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Abstract—A Gabor space is a space generated by a discrete
set of time-frequency shifted copies of a single window function.
Starting from the question of whether a Gabor space contains
additional time-frequency shifts of the window function we
establish a new Balian-Low type result. This result extends (for
example) the well established Amalgam Balian-Low Theorem in
the one dimensional case. The Gabor spaces considered in this
note are generated by symplectic lattices of rational density. 1

I. INTRODUCTION

If the translation operator Tu : L2(Rd) −→ L2(Rd) is
given by Tuf(x) = f(x − u) and the modulation operator
Mη : L2(Rd) −→ L2(Rd) is given by Mηf(x) = e2πiη·xf(x),
the Balian-Low Theorem establishes the fact that an or-
thonormal basis of Gabor type {TkM`ϕ}k,`∈Zd of L2(Rd)
consists of functions that are either poorly localized in time
or in frequency (or in both). In this way, it The Balian-Low
Theorem formulates a central shortcoming of time-frequency
structured bases of L2(Rd). The easiest example of such
an orthonormal basis of Gabor type is given by the L2(R)
function ϕ(x) = χ(x) = 1 for x ∈ [−1/2, 1/2] and 0
else. While χ(x) is compactly supported and therefore ideally
localized in time, its Fourier transform

χ̂(ξ) =

∫
χ(x) e2πixξ dx =

∫ 1/2

−1/2

e2πixξ dx =
sin(πξ)

πξ

decays poorly, for example, we have∫
ξ2|χ̂(ξ)|2 dω =

∫
| sin(ξ)|2 dω =∞.

To formulate a fairly general version of the Balian-Low
Theorem, we denote by Λ discrete subgroups of Rd × R̂d,
define the time-frequency shift operator π(λ) = π(u, η) on
L2(Rd) by

(π(u, η)ϕ)(x) = (MηTuϕ)(x) = e2πix·ηϕ(x− u),

1In this paper, we describe results from a companion paper, preprint
[CMP15], and extend these to the multivariate setting. Our results are
compared to other Balian-Low type results in the multivariate setting.

and denote Gabor systems generated by an L2 function ϕ and
a lattice Λ by (ϕ,Λ) = {π(λ)ϕ}λ∈Λ).

Recall that a Riesz basis for L2(Rd) is a system of functions
{ϕj}j∈J that spans L2(Rd) and that satisfies

A‖{cj}‖2`2(J) ≤
∥∥∑
j∈J

cjϕj
∥∥
L2(Rd)

≤ B‖{cj}‖2`2(J) (1)

for some 0 < A ≤ B < ∞. If {ϕj}j∈J satisfies (1) but
does not span L2(Rd), then we refer to {ϕj}j∈J as Riesz
sequence, or as Riesz basis for its closed linear span. Clearly,
an orthonormal basis is a Riesz basis with A = B = 1 and
every orthonormal set forms a Riesz sequence.

Theorem 1 (Balian-Low). If (ϕ, αZd× 1
αZ

d) is a Riesz basis
for L2(Rd), then the uncertainty product is not finite, that is,
for all a, b ∈ Rd, we have(∫

‖x−a‖2|ϕ(x)|2dx
)(∫

‖ω−b‖2|ϕ̂(ω)|2dω
)

=∞. (2)

Balian [Bal81] and Low [Low85] independently derived this
result for d = 1 and for (ϕ, αZ× 1

αZ) being an orthonormal
basis, but both of their proofs contained a gap, which was later
filled by Coifman et. al [Dau90]. In that paper, the result was
extended to Riesz bases. For general references on the Balian-
Low Theorem as well as remarks on its history we refer the
reader to [BHW95], [Hei07], [HP06].

Theorem 1 is a simple generalization of d = 1 to the
multivariate setting. Consideration of a more general lattice
Λ in place of αZd× 1

αZ
d complicates things, and only partial

answers are known to date. In [GHHK02], [BCM03], the
higher dimensional Balian-Low Theorem was generalized to
so-called symplectic lattices as considered herein and dis-
cussed in Section III. In addition, [GHHK02] supplies a weak
Balian-Low theorem for a generic lattice Λ in Rd × R̂d.

