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22nd December 2005

Abstract

We derive an efficient numerical algorithm for the analysis of certain classes
of Hilbert–Schmidt operators that naturally occur in models of wireless radio
and sonar communications channels.

A common short-time model of these channels writes the channel output as
a weighted superposition of time- and frequency shifted copies of the transmit-
ted signal, where the weight function is usually called the spreading function
of the channel operator.

It is often believed that a good channel model must allow for spreading
functions containing Dirac delta distributions. However, we show that many
narrowband finite lifelength systems such as wireless radio communications
can be well modelled by smooth and compactly supported spreading functions.

Further, we exploit this fact to derive a fast algorithm for computing the
matrix representation of such operators with respect to well time-frequency
localized Gabor bases (such as pulseshaped OFDM bases). Hereby we use a
minimum of approximations, simplifications, and assumptions on the channel.
Finally, we provide and discuss some sample plots from a MATLAB imple-
mentation which is fast enough for channels and communication systems of
sizes typically in use today.

The derived algorithm and software can be used, for example, for compar-
ing how different system settings and pulse shapes affect the diagonalization
properties of an OFDM system acting on a given channel.
Keywords: communication channel discretization, Gabor systems, Hilbert–
Schmidt operators, diagonalization, spreading function, BEM (Basis Expan-
sion Model), OFDM, DMT, channel model, mobile phone communications,
satellite communications, underwater sonar communications.
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1 Introduction

Channel–dependent customization is expected to provide considerable performance
improvements in time-varying systems such as future generations of wireless com-
munications systems. Consequently, the idea of shaping the transmission pulses in
order to minimize the InterCarrier and InterSymbol Interference (ISI and ICI) in
Orthogonal Frequency Division Multiplexing (OFDM) communications is an active
research area in the applied harmonic analysis and signal processing communities
(see [BS01, MSG+05] and references therein). Even though some insights can be
gained from careful mathematical modelling and analysis, there remains a need for
fast algorithms and implementations aimed at the numerical evaluation of perfor-
mance improvements through pulseshaping. In this paper, we discuss two closely
connected topics that we regard of vital importance to fulfill this demand.

1. We review the most important physical properties of wireless channels and
show how these lead naturally to a model of the short-time behavior of a chan-
nel as an operator H that maps an input signal s to a weighted superposition
of time and frequency shifts of s, that is,

Hs(·) =

∫

K×[A,∞)

SH(ν, t) ei2πν(t−t0)s( · − t) d(ν, t) , K compact. (1.1)

This model is well-known and the coefficient function SH is usually called the
spreading function of H. The model given by (1.1) is mostly used either under the
assumption that SH is square-integrable or that SH is a tempered distribution. The
latter, weaker assumption suggests that the input signal s should be a Schwartz
class function and requires the use of distribution theory in the analysis of H, both
of which we shall try to avoid. Therefore, we derive (1.1) using some refinements
of the standard multipath propagation model of the channel. Our analysis implies
that the short-time behaviour in many communications applications can be com-
pletely described by a smooth SH with rapid decay ensuring “essentially compact”
support1. This model has the big advantage that it allows for both Fourier analysis
and numerical evaluation of the performance of OFDM procedures without the need
of deviating into distribution theory.

2. We employ the channel model described above to derive an efficient algorithm
for the numerical evaluation of ISI and ICI in pulseshaped OFDM systems.

We shall now motivate and describe the principles of our discretization in some
detail:

For multicarrier modulation systems in general, the aim is the joint diagonaliza-
tion of a class of possible channel operators in a given environment. That is, we try
to find a transmission basis (gi) and a receiver basis (filters) (γ̃j) with the property
that all coefficient mappings that correspond to channels in the environment have

1With essentially compact we mean that the function decays fast enough to assure that in any
practical application, the function values outside some “reasonably small” compact set are very
small compared to the overall noise level and therefore negligible (see also Section 6.1).
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matrix representations Gi,j = 〈Hgi, γ̃j〉 that are as close to diagonal as possible,
that is, |Gi,j| decays fast with |i− j|. In general, an easily computable inverse of
this coefficient mapping would allow us to regain the transmitted coefficients (ci)
in the input signal s =

∑
cigi, and, therefore, the information embedded in these

coefficients, from the inner products 〈Hs, γ̃i〉 which are calculated on the receiver
side.

In wireline communications, the problem described above has a well accepted
solution, namely OFDM (also called Discrete MultiTone or DMT) with cyclic pre-
fix. Here, the transmission basis (gi) and the receiver basis (γi) are so-called Gabor
bases, that is, each basis consists of time and frequency shifts of a single prototype
function which is often referred to as window function. Diagonalization of the chan-
nel operator using Gabor bases with rectangular prototype function is then possible
since wired channels are assumed to be time-invariant. This allows us to model
such channel operators as convolution operators with complex exponentials ei2πωt

as “eigenfunctions”. This cyclic prefix procedure applies if the channel has finite
lifelength and is explained in more detail in Section 4.1 and with further references
in [Gri02]. The superiority of Gabor bases in comparison to Wavelet and Wilson
bases for wireline communications is examined in detail in [KPZ02].

