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AbStraCt 1. Let“ngnH(t, V) = /hH(t, Z‘) e—QWiV(.T—t) dx gives

Time—invariant communication channels are usually mod- I B ' 2miv(z—t) dvd
elled as convolution with a fixed impulse—response func- (@) = ni (t,v)e flz —t)dvt

tion. As the name suggests, such a channel is completely
// ng(t,v) Ty M, f(z) dvdt.

determined by its action on a unit impulse. Time—varying
communication channels are modelled as pseudodiffer-
ential operators or superpositions of time and frequencyy; (¢, v) is the spreading functiorof H. If suppny C
shifts. The function or distribution weighting those time [0,a] x [~b/2,b/2] for somea, b > 0 thena is called the
and frequency shifts is referred to as the spreading func-maximum time-delagndb the maximum Doppler spread
tion of the operator. We consider the question of whether of the channel.

such operators are identifiable, that is, whether they are . amite )
completely determined by their action on a single func- 2+ Lettingox (z, &) = /hH(t’ ) e dt gives
tion or distribution. It turns out that the answer is depen-
dent on the size of the support of the spreading function, omiz

and that when the operators are identifiable, the input can Hf(x) = /UH(m’g)f(g) €T de.

be chosen as a distribution supported on an appropriately

chosen grid. These results provide a sampling theory forox (z,¢) is the Kohn-Nirenberg(KN) symbol of H and
operators that can be thought of as a generalization of thave have the relation

classical sampling formula for bandlimited functions. _
ma(t,) = [[ aua,€) e 0 do .

-~

e L. In other words, the spreading functigp is thesymplectic
1. Channel Models and Identification Fourier transformof the KN symbol of.
In 1963, T. Kailath [3, 4, 5] asserted that for time-variant
A communications channel is said to beeasurableor communication channels to be identifiable it is neces-
identifiableif its characteristics can be determined by its sary and sufficient that the maximum time-delay,and
action on a single fixed input signal. A general model for Doppler shift,b, satisfyab < 1 and gave an argument for
linear (time-varying) communication channels is as oper- this assertion based on counting degrees of freedom. In
ators of the form the argument, Kailath looks at the response of the channel
to a train of impulses separated by at leastme units,
so that in this sense the channel is being “sampled” by a
Hf(z) = /hH(f> z) f(z —1)dt. succession of evenly-spaced impulse responses. The con-
dition ab < 1 allows for the recovery of sufficiently many
) ) , samples ofy (¢, ) to determine it uniquely.
The function/z (t, ) is r?fe.”ed to as thémpulse re- ailath’s conjecture was given a precise mathematical
sponsef the chf_;mnel and IS |r_1terpreted as the response Oﬁamework and proved in [6]. The framework is as fol-
_the Ch?””"t‘ attime to a unit "T‘p“'se attime — ¢, that o5 Choose normed linear spad@$R) andY (R) of
is, originatingt time units earlier. Wy (t,z) = hg(t) functions or distributions oR,, and a normed linear space

then the characteristics of the channel are time-invariant ¢ p o\ qed linear operatolé C £(D(R),Y(R)). Each
and in this case the channel is modelled as a convolutiory, elementy € D(R) induces a mag, : H —
g

operator. Such channels are identifiable sihggt) can Y(R), H — Hyg. If for someg € D(R), ®, is bounded
9 . L g

be recovered as the response of the channel to the inpuébove and below. that is. there are constants A < B
signaldy(t), the unit-impulse at = 0. such that for aIIH,e H ’ B

There are two representationsiéfthat will be convenient
for our purposes. AllH||ln < |Hglly < B||H||#



then we say that{ is identifiable with identifierg €
D(R).

Taking D Sy Y L?, and Hg {H €
HS(L?): ny € So(R x R), suppny C S} where
SCRxR, HS(L?) is the class of Hilbert-Schmidt op-
erators, and) is the Feichtinger algebra (defined below),
the following was proved in [6].

Theorem 1.If S = [0,a] x [-b/2,b/2] thenH is iden-
tifiable if and only ifab < 1. In this case an identifier is
givenbyg = 3" dna.