A popular alternative to express the missing (joint) time
and frequency localization of a Gabor Riesz basis is used in
the Amalgam Balian-Low Theorem as proven by Benedetto et
al [BHW95] in case d = 1 and in general by Ascensi et al
[AFK14].978-1-4673-7353-1/15/$31.00 c©2015 IEEE



Let us recall the definition of the Feichtinger algebra
S0(Rd) as the set of functions with integrable short time
Fourier transform V f , where V f is defined pointwise as

V f(t, ν) =

∫
f(x) e−‖x−t‖

2
2 e2πix·ν dx.

Note that the membership criterion of ϕ being in S0(Rd),
indicates good decay in both, time and frequency.

The Amalgam Balian-Low Theorem for Riesz bases in
L2(Rd) reads as follows.

Theorem 2 (Amalgam Balian-Low). If Λ is a subgroup of
R2d with (ϕ,Λ) = {π(λ)ϕ}λ∈Λ is a Riesz basis for L2(Rd),
then ϕ is not included in the Feichtinger algebra S0(Rd).

In this paper, we establish an Amalgam Balian-Low result
for subspaces of L2(Rd). Note that, for example, a Gaussian
g(x) = e−‖x‖

2
2 ∈ S0(Rd) has finite, in fact, minimal,

uncertainty product (2), and for many sets Λ with density less
than one, for example, Λ = (1 + ε)Z2d, ε > 0, we have that
(g,Λ) = {π(λ)g}λ∈Λ is a Riesz basis for its closed linear
span G(g,Λ) = span (g,Λ) [Hei07], [PR13]. So subspaces
of L2(Rd) may very well have Riesz bases which are well
localized in time and in frequency.

In order to still capture the Balian-Low phenomenon in the
case of subspaces, we ask the question whether a so-called
Gabor space G(g,Λ) is closed under time-frequency shifts.
That is, we ask whether for µ ∈ Rd × R̂d \ Λ we may have
π(µ)ϕ ∈ G(ϕ,Λ)? Using the fact that π(µ)ϕ ∈ G(ϕ,Λ) would
imply π(µ̃)ϕ ∈ G(ϕ,Λ) for any µ̃ ∈ Λ̃ with Λ̃ being the
subgroup of Rd × R̂d generated by µ and Λ, we ask whether
it is possible that G(ϕ,Λ) = G(ϕ, Λ̃) with Λ being a proper
subgroup of Λ′.

Note that this question is discussed in the literature in
case of shift invariant spaces at length, see for example
[ACH+10], [ASW11], [AKTW12], [TW14]. Consideration of
shift invariant spaces is a special case of our setup, namely, it
corresponds to µ,Λ ⊆ Rd × {0}.

The main result of this paper is the following. The termi-
nology used is described at length in Section III below.

Theorem 3. Let Λ be a symplectic lattice of density (Q/P )d,
P,Q ∈ N. If (ϕ,Λ) is a Riesz basis for its closed linear span
G(ϕ,Λ) with ϕ ∈ S0(Rd), then π(u, η)ϕ /∈ G(ϕ,Λ) for any
(u, η) /∈ Λ.

For examples of generators in case d = 1 we refer to our
companion paper [CMP15].

Note that Theorem 3 generalizes the Amalgam Balian-Low
Theorem stated above as Theorem 2 in the case of d = 1.
Indeed, if G(ϕ,Λ) = L2(R), then it contains π(u, η)ϕ ∈
G(ϕ,Λ) for all (u, η) ∈ R × R̂. Moreover, (ϕ,Λ) being a
Riesz basis for L2(R) implies that Λ has density one which
is rational. For d > 1, Theorem 2 covers general lattices
of density 1, while Theorem 3 covers symplectic lattices of
density less than or equal to 1.

Balian-Low type results are relevant, for example, in com-
munications applications. For instance, in orthogonal fre-

quency division multiplexing, short, OFDM, an information
carrying sequence {ck,`}k∈Z,`∈L is transmitted in the form of
the signal

F{ck,`} =
∑
k∈Z

∑
`∈L

ck,`TkαM`βϕ.