Wireless channels are inherently time-varying. The generality of time-varying
channel operators and, in particular, the fact that they do not commute in general,
implies that joint diagonalization of classes of such channels cannot be achieved as in
the general case, so approximate diagonalization becomes our goal. In many cases,
for example in mobile telephony, the channel varies only “slowly” with time. Hence,
we use the results for time-invariant channels as a starting point and consider in this
paper only the use of Gabor bases as transmitter and receiver bases.

For such slowly time-varying systems, Matz, Schafhuber, Gröchenig, Hartmann
and Hlawatsch conclude that excellent joint time-frequency concentration of the
windows g and γ is the most important requirement for low ISI and ICI [MSG+05].
There, it is shown how to compute a γ (or an orthogonalization of the basis (gi)) that
diagonalizes the coefficient mapping in the idealized borderline case when the channel
is the identity operator ([H]i,j = δi,j). They show that both γ and the corresponding
orthogonalized basis inherit certain polynomial or subexponential time-frequency
decay properties from g. They also derive exact and approximate expressions for
the ISI and ICI and present an efficient FFT-based modulator and demodulator
implementation.

For multicarrier systems with excellent joint time-frequency localization of g
and γ, we derive, starting from our channel model, a procedure for the numeri-
cal computation of the matrix entries Gi,j = 〈Hgi, γ̃j〉 under a minimum of as-
sumptions, simplifications, or approximations. We derive our algorithm in a mul-
tivariate setting for potential use in other theoretical or practical applications that
use a time-variant impulse response model (such as the condition monitoring ap-
plications in cf. [CBWB99, CBB01, CB00, CBUB+02, MH99]). These proper-
ties make our approach different from and complementary to a number of pa-
pers that use discrete Gabor bases (sometimes under the name BEM or Basis
Expansion Model) for time-varying channels and statistical applications, such as
[BLM04, BLM05, LM04, LZG03, MG02, MG03b, MG03a, MLG05, SA99, TL04].
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The paper is organized as follows: The Notation and some mathematical prelim-
inaries are described in Section 2. We derive a channel model in Section 3, and use
it to derive formulas for the matrix elements in Section 4. In Section 5 we describe
a MATLAB implementation of these formulas and give suggestions on how to do
the necessary parameter and window/pulseshape choices. In Section 6 we provide
typical system-dependent parameters for and demonstrate our software on some
example mobile phone communications, satellite communications and underwater
sonar communications applications. Finally, our conclusions follow in Section 7.

2 Preliminaries

For completeness and easy availability we collect our notation in Section 2.1 and
give an overview of the mathematical tools that we shall use. In Section 2.2 we shall
discuss the availability of functions that are compactly supported and “essentially
bandlimited”, in particular, we explain how compactly supported functions can be
designed to have subexponential decay. Section 2.3 covers the Gabor system expan-
sions which are used to obtain diagonal dominant coefficient mappings of channel
operators. Finally, in Section 2.4 we discuss the Hilbert–Schmidt operator theory
and the integral representation of channel operators in terms of system functions
such as the spreading function and the time-varying impulse response.

2.1 Notation

We assume the reader to know some basic tools and notation from functional analysis
and measure theory, which otherwise can be found in [Fol99, Rud87].

The conjugate of a complex number z is denoted z. We use boldface font for

elements in Rd, write Rd
+

def
= (0,∞)d def

= R+×R+×· · ·×R+ and Zd
+

def
= Zd∩Rd

+. The

Fourier transform of a function f is formally given by f̂(ξ) =
∫
Rd f(t)e−i2π〈ξ,t〉 dt for

ξ ∈ Rd and l2
def
= l2(Zd×Zd) is the Hilbert space of sequences (cq,r) for which the

l2-norm is given by

‖(cq,r)‖2

def
=


 ∑

q,r∈Zd

|cq,r|2



1/2

< ∞.

Throughout the paper we use Roman and Greek letters for variables that have a
physical interpretation as time or spacial variable and frequency, respectively. For
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A,B,C, x, y, t,ν,ω ∈ Rd and r ∈ R we use the following shorthand notation:

[A,B]
def
=[A1, B1]× · · · × [Ad, Bd], 1

def
=

(
1 1 · · · 1

)T
,

〈x, y〉 def
=x1y1 + x2y2 + · · ·+ xdyd, xy

def
=

(
x1y1 · · · xdyd

)T

x

r
def
=

(
x1

r
x2

r
· · · xd

r

)T
, xr def

=
(
xr

1 xr
2 · · · xr

d

)T
,

x

y
def
=

(
x1

y1

x2

y2
· · · xd

yd

)T
, |x| def

=x1x2 · · · xd,

Ttg
def
=g(· − t), Mνg

def
=g(·)ei2π〈ν,·〉,

IC,B
def
=

[
C − B

2
,C +

B

2

]
and sincω(x)

def
=

d∏
j=1

sin(πωjxj)

πxj

.