2. Distributional Spreading Functions and

Operator Sampling

The requirement thaty € Sy excludes some very natural
operators from consideration in this formalism, for exam-
ple the identity operatom(y (¢, ) = do(t)do(v)), convo-
lution operatorsi (t,v) = h(t)do(v) giving Hf = f *

h), and multiplication operatorsyf (t,v) = o (t)m(v)
giving Hf =m - f).

A more natural setting for operator identification is the
modulation spacesee [2] for a full treatment of the sub-
ject). For convenience we give the definitions below for
modulation spaces dR, but all definitions and results can
be extended tR?. Foryp € S(R) define forf € S’(R)
theshort-time Fourier transform (STFDOf f by

V‘Pf(t’l/) <f7 TtMVSO>
[ @ =g

Forl < p, ¢ < oo define the modulation spade??(R)
by

MPI(R) = {f € S'(R): V,.f € LP(R)},

that is, for which

Vollora = (/(/ Vgpf(t,z/)|1’dt>q/p>1/q

is finite. The usual modifications are madepibr ¢ =

completely determined by its actions on a fixed input in
terms of a norm inequality. The next step is to find an
explicit reconstruction formula for the impulse response
of the channel operator directly from its response to the
identifier. Such formulas illustrate a connection between
operator identification and classical sampling theory and
lead to a definition obperator sampling

If, in the operator identification formalism described ear-
lier, an operator clas# is identified by a distribution of
the formg = >_. ¢;d,;, then we cal{z;} aset of sam-
pling for H and g a sampling functiorfor the operator
classH. In the results obtained so far, operator sampling
is possible only for operators with compactly supported
spreading function, and in order to interpret Theorem 1 in
this context we make the following definition.

Given a Jordan domais C R?2, define theoperator
Paley-Wiener spac® PW?2(S) by

OPW?(S) = {H € HS(L*): suppnu C S}.

OPW? is a Banach space with respect to the Hilbert-
Schmidt norm||H||opwz = ||na||rz- Then Theorem 1
can be extended as follows ([8]).

Theorem 3.LetQ, T, T" > 0 with 77 < T andQT < 1.
ThenOPW?2([0,T"] x [-£/2,/2]) is identifiable with
identifierg = > 4,7 and moreover we have the formula

ha(t,x) =r(t) Y (Hg)(t +kT)p(z —t — kT)
keZ

unconditionally inL?(R?), wherer € S(R) is such that

r = 1 on[0,7"] and vanishes outside a sufficiently small
neighborhood 0f0, 7”], and wherep € S(R) is such that
» =1on[-Q/2,Q/2] and vanishes outside a sufficiently
small neighborhood df-2/2,Q/2].

In the more general modulation space setting we can de-
fine the operator Paley-Wiener spa@&iV?-1(S) by

OPWP4(S) {H € £(So, S})

: suppng C S, op € MPY}

where oy (z,6) € MP®'! means that the two-

oco. MP? is a Banach space with respect to the norm dimensional STFT oy satisfies

| fllarea = ||V f|l e« and different nonzero choices of
¢ € S define equivalent norms. The spakg"! is the
Feichtinger algebra denot&t} and M °°-° is its dualSy.
The space5, contains the Dirac impulseg, : f — f(z)
for z € R as well as distributions of the form =
> ¢idz;, xj € Rand{c;} C Cabounded sequence.

1/p
dllldl/g

q/p

it )

ch@(p(tlat% Vi, V2) = <fa TthVﬁD 0 thMV2@>'

/(/(/|VW®WJH(t1,t2,1/1,V2)pdtl)

is finite. Here

In our next step toward operator sampling we observe that

it is possible to takeD = S, Y = S}, andHs = {H €
L(D,Y): ng € S, suppnmg C S} inthe operator iden-
tification formalism. Indeed the following theorem was
shown in [10].

Theorem 2. The operator clas${s (defined above) is
identifiable ifS = [0,a] x [-b/2,b/2] andab < 1, and is
not identifiable ifab > 1.