In this model, we assume infinite transmission length but a lim-
ited frequency band [−Ω,Ω], the frequency band corresponds
to the

L = {` : [`β − Ω0, `β + Ω0] ⊆ [−Ω,Ω]},

where supp ϕ̂ ⊆ [−Ω0,Ω0]. To enable recovery of the in-
formation in F{ck,`} under the assumption that the channel
can be inverted, we require that F is boundedly invertible.
This is achieved by asserting that (ϕ, αZ × βZ) is a Riesz
basis for its closed linear span. In practice, we must utilize a
compactly supported functions ϕ, hence, we can only assume
supp ϕ̂ ⊆ [−Ω0,Ω0] to hold in an approximative sense.
This can be achieved by choosing Ω0 of reasonable size if
ϕ ∈ S0(R) or if ϕ is a Schwartz class function.

Theorem 3 then implies that π(u, η)ϕ /∈ G(ϕ, αZ × βZ)
whenever (u, η) /∈ αZ × βZ, a property that has advantages
and disadvantages. For example, channels generally introduce
time-shifts in the channel, Theorem 3 shows that we cannot
choose ϕ ∈ S0(R) so that the transmission space G(ϕ, αZ ×
βZ) is invariant under time shifts Tu = π(u, 0) for (u, 0) /∈
αZ× βZ.

A. Related work

In addition to the results described above, we would like to
point to the following related results.

This paper is motivated by recent results in the setting of
principle shift-invariant spaces, that is, spaces that are the
closed linear span S(ϕ) of a system {Tkϕ}k∈Z ⊆ L2(R). For
example, Aldroubi et al showed the following Balian-Low type
phenomenon [ASW11].

Theorem 4. If {Tkϕ} is a Riesz basis for its closed linear
span, then

1) T 1
N
ϕ ∈ S(ϕ) for some N ∈ N \ {1} implies∫
|x|1+ε|ϕ(x)|2 dx =∞ for all ε > 0, and

2) Tuϕ ∈ S(ϕ) for all u ∈ R implies ϕ /∈ L1(R).

Gabardo and Han gave Balian-Low type results for Gabor
spaces, as considered in this paper. In [GH04], they prove the
following.

Theorem 5. Let (ϕ, αZ×βZ) be a frame for G(ϕ, αZ×βZ).
If

1) αβ ∈ N \ {1} and (ϕ, αZ× βZ) is not Riesz, or
2) (αβ)−1 ∈ N \ {1} and G(ϕ, αZ× βZ) 6= L2(R),

then (2) holds.

Clearly, the assumption that (ϕ, αZ × βZ) is a frame for
G(ϕ, αZ×βZ) is weaker than the condition considered in this
paper, namely, that (ϕ, αZ× βZ) is a Riesz basis.

Theorems 3 and 5 are indeed unrelated. It is worth noting
that both cases considered in Theorem 5 are rather unusual:



a generic Gabor system of density 1/N , N ≥ 2, forms a
Riesz sequence and if the density exceeds two, then one would
expect G(ϕ, αZ× βZ) = L2(R).

Another subspace Balian-Low Theorem not discussed here
in detail is Theorem 8 in [GHHK02]

Balian-Low type phenomenons remain an active research
area. In fact, very recently Nitzan and Olsen [NO13] proved
a strengthening of the d = 1 Balian-Low Theorem.

For general Balian-Low type results, we refer the reader to
[BHW92], [BHW95], [BHW98], [BW94], [DLL95], [FG97],
[Jan08].

II. THE ZAK TRANSFORM

The proof of Theorem 3 hinges on utilizing well known
properties of the Zak transform. The Zak transform is an
operator mapping L2(Rd) to L2

loc(Rd × R̂d), densely defined
on L2(Rd) by

Zf(x, ω) =
∑
k∈Zd

f(x+ k) e−2πik·ω.

The Zak transform is quasiperiodic, that is, for n,m ∈ Zd, we
have

Zf(x+ n, ω) = e2πin·ωZf(x, ω)

and
Zf(x, ω +m) = Zf(x, ω).