Here, sincω is extended continuously to Rd and we shall frequently use that

∫

IC,B

e−i2π〈ξ,x〉 dξ = e−i2π〈C,x〉 sincB(x). (2.1)

For ε > 0 we define the ε-essential support of a bounded function f : Rd → C to be
the closure of the set {x : ε ≤ |f(x)| / supx |f(x)| }. For an almost everywhere de-
fined function f , supp f denotes the intersection of the supports of all representatives
of f (and similarly for ε-essential support). For any set I, χI is the characteristic
function χI(x) = 1 if x ∈ I and χI(x) = 0 otherwise. The sets of n times, respec-
tively infinitely many, times continuously differentiable functions are denoted Cn

and C∞, respectively.
We denote by Lp = Lp(Rd) the Banach space of complex-valued measurable

functions f with norm

‖f‖p

def
=

(∫

Rd

|f(x)|p dx

)1/p

< ∞.

L2(Rd) is a Hilbert space with inner product 〈f, g〉 def
=

∫
Rd f(x)g(x) dx. We say that

two sequences (fn) and (gn) of functions are biorthogonal if 〈fm, gn〉 = 0 whenever
m 6= n and 〈fn, gn〉 = 1 for all n. The Wiener amalgam space W (A, l1) = S0(Rd)
(also named the Feichtinger algebra) consists of the set of all continuous f : Rd → C
for which ∑

n∈Zd

‖(f(·)ψ(· − n))̂‖1 < ∞

for some compactly supported ψ such that ψ̂ ∈ L1(Rd) and
∑

n∈Zd ψ(x − n) = 1.
We write S ′0 for the space of linear bounded functionals on S0. S0 is also a so-called
modulation space, described at more depth and with notation S0 = M1,1 = M1 and
S ′0 = M∞,∞ = M∞ in [Grö00, FZ98].

A real-valued, measurable and locally bounded function w on Rd is said to be a
weight function if for all x,y ∈ Rd,

w(x) ≥ 1 and w(x + y) ≤ w(x)w(y). (2.2)
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For weight functions w we define L1
w = L1

w(Rd) to be the family of functions f ∈
L1(Rd) such that

‖f‖1,w

def
= ‖fw‖1 < ∞.

2.2 Frequency localization of compactly supported functions

The Gabor window g in the introduction needs to be compactly supported in a
time interval short enough to satisfy typical maximum delay restrictions, such as
25 ms for voice communications. Moreover, its Fourier transform ĝ has to decay
fast enough to allow for reasonably high transmission power (which determines the
signal-to-noise ratio) without exceeding standard regulations on the allowed power
leakage into other frequency bands. In other words, g should have good, joint time-
frequency localization, which also is of great importance for achieving low ISI and
ICI [MSG+05]. For this reason, we seek to know to what extent compact support of
a function can be combined with good decay of its Fourier transform. This classical
question was first answered by Beurling [Beu38, Theorem V B] and generalized
from functions on R to functions on locally compact abelian groups, such as Rd, by
Domar [Dom56, Theorem 2.11]. Domar’s results are explained in much more detail
in [RS00, Ch. 6.3 + appendices]. One way to measure the speed of decay of a Fourier
transform is to check for how fast growing weight functions w it belongs to L1

w(R). To
describe a function’s asymptotic decay, we only need to consider continuous w such
that w(ξ) and w(−ξ) are nondecreasing for positive ξ. The following theorem can be
obtained from a combination of a similar result [RS00, Theorem A.1.13] for locally
compact abelian groups with the here added continuity and decay assumptions on
w (see [GP05] for a proof).

Theorem 1. Let w be a continuous weight function such that w(ξ) and w(−ξ) are
nondecreasing for positive ξ. Suppose that there is a non-zero compactly supported
function f ∈ L2(R) such that f̂ ∈ L1

w(R). Then
∫

R

log(w(ξ))

1 + ξ2
dξ < ∞. (2.3)

The so-called logarithmic integral condition (2.3) limits the decay of both the

amplitude and “the area under the tail” of f̂ . For example, the Fourier trans-
form of a compactly supported function f cannot be either O(e−α|ξ|) nor f̂(ξ) =∑

n∈Z φ(eα|n|(ξ − n)) for any φ ∈ C∞ with support supp φ ∈ [0, 1], because in both

cases, f̂ ∈ L1
w(R) for w(ξ) = ea|ξ| and a < α but w does not satisfy (2.3). This

fact rules out the existence of compactly supported functions f with exponentially
decaying f̂ . However, Dziubański and Hernández [DH98] have shown how to use a
construction by Hörmander [Hör03, Theorem 1.3.5] to construct a compactly sup-
ported function f whose Fourier transform is subexponentially decaying. That is,
they construct f such that for every 0 < ε < 1 there exists Cε > 0 such that∣∣∣f̂(ξ)

∣∣∣ ≤ Cεe
−|ξ|1−ε

, ∀ξ ∈ R.