3. A Theory of Operator Sampling

In discussing identifiability of operators in various set-

OPWP1 is a Banach space with respect to the norm
|H|lopwr.a = ||og || aeari. INthis case, Theorem 3 gen-
eralizes as follows ([8]).

Theorem 4 Letl <p, ¢ < o0, Q, T, T > 0with T <

T andQT < 1. ThenOPWP4([0,T"] x [-/2,§/2]) is
identifiable with identifiety = > 6,7 and moreover we
have the formula

ha(t,x) =r(t) Y (Hg)(t +kT)p(z —t — kT)
keZ

unconditionally inA/17-41(R?) and in the weak-* sense if

tings, we have been content to show that an operator ig or ¢ = oo, wherer andy are as in Theorem 3.



Example 1. If we take H to be ordinary convolution by  area of the support of the spreading function. It is notable
hy(t), this means thaty (¢, 2) depends only o, thatis,  that Kailath also asserted something along these lines.
hg(t,z) = hy(t). Inthis cased can be identified in prin-  This means that a time-variant channel whose spreading

ciple byg = o, the unit impulse, sincél g(z) = hy(x). function has essentially arbitrary support is identifiable as
Translating this into our operator sampling formalism re- long as the area of that support is smaller than one.

sults in something slightly different. Using ideas from [6], Bello’s conjecture was proved in [9].
Assume thah € M™" is supported in the interva, 7']  Theorem 5. Hy is identifiable ifvol (S) < 1, and not
and thatl’ > 7", andQ2 > 0 are chosen so th&T' < 1. jdentifiable ifvol (S) > 1. Herevolt(S) is the outer

In this casenq (¢, v) :fll(f) do(v) andoy (z,§) = h/(ﬁ)- Jordan content anebl ~ (S) the inner Jordan content 6t
Thereforesy € M*%"" andH € OPW>1([0,T"] x In this case, the channel is identified y= 3", ¢, 0,,/1
{0}). o S whereL € N and theL—periodic sequencf:, } is chosen
If g =3, dnr thenHyg is simply theT—periodized im-  pased on the geometry 6t

pulse responsk(i), and it follows that We next present a generalization of Theorem 4 to this case.

r(t) Z(Hg)(t +kT)p(x —t — kT) Before stating the result, a few preliminaries are required.
kEZ Definition 1. GivenL € N, letw = e~ 2™/~ and define
= r(t)h(t) Z o(x —t—kT) = h(t) thetranslation operatofT on (zo, ..., 1) € CL by
keZ
Te = (rp—1,%0, T1, .., TL_2),

sincer(t) = 1 on[0,7"] and vanishes outside a neighbor-

hood of[0, 7"] and since) _, ¢(xz —t — kT') = 1 by the  and themodulation operato\/ on C* by
Poisson Summation Formula and in consideration of the

support constraints of. Indeed the theorem says that the Mz = (Wz,wlzy, ..., wE e ).
sumy_, ¢(xz —t — kT') converges td in the M°>* norm . o o
and in particular uniformly on compact sets Given a vector € C* thefinite Gabor system with win-
’ ; ; L-1
Example 2. If we take H to be multiplication by some dowc s the collectio{T“MPc} ;2.
fixed functionm € MP* with suppm C [-Q/2,Q/2] Note that the discrete Gabor system defined above consists
thenny (t,v) = do(t)m(v), hit,z) = 8o(t) m(z — t), of L? vectors inC” so is necessarily overcomplete.
andoy(z,€) = m(x). Thereforeoy € MP>~!! and Definition/Proposition 2. The Zak Transform is defined
H e OPvaOO({O} X [—Q/Q,Q/?]) for f c S(R) by Zf(t, l/) — Zf(t _ n) e27rin1/.

If g =", dur, With T > 0 chosen small enough that n

QT < 1,thenHg =Y m(nT) §,r, and it follows from  Zf(t,v)  satisfies the  quasi-periodicity  re-

Theorem 4 that lations Zf(t+1,v) =™ Zf(t,v) and
Sot) m(z — ¢ Zf(t,v+1)=Zf(t,v). Z can be extended to a
o(t)m(z —1) unitary operator froni.?(R) onto L2([0, 1]?).