Moreover, we have

‖Zf‖L2([0,1]d×[0,1]d) = ‖f‖L2(Rd),

and, indeed, Z is a unitary map onto the space of quasiperiodic
functions on Rd × R̂d equipped with the L2([0, 1]d × [0, 1]d)
norm.

The Zak transform of a time-frequency shifted function
satisfies(

Zπ(u, η)f
)
(x, ω) = e2πiη·xZf(x− u, ω − η),

which, together with quasiperiodicity leads to(
Zπ(k, `)f

)
(x, ω) = e2πi(`·x+k·ω)Zf(x, ω),

for k, ` ∈ Zd.
Last but not least, we mention that S0(Rd) is invariant

under the Fourier transform, so ϕ ∈ S0(R) if and only if
ϕ̂ ∈ S0(Rd), and ϕ ∈ S0(Rd) implies that ϕ and Zϕ are
continuous functions.

III. SYMPLECTIC LATTICES AND METAPLECTIC
OPERATORS

Symplectic geometry is a popular tool in time-frequency
analysis as many results for rectangular lattices can be ex-
tended to symplectic lattices using a unitary equivalence
arguments [Grö01]. Further examples that illustrate the role of
symplectic geometry in time-frequency analysis can be found
in [KP06], [Pfa13].

A symplectic matrix is defined similarly to unitary matrices
in Euclidean space. A matrix A ∈ R2d×2d with detA = 1
is an element of the symplectic group if it preserves the

standard symplectic form, that is, [A(x, ξ)T , A(x′, ξ′)T ] =
[(x, ξ), (x′, ξ′)] = [x′ξ−xξ′]. Using the Stone - von Neumann
Theorem we can establish for such A the existence of a unitary
operator U = U(A) on L2(Rd), a so-called metaplectic
operator, with

π(A(x, ξ)) = U(A)π(x, ξ)U(A)∗, (x, ξ) ∈ Rd × R̂d.

A lattice Λ is a discrete subgroup of Rd× R̂d; Λ is referred
to as full rank if Λ = A(Zd × Zd) for some A ∈ R2d×2d

full rank. The density of a full rank lattice is unambiguously
defined by D(Λ) = 1/|det(A)|.

The lattice Λ = αA(Zd×Zd) ⊆ Rd×R̂d is called symplec-
tic if the generating matrix A can be chosen to be symplectic.
The density of a symplectic lattice Λ = αA(Zd × Zd) is

D(Λ) = 1/ det(αA) =
1

α2d det(A)
=

1

α2d
,

hence, the symplectic lattices considered in Theorem 3 satisfy
α =

√
P/Q with Q,P ∈ N. In particular, the lattice

1

Q
Zd×PZd =

√
P

Q

( 1√
PQ

Zd×
√
PQZd

)
=

√
P

Q
B(Zd×Zd)

is of this type.
For fixed P,Q ∈ N, α =

√
P/Q, symplectic A and

B = diag(1/
√
PQ, . . . , 1/

√
PQ,

√
PQ, . . . ,

√
PQ) defined

implicitly above, we observe that
(ϕ, αA(Zd × Zd)) is a Riesz sequence if and only if
(U(A)∗ϕ, α(Zd × Zd)) is a Riesz sequence if and only if
(U(B)U(A)∗ϕ, ( 1

QZ
d × PZd)) is a Riesz sequence.

Similarly, π(u, η)ϕ ∈ G(ϕ,Λ) with (u, η) /∈ Λ if and only
if π(ũ, η̃)U(B)U(A)∗ϕ ∈ G(U(B)U(A)∗ϕ, α(Zd×Zd)) with
(ũ, η̃) = BA−1(u, η)T /∈ 1

QZ
d × PZd.

Note that metaplectic operators are isometries on S0(Rd),
hence, to establish Theorem 3, it satisfies to consider the case
Λ = 1

QZ
d×PZd with P,Q relatively prime natural numbers.

IV. PROOF OF THEOREM 3

Section III allows us to assume without loss of generality
that Λ = 1

QZ
d × PZd with P,Q ∈ N.