From their example and standard techniques such as convolution with a characteris-
tic function, it is then easy to design for any compact set K a compactly supported
function f such that f(x) = 1 for x ∈ K, and f̂ is subexponentially decaying.
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Figure 1: The Fourier transform decay after normalizing the following positive

functions to have integral 1: (a) f(x)
def
= e

− 1
1−x2 χ[−1,1](x). (b) g(x) = (1 +

cos(πx))4χ[−1,1](x).

Note however, that subexponential decay is not everything. For example, the

function f(x) = e
− 1

1−x2 χ[−1,1](x) is a compactly supported C∞ function, so that

f̂(ξ) = O(1+|ξ|)−n for all n ∈ N, whereas the function g(x) = (1+cos(πx))4χ[−1,1](x)
is only four times continuously differentiable, so ĝ = O(1+ |x|)−n only for 0 ≤ n ≤ 4.
However, Figure 1 shows that ĝ decays much faster down to amplitude thresholds
such as the power leakage restrictions described above (see also Figure 7, page 33).
Thus it can be an important design issue to choose functions and forms of decay
that are optimal for a given application.

However, for simplicity and a clear presentation in this paper, we shall con-
sistently claim subexponential decay although also other forms of decay are rapid
enough for all of our results to hold.

2.3 Gabor analysis

Here, we give a brief review of some basic Gabor frame theory that is needed to
understand the relevance of the coefficient mappings that we introduce in (2.6) below.
For a more complete and general coverage of this subject, see, for example, [Chr02,
Gri02, Grö00].

A Gabor (or Weyl-Heisenberg) system with window g and lattice constants a
and b is the sequence (gq,r)q,r∈Zd of translated and modulated functions

gq,r
def
= TraMqbg = ei2π〈qb,x−ra〉g(x− ra).

The corresponding synthesis or reconstruction operator

Rg : l2 → L2, Rgc
def
=

∑

q,r∈Zd

cq,rgq,r
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is defined with convergence in the L2-norm if and only if its adjoint, the so-called
analysis operator

R∗
g : L2 → l2, R∗

gf = (〈f, gq,r〉)q,r∈Zd ,

is bounded, i.e., if and only if
∑

q,r∈Zd |〈f, gq,r〉|2 ≤ B ‖f‖2
2 for some B ∈ R+ and all

f ∈ L2(Rd) [Gri02, p. 14].
We call (gq,r)q,r∈Zd a Gabor frame for L2(Rd) if there are frame bounds A,B ∈ R+

such that for all f ∈ L2(Rd),

A ‖f‖2
2 ≤

∥∥R∗
gf

∥∥2

2
≤ B ‖f‖2

2 . (2.4)

It follows from (2.4) that the frame operator Sg
def
= RgR

∗
g is invertible. We call a

frame with elements g̃q,r
def
= TraMqbg̃ a dual Gabor frame if for every f ∈ L2,

f =
∑

q,r∈Zd

〈f, g̃q,r〉 gq,r =
∑

q,r∈Zd

〈f, gq,r〉 g̃q,r (2.5)

with L2-norm convergence of both series. There may exist (infinitely) many different
dual windows g̃ for g. However, we shall always consider the canonical dual window,
which is the minimum L2–norm dual window [Jan98, p. 51]. The dual frame has
frame bounds A−1, B−1 and the coefficients in (2.5) are not unique in l2, but they are
the unique minimum l2-norm coefficients. It follows also from (2.4) and (2.5) that

R∗
g̃ picks coefficients from Cg̃

def
= R∗

g̃(L
2(Rd)) ⊆ l2 and that Rg is a bounded invertible

mapping of Cg̃ onto L2 with bounded inverse R−1
g = R∗

g̃. By this isomorphism and
the usual definition of operator norms we can use two Gabor frames (gq,r) and (γq,r)
(possibly with different lattice constants) to obtain an isomorphism of the family
of linear bounded operators H : L2(Rd) → L2(Rd) with the coefficient mappings
G = R∗

γHRg, as illustrated in the following commutative diagram.

L2(Rd)
OO
Rg

H // L2(Rd)

R∗γ
²²

Cg̃

G=R∗γHRg // Cγ

(2.6)

We will provide an explicit expression for G in Section 4.
The frame (gq,r)q,r∈Zd is called a Riesz basis if Cg̃ = l2. Then, the coefficients

in (2.5) are truly unique and, as a consequence, (gq,r) and (g̃q,r) are biorthogonal.

2.4 Hilbert–Schmidt operators

The mathematical framework for the use of Hilbert–Schmidt operators acting on
functions defined on locally compact abelian groups has been developed in great
generality in harmonic and functional analysis [FK98]. For the basic theory, see, for
example, [Con00, RS80] or [Fol95, Appendix 2].