= r(t) Y (Ho)(t +kT)p(x — t — kT) If the spreading function off, 1 (¢, v), is supported in
ez a bounded Jordan regiohi C R x R with vol*(5) <

= r(t) Z Z m(nT) §p—iyr(t)p(x —t — kT) 1, then by appropriately shifting and scaling: we can
k€EZ nez assume without loss of generality that for sofmes N,
_ Z m(nT) o(z — nT) S C [0,1] x [0, L] and thatS meets at most of the L?
= rectanglesR, ,,, = ([0,1/L] x [0,1]) + (¢/L,m), 0 <

g, m < L whose union ig0, 1] x [0, L]. We can further
assume tha$ does not meet any of the rectanglegs,,, on
the “edge” of the larger rectangle, specifically it does not
m(z) = Zm(nT)go(x —nT) meetR, ,, withg=0,m=0,g=L—-1orm=1L —1.

n The following Lemma connects the outpHiy(z) where

where the sum converges unconditionallylift-L if 1 < 9 = 2_,, ¢n 0n/1 t0 the spreading function (¢, v). From
p < oo and weak-* ifp = oo, and moreover there are this a reconstruction formula analogous to that in Theo-

constant$) < A < B such that for all suclf, rem 4 can be derived.

Lemma 1. Given a periodEt sequencgc,) andg =
p,1 < P < Ap,1. . . . .
Al < IF D Hler < Bl fllas >, ¢n 0n/ 1, then for(t, v) in a sufficiently small neigh-
borhood of[0,1/L] x [0, 1],
Takingp = 2, this recovers the classical sampling formula

by support considerations on the functieft). Therefore
we have the summation formula

when the sampling is above the Nyquist rate. e >mPIL (Z o H)g(t + p/L,v)
L—1L-1
. . . _ q m —2mivg/L
4. Spreading functions with nonrectangular = z_: Z(T M™c)pe n(t+q/L,v+m).
support and Bello’s conjecture =0 m=0

In 1969, P. A. Bello [1] argued that what is important for In other words, the spreading function can be realized as
channel identification is not the produet of the maxi- coefficients on the vectors of a finite Gabor system. The
mum time-delay and Doppler shift of the channel but the system is in general underdetermined since therelare



equations and.? unknowns. If, however, the support set

S of the spreading functiony (t, v) satisfiesrol () < 1
and sinceS meets at most of the rectangles, ., there

are at most. nonzero unknowns in the above linear sys-

tem. If the resultingl. x L matrix is invertible, themy
can be determined uniquely frofig. The vectorc must

be chosen so that this matrix is invertible. It is shown in

[7] that if L is prime then such aalways exists.
We can prove the following theorem (cf. [8], [9]).

Theorem 6. Let1 < p, ¢ < oco. If vol™ (S) > 1 then
OPWP4(S) is not identifiable. Ifvol™(S) < 1 then

OPWP1(S) is identifiable via operator sampling, and the [10]

identifier is of the formy = > ¢,,6,,,, whereL € N and

(cn) is an appropriately chosen period-L sequence. More-

over, we have the formula

L—-1
ha(te) = > i)Y bk (Hg)(t —q;/L+k/L)
=0

kezZ
x (e —t—q;/L—Fk/L)

unconditionally inM 179! and in the weak-* sense jf =
oo or g = oo. For0 < j < L, the rectangles,; ,,,, are
precisely those that meét Also for each0 < j < L,

r;(t)@;(v) = 1 0on Ry, ,,, and vanishes outside a small
neighborhood of?,, ..., andb;  is a periodi. sequence

in k based on the inverse of the matrix derived from the
discrete Gabor system that appears in Lemma 1.

5.

This paper contains a brief overview of some recent results

Conclusion

on the measurement and identification of communication

channels and the relation of these results to sampling the-

ory.

These connections provide explicit reconstruction

formulas for identification of operators modelling time-
variant linear channels.
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