The proof is by contradiction. We assume that (ϕ, 1
QZ

d ×
PZd) is a Riesz basis for the Gabor space G(ϕ, 1

QZ
d×PZd)

with ϕ ∈ S0(Rd) and π(u, η)ϕ ∈ G(ϕ, 1
QZ

d × PZd) where
(u, η) /∈ 1

QZ
d × PZd.

We shall now show that each component (u, η) can be
replaced by a rational number, while preserving non-inclusion
in 1

QZ
d×PZd. This will allow us to assume, without loss of

generality, that there exists R ∈ N with R(u, η) ∈ 1
QZ

d×PZd.
Indeed, in case u1 /∈ Q, we have that R×{u2}×. . .×{ud}×

{η1} × {η2} × . . . × {ηd} is in the closure of the subgroup
generated by (u, η) and Λ. Hence, we can replace u1 with a
rational number which is not in 1

QZ
d×PZd. Successively, we

can replace all irrational components of u and η by rationals.



A. The case Q = 1

Set N = Ru ∈ Zd and M = Rη ∈ Zd where R ∈ N is
chosen so that (Ru,Rη) ∈ Zd × PZd, N · η/2 is an integer
and P divides M .

Observe that π(u, η)ϕ ∈ G(ϕ,Zd × PZd) together with
(ϕ,Zd×PZd) being a Riesz basis of G(ϕ,Zd×PZd) implies
that there exists a sequence c = (ck,`) ∈ `2(Z2d) with

e2πiη·xZϕ(x− u, ω − η) =
∑
k,`∈Z

ck,` e
2πi(P`·x+k·ω)Zϕ(x, ω)

= h(x, ω)Zϕ(x, ω),

where h is a locally L2 function which is 1/P periodic in
each xi and 1 periodic in each ωi. Using the quasiperiodicity
of the Zak transform, N · η/2 is an integer, and

Zϕ(x, ω) = e−2πiη·(x+u)h(x+ u, ω + η)Zϕ(x+ u, ω + η),

we can compute the relationship

Zϕ(x, ω) = e2πi(N ·ω−M ·x) Zϕ(x, ω)

R∏
r=1

h(x+ ru, ω + rη)

which establishes
R∏
r=1

h(x+ ru, ω + rη) = e2πi(M ·x−N ·ω). (3)

Note that (3) holds a-priori only on suppZϕ. This relationship
can be extended to hold on R×R̂ using the fact that (ϕ, αZd×
βZd) is a Riesz sequence for its closed linear span and that
Zϕ is continuous, implying that h is continuous. See [CMP15]
for more detailed arguments.

We complete the proof for Q = 1 by showing that a
continuous function h as constructed above does not exist. This
follows from Proposition 6 which is a simple generalization
of Proposition 3 in [CMP15]; its proof is therefore omitted.

Proposition 6. Let R ∈ N and P,M ∈ Zd and u ∈ Rd.
If h(x) is continuous on Rd and 1/Pi periodic in xi, i =
1, . . . , d, with

e2πiM ·x =

R−1∏
r=0

h(x+ ru),

then RPi divides Mi for i = 1, . . . , d.

We apply Proposition 6 to h(x, ω) constructed above. The
function h is continuous, satisfies (3), and is 1/P peri-
odic in x1, . . . , xd and 1-periodic in ω1, . . . , ωd. Therefore
Proposition 6 is applicable with M = Rη, N = −Ru,
P1 = . . . = Pd = P , and Pd+1, . . . , P2d = 1. We conclude
Mi/RP ∈ Z, that is, η = M/R ∈ PZd, and, similarly
u = −N/R ∈ Z, that is, (u, η) ∈ Λ = Z×PZ, a contradiction.

