL nonzero unknowns in the above linear sys-
tem. If the resultingL × L matrix is invertible, thenηH

can be determined uniquely fromHg. The vectorc must
be chosen so that this matrix is invertible. It is shown in
[7] that if L is prime then such ac always exists.
We can prove the following theorem (cf. [8], [9]).

Theorem 6. Let 1 ≤ p, q ≤ ∞. If vol−(S) > 1 then
OPW p,q(S) is not identifiable. Ifvol+(S) < 1 then
OPW p,q(S) is identifiable via operator sampling, and the
identifier is of the formg =

∑
n cnδn/L whereL ∈ N and

(cn) is an appropriately chosen period-L sequence. More-
over, we have the formula

hH(t, x) =
L−1∑

j=0

rj(t)
∑

k∈Z

bj,k (Hg)(t− qj/L + k/L)

× ϕj(x− t− qj/L− k/L)

unconditionally inM1p,q1 and in the weak-* sense ifp =
∞ or q = ∞. For 0 ≤ j < L, the rectanglesRqj ,mj

are
precisely those that meetS. Also for each0 ≤ j < L,
rj(t)ϕ̂j(ν) = 1 on Rqj ,mj and vanishes outside a small
neighborhood ofRqj ,mj , andbj,k is a period-L sequence
in k based on the inverse of the matrix derived from the
discrete Gabor system that appears in Lemma 1.

5. Conclusion

This paper contains a brief overview of some recent results
on the measurement and identification of communication
channels and the relation of these results to sampling the-
ory. These connections provide explicit reconstruction
formulas for identification of operators modelling time-
variant linear channels.
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