We will use the following classification of Hilbert-Schmidt operators, which is
equivalent to the classical definition (see [GP05] or [RS80, Theorem VI.23] for de-
tails).
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Theorem 2. A linear bounded operator H : L2(Rd) → L2(Rd) is Hilbert–Schmidt if
and only if there is a function SH ∈ L2(Rd × Rd) such that for all s ∈ L2(Rd),

(Hs)(t0) =

∫

Rd×Rd

SH(ν, t)s(t0 − t)ei2π〈ν,t0−t〉 d(t,ν). (2.7)

The integral in (2.7) is defined in a weak sense. In fact, for s, g ∈ L2(Rd), we
have g(·)s(· − t) ∈ L1, so that the short-time Fourier transform of g with window s
is well-defined as the function

Vsg(ν, t)
def
=

∫

Rd

g(t0)s(t0 − t)e−i2π〈ν,t0−t〉 dt0 (2.8)

on L2(Rd × Rd). Hence, Hs is defined to be the unique L2(Rd)-function with

〈Hs, g〉L2(Rd) = 〈SH ,Vsg〉L2(Rd×Rd) .

There are many similar versions of Theorem 2, some of which can be obtained
by applying partial Fourier transforms to SH and replacing (2.7) with corresponding

mappings relating s or ŝ to either Hs or Ĥs as done in (2.9) below. Many so obtained
system functions are known under a rich plethora of different names in the literature,
ranging back to a first systematic study by Zadeh and Bello [Zad50, Bel63, Bel64]
(see also [Ric03] for an overview). The integral representations of importance in
this text describe H in terms of the spreading function SH , the kernel κH , the
time-varying impulse response h, the Kohn-Nirenberg symbol σH and the bifrequency
function BH . These system functions are related via the following partial Fourier
transforms:

κH(t0, t0 − t) = h(t0, t)_

Ft0→ν

²²

Â Ft→ξ// σH(t0, ξ)
_

Ft0→ν

²²
e−i2π〈ν,t〉SH(ν, t)

ÂFt→ξ // BH(ν, ξ)

(2.9a)

For κH being smooth and compactly supported, we apply the Fubini–Tonelli theo-
rem, (2.9a) and Plancherel’s theorem to (2.7) to get

(Hs)(t0) =

∫
κH(t0, t)s(t) dµ(t)

=

∫

Rd

∫

Rd

SH(ν, t)ei2π〈ν,x−t〉dνs(t0 − t) dt (2.9b)

=

∫

Rd

h(t0, t)s(t0 − t) dt (2.9c)

=

∫

Rd

σH(t0, ξ)ŝ(ξ)ei2π〈t0,ξ〉 dξ (2.9d)

=

∫

Rd

∫

Rd

BH(ν − ξ, ξ)ŝ(ξ) dξei2π〈t0,ν〉 dν.

Note that the validity above extends to general Hilbert–Schmidt operators via a
density argument. Certainly, the convergence of the integrals is considered in the
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L2 sense as generally done in L2-Fourier analysis. In this case, the equalities above
hold for almost every t0.

It follows naturally from (2.9) to view h(t0, t) as the impulse response at t0 to an
impulse at t0− t and to view σH(t0, ξ) as the frequency response at t0 to a complex
exponential with frequency ξ.

A Hilbert–Schmidt operator H is usually called underspread if its spreading
function is contained in a rectangle with area less than one and overspread otherwise.
Underspread operators have the important property that they are identifiable [KP06,
PW05], which means that the operator H can be computed from its response to a
selected single input function. The most well-known example of identifiability is the
fact that linear time-invariant channels are completely characterized by their action
on a Dirac delta distribution, that is, by their impulse response.

3 The channel model

An important and uniting property for radio and sonar communications in air and
water, respectively, is multipath propagation, which means that due to reflections on
different structures in the environment, the transmitted signal reaches the receiver
via a possibly infinite number of different wave propagation paths, as illustrated in
Figure 2 (see, for example, [Rap02]).

In Sections 3.1–3.2, we examine the multipath propagation model at some depth
under the standard assumptions that the electric field component at the receiver
is the superposition of the contributions from all signal paths leading there, and
that the action of the channel on a transmitted signal is the superposition of the
action on all complex exponentials in a Fourier expansion of the signal. For this
we use a standard and straightforward linear extension (H(u + iv) = Hu + iHv)
of H to complex valued functions. Initially, we do also allow the channel to be of
infinite lifelength, which is necessary for our class of modelled channels to include,
for example, the identity operator, which has a Dirac delta distribution spreading
function.

Figure 2: The transmitted signal reaches the receiver along a continuum of different
signal paths. Each path P has time-varying length lP(t).
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For communications applications, however, only finite lifelength channels are
important. We show in Section 3.3 that this subclass of channels can be completely
described by very smooth spreading functions with “essentially compact” support.

3.1 Single path frequency response

Most wireless communication channels change their characteristics slowly compared
to the rate at which transmission symbols are sent. Significant changes either re-
quire a long time-period to evolve, or they are caused by abrupt changes in the
environment, for example, when a mobile telephone user drives into a tunnel. The
standard countermeasure is to regularly make new estimates of the channel. In
OFDM based methods this is usually done by sending pilot symbols, pilot tones
or scattered pilots [GHS+01]. For a more general treatment, see [GHS+01, KP06,
LPW05, MMH+02, PW05].

Thus, from now on we shall only consider the short-time behaviour of the channel
during time intervals I that are short enough to assume a fixed collection of signal
paths with the length lP(t) of path P being a linear function of the time. That is,
we assume the length and prolongation-speed of each path to be such that for some
T0 ∈ I and all t ∈ I,

lP(t) = LP + VP · (t− T0) with |VP · (t− T0)| ¿ LP. (3.1)

Physical constraints on the speed of antenna and reflecting object movements give
some upper bound Vmax for |VP|. We will assume Vmax to be smaller than the wave
propagation speed Vw, so that

Vw > Vmax ≥ |VP| for all paths P.

Hence, if a simple harmonic ei2πξt is sent along the path P without any attenuation
or perturbations, then the received signal would be

e
i2πξ

(
t− lP(t)

Vw

)
= e

i2πξ
((

1− VP
Vw

)
t−LP−VPT0

Vw

)
= e

i2πξ
(
1− VP

Vw

)(
t−LP−VPT0

Vw−VP

)
= TtPMνPξe

i2πξ(·)

(3.2a)
where the time and frequency shifts tP and νPξ satisfy

tP =
LP − VPT0

Vw − VP

and νP = −VP

Vw

∈
[
−Vmax

Vw

,
Vmax

Vw

]
⊂ (−1, 1). (3.2b)

This mapping from (VP, LP) to (νP, tP) is invertible with inverse

VP = −νPVw and LP = Vw (tP (1 + νP)− νPT0) . (3.2c)

By (3.2b), (3.1) and (3.2c), there is a compact set K ⊂ (−1, 1) and some A ∈ R
such that (νP, tP) ∈ K × [A,∞) for all paths P.

Now fix some arbitrary (ν, t) ∈ K × [A,∞) and some path P with frequency
response parameters (νP, tP) = (ν, t) in (3.2a). The channel operator action on a
complex exponential sξ(t0) = ei2πξt0 consists of the following components:

12



1. A multiplication by a transmitter amplitude gain GT(P).

If we identify the path with the angular direction in which it leaves the trans-
mitter, then we can integrate (or sum) over all P and note that for energy
conservation reasons the total power gain

∫ |GT(P)|2 dP must be finite.

2. The time-frequency shift by (νPξ, tP) that is given in (3.2a).

3. Attenuation with a factor2 Aξ(P) ∈ R that for free space transmission has size
O(L−2

P ) for large LP [Rap02, Reu74].

However, the decay is usually much faster and exponential decay O(e−aξLP)
can be argued for if we assume some fixed minimum attenuation every time
a signal is reflected [Str05]. Even for radio signals propagating through the
atmosphere without reflections (line-of-sight propagation, see Figure 2), fre-
quency selective absorption causes exponential decay with faster decay for
higher frequencies [Reu74, Section 2.1.7]. From this and (3.2c) we get that for
some aξ, C > 0,

|Aξ(P)| ≤ Ce−aξLP ≤ Cξe
−αtPχ[A,∞)(tP) (3.3)

with Cξ = sup|ν|<1 CeaξVwνT0 < CeaξVw|T0| and α = infξ inf |ν|<1 aξVw(1−ν) > 0.

4. Multiplication by a receiver amplitude gain GR(P), which for any kind of
practical use must also satisfy that

∫ |GR(P)|2 dP < ∞.

Altogether, the above steps add up to the following single path frequency response:

sξ(·) def
= ei2πξ(·) Transmitter−−−−−−−−→ GT(P)sξ

TF-shift (3.2a)−−−−−−−−−−→ GT(P)TtPMνPξsξ

Attenuation−−−−−−−−→ GT(P)Aξ(P)TtPMνPξsξ

Receiver−−−−−→ GT(P)Aξ(P)GR(P)TtPMνPξsξ

(3.4)

Now set
Bξ(P)

def
= Aξ(P)eαξtP

for all paths P, so that by (3.3), |Bξ(P)| ≤ Cξ for all P. Further, we set Pν,t =
{P : (νP, tP) = (ν, t)}.

As usual for electromagnetic waves, we expect the electric field component mea-
sured at the receiver to be the superposition of the electric field components received
from the different paths P (and similarly for sonar waves), or written as a formal
integration3

(Hsξ)(t0) =

∫

K×[A,∞)

(∫

Pν,t

GT(P)Bξ(P)GR(P) dP

)
e−αξt(TtMνξsξ)(t0) d(ν, t).

(3.5)

2We allow Aξ(P) to be negative to include potential sign-changes caused by reflections.
3Here again,

∫ · · · dP is shorthand notation for the integration over the different angles in a
polar coordinate system.
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If we denote the inner integral

rξ(ν, t)
def
=

∫

Pν,t

GT(P)Bξ(P)GR(P) dP, (3.6a)

then it follows from the Hölder inequality, the bound |Bξ(P)| ≤ Cξ and items 1 and 4
above that

∫

K×[A,∞)

|rξ(ν, t)| d(ν, t) ≤
∫

∪(ν,t)∈K×[A,∞)P(ν,t)

|GT(P)Bξ(P)GR(P)| dP

≤Cξ · ‖GT‖2 · ‖GR‖2 < ∞.

(3.6b)

Both for the actual transmitted real-valued signals and for our linear exten-
sion of H to complex-valued signals, the gain and attenuation factors are all real-
valued. We shall however, without any extra effort, allow for complex-valued r
in our mathematical model. Moreover, for inclusion of some important idealized
borderline cases such as r being a Dirac delta distribution, and for avoiding some
computational distribution theory technicalities, we choose to model the integrals

ρξ(U × V )
def
=

∫
U×V

rξ(ν, t) d(ν, t) over sets U × V ⊆ K × [A,∞) to be a complex
Borel measure ρξ with finite total variation, that is

ρξ(U × V ) =

∫

U×V

dρξ(ν, t) with |ρξ| (K × [A,∞)) < ∞. (3.7a)

Thus, in this mathematical model, (3.5) takes the form

(Hsξ)(t0) =

∫

K×[A,∞)

e−αξt(TtMνξsξ)(t0) dρξ(ν, t). (3.7b)

Note that this model includes, for example, Dirac measures and thus also the identity
operator.

3.2 Narrowband signals

We shall call the transmitted signal s narrowband if ŝ is well-localized enough to
justify the approximations

νξ ≈ νξ0, e−αξt ≈ e−αξ0
t and ρξ ≈ ρξ0 (3.8)

in the computations leading to (3.9b) below. We will primarily assume this nar-
rowband assumption to hold for the same ξ0 in the entire transmission frequency
band. In the remark on page 26, we will show that this assumption holds true for
some radio communications examples and discuss a refined model with different ξ0

for different basis functions that is necessary in underwater sonar communications.
Suppose now that the physical channel has the property that its action on a

signal s is the superposition of its action on each complex exponential in a Fourier
expansion of s, that is,

Hs(·) = H

∫

R
ŝ(ξ)ei2πξ(·) dξ =

∫

R
ŝ(ξ)Hei2πξ(·) dξ. (3.9a)
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Then, at least for bandlimited and thus continuous narrowband L1-signals s, we can
apply (3.7b), (3.8) and the Fubini–Tonelli theorem to obtain

Hs(t0) =

∫

R
ŝ(ξ)

∫

K×[A,∞)

e−αξtei2πνξ(t0−t)ei2πξ(t0−t) dρξ(ν, t) dξ

≈
∫

R
ŝ(ξ)

∫

K×[A,∞)

e−αξ0
tei2πνξ0(t0−t)ei2πξ(t0−t) dρξ0(ν, t) dξ

=

∫

K×[A,∞)

e−αξ0
tei2πνξ0(t0−t)

∫

R
ŝ(ξ)ei2πξ(t0−t) dξ dρξ0(ν, t)

=

∫

K×[A,∞)

e−αξ0
tei2πνξ0(t0−t)s(t0 − t) dρξ0(ν, t).

We use the last expression as definition of our mathematical model

Hs(t0)
def
=

∫

K×[A,∞)

e−αξ0
t(TtMνξ0s)(t0) dρξ0(ν, t). (3.9b)

If s ∈ L2(R), then by (3.9b) and the Minkowski integral inequality

‖Hs‖2 =

∥∥∥∥
∫

K×[A,∞)

e−αξ0
t(TtMνξ0s)(·) dρξ0(ν, t)

∥∥∥∥
2

≤
∫

K×[A,∞)

e−αξ0
t ‖TtMνξ0s‖2 d |ρξ0| (ν, t)

≤ |ρξ0| (K × [A,∞))e−αξ0
A ‖s‖2 .

Hence equation (3.9b) defines a bounded linear mapping H : L2(R) → L2(R). If, in
addition, ρξ0 is absolutely continuous with respect to the Lebesgue measure, then we
can write dρξ0(ν, t) = rξ0(ν, t) d(ν, t) where rξ0 is the function in (3.6), which equals
the inner integral in our physical model (3.5). In practice, rξ0 will be bounded and
thus also in L2(R). Application of this to (3.9b) and the substitution ν ′ = νξ0 gives

Hs(·) =

∫

K′×[A,∞)

SH(ν ′, t)(TtMν′s)(·) d(ν ′, t), K ′ ⊆ (−ξ0, ξ0) compact,

SH(ν ′, t) def
=

1

ξ0

rξ0

(
ν ′

ξ0

, t

)
e−αξ0

tχK′×[A,∞)(ν
′, t) and rξ0 ∈ L1 ∩ L2(R× R).

(3.9c)

Alternatively we can use (3.9b) as the definition of a larger space of operators
on a smaller space of functions by allowing a larger subclass of the complex Borel
measures, such as, the class of all complex Borel measures ρξ0 for which the mapping

ϕ 7→
∫

K×[A,∞)

ϕ(ν, t)e−αξ0
t dρξ0(ν, t)

defines a linear bounded functional SH on S0(K × [A,∞)). Then for all functions s
for which the mapping

(νξ0, t) 7→ (TtMνξ0s)(t0) ∈ S0(K
′ × [A,∞)) for all t0, (3.10)
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is well-defined, it follows that (3.9b) is pointwise well-defined for all t0. Conse-
quently (3.9b) can be interpreted as the application of a functional SH ∈ S ′0 to the
test function (3.10), or, with the usual formal integral notation,

Hs(·) =

∫

K′×[A,∞)

SH(ν ′, t)(TtMν′s)(·) d(ν ′, t), SH ∈ S ′0(K
′ × [A,∞)).

Since the space S ′0(R × R) includes Dirac delta distributions, this model includes
important idealized borderline cases such as the following:

Line-of-sight transmission: SH = aδν0,t0 , a Dirac distribution at (ν0, t0) representing
a time- and Doppler-shift with attenuation a.

Time-invariant systems: h(x, t) = h(0, t) and SH(ν, t) = h(t)δ0(ν).

Moreover, S ′0 excludes derivatives of Dirac distributions, which can be used to
avoid complex-valued Hs with no physical meaning [Ric03, Sec. 3.1.1]. Further, S0

is the smallest Banach space of test functions with some useful properties like in-
variance under time-frequency shifts [Grö00, p.253], thus allowing for time-frequency
analysis on its dual S ′0 which is, in that particular sense, the largest possible Banach
space of tempered distributions that is useful for time-frequency analysis. One more
motivation for considering spreading functions in S ′0 is that Hilbert–Schmidt oper-
ators are compact, hence, they exclude invertible operators, such as the example
SH = aδν0,t0 above, and small perturbations of invertible operators, which are useful
in the theory of radar identification and in some mobile communication applications.
For results using a Banach space setup, see for example [PW05, Str05].

Therefore it may come as a surprise that we will show in Section 3.3 that the
Hilbert–Schmidt model (3.9c) is a natural choice for wireless communications chan-
nels. This also justifies our use of this model in the remaining paper.

3.3 Finite lifelength channels

We shall show that wireless communications channels can be modelled well by well-
localized C∞-spreading functions. This fact allows for a minimal use of distribution
theory in our analysis and adds simplicity to proofs, results and software develop-
ment both in this paper and for mathematical and numerical analysis of wireless
communications channels in general.

In the following, we will assume that the bifrequency function

BH(ν, ·) is compactly supported. (3.11)

This is not strictly true in general, but we will find that for the narrowband signals
s = gq,r that we consider, Hs will only depend on the restriction of BH(ν, ·) to a cer-
tain compact interval, so that we are free to set it equal to zero outside that interval
(see Figure 5 and the discussion before (4.13a)). Moreover, recall from (3.9c) that
SH(·, t) has compact support as well. Hence, combining this with (2.9a) and (3.11),
we see that the distribution BH(ν, ξ) is compactly supported. Consequently, since
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C∞ 3 h(t0, t)_

Ft0→ν

²²

Â Ft→ξ // σH(t0, ξ)
_

Ft0→ν

²²

e−i2π〈ν,t〉SH(ν, t) ÂFt→ξ // BH(ν, ξ)

C∞ 3 h(t0, t)
_

Ft0→ν

²²

Â Ft→ξ // σH(t0, ξ)
_

Ft0→ν

²²
C∞ 3 e−i2π〈ν,t〉SH(ν, t) Â Ft→ξ// BH(ν, ξ) ∈ C∞

(a) (b)

Figure 3: (a) Bandlimiting properties of the physical channel provides us with
compactly supported BH . Thus h ∈ C∞, but SH may be a tempered distribu-
tion, for example, if h(t0, t) = h(0, t). (b) Our restriction to finite lifelength chan-
nels gives a well localized SH ∈ C∞. In (a) and (b) we denote with underlining
subexponential decay, exponential decay and compact support.

the bifrequency function satisfies BH = ĥ, we have that h ∈ C∞(R2). We sum-
marize a straightforward generalization of these properties to functions on Rd in
Figure 3 (a).

Since we are modelling the short time input-output relationships of a channel,
any useful communications system must be constructed to be independent of the
properties of h outside some compact set Kh. Thus, we are free to multiply h with
a compactly supported function w ∈ C∞(R2d) such that w = 1 on Kh and ŵ is
subexponentially decaying (as described in Section 2.2). It is easy to check that

it follows from this and from the compact support of ĥ that also the convolution
ŵh = ŵ ∗ ĥ is subexponentially decaying. Now let H1 be the Hilbert–Schmidt
operator with time-varying impulse response wh ∈ C∞. From the fact that the
space of Schwartz functions is invariant under partial Fourier transforms, it follows
that also SH1 ∈ C∞. This gives an operator with system function properties that we
summarize in the multivariate case in Figure 3 (b). We will also assume that w is
chosen to be “wide and smooth enough” so that the smooth cut-off of SH(ν, ·) only
deletes a very small-amplitude and negligible part of