B. The rational case P
Q /∈ N.

Similarly as before, we first fix R ∈ N with (Ru,Rη) ∈
Zd × PZd, set N = Ru and M = Rη, where by increasing
R we can further assume N · η/2 is an integer and P divides
each component of M . As above, we argue that π(u, η)ϕ ∈

G(ϕ, 1
QZ

d×PZd) implies that for some sequence c = (ck,`) ∈
`2(Z2d) we have with [Q] = {0, 1, . . . , Q− 1}

e2πiη·xZϕ(x− u, ω − η)

=
∑
k,`∈Zd

ck,` e
2πiP`·xZϕ(x− k

Q , ω)

=
∑
q∈[Q]d

∑
k,`∈Zd

cq+kQ,` e
2πi(P`·x+k·ω)Zϕ(x− q

Q , ω)

=
∑
q∈[Q]d

hq(x, ω)Zϕ(x− q
Q , ω),

where

hq(x, ω) =
∑
k,`∈Zd

cq+kQ,` e
2πi(P`·x+k·ω)

are locally L2 functions, 1/P periodic in each component of
x and 1 periodic in each component of ω.

Similarly as in [KZZ04], [ZZ97], [ZZ93], [CMP15], we
define the quasiperiodic, infinite length vector valued function

Z◦pϕ(x, ω) = Zϕ(x− p
Q , ω) = e−2πis·ωZ◦r (x, ω)

for p = Qs + r, r ∈ [Q]d, s ∈ Zd, to obtain the biinfinite
matrix equation

Z◦ϕ(x, ω) = e−2πiη·(x+u)H(x+ u, ω + η)Z◦ϕ(x+ u, ω + η)

where

Hpq(x, ω) = e
2πiη

p
Q hq−p(x− p

Q , ω) if q−p ∈ [Q]d and 0 else.

As done in Section IV-A, we use our assumptions to show

Z◦ϕ(x, ω) = e2πi(N ·ω−M ·x)
R∏
r=1

H(x+ ru, ω + rη)Z◦ϕ(x, ω).

Using the fact that H(x, ω) is 1/P periodic in the compo-
nents of x and that P divides all components of M , we have
also for p ∈ [Q]d

Z◦ϕ(x+
p

P
, ω)

= e2πi(N ·ω−M ·x)
R∏
r=1

H(x+ ru, ω + rη)Z◦ϕ(x+
p

P
, ω),

and, with I denoting the identity operator,

e2πi(M ·x−N ·ω)I =

R∏
r=1

H(x+ ru, ω + rη) (4)

on the space of quasiperiodic sequence in the span of Z◦ϕ(x+
p
P , ω), p ∈ [Q]d. The following lemma implies that (4) is an
identity of operators on the entire space of Q-quasiperiodic
sequences for a.e. (x, ω) .

Lemma 7. If ϕ ∈ S0(Rd) and (ϕ, 1
QZ

d × PZd) is a Riesz
basis for its closed linear span, then Z◦ϕ(x+ p

P , ω), p ∈ [Q]d,
spans the space of Q-quasiperiodic sequences for almost every
(x, ω) ∈ Rd × Rd.



We omit the proof of this lemma as it is similar to the proof
of Lemma 5 in the companion paper[CMP15].

In order to use finite dimensional model we choose
H̃(x, ω) ∈ CQd×Qd

so that for any Z ∈ CQd

we have(
H(x, ω)Z◦

)
p

=
(
H̃(x, ω)Z

)
p
, p ∈ [Q]d.

We obtain

e2πi(M ·x−N ·ω)I =

R∏
r=1

H̃(x+ ru, ω + rη)

and with h(x, ω) = det H̃(x, ω),

e2πiQ(M ·x−N ·ω) =

R∏
r=1

h(x+ ru, ω + rη).

As done in [CMP15], we can argue that h(x, ω) is continu-
ous. As h(x, ω) is 1/P periodic in the components of x and 1
periodic in the components of ω, we can invoke Proposition 6
to realize that R divides each component of QN . Hence
RL = QN for some L ∈ Nd and u = N/R = L/Q ∈ 1

QZ
d.

Similarly, RP divides QM component wise and, hence,
Q
P η = QM

RP ∈ Zd; since by assumption (P,Q) = 1 we have
η ∈ PZd, contradicting (u, η) 6∈ 1

QZ× PZ.
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E. Pfander through the PROALAR grant 56033216. This
research was carried out while Götz E. Pfander was John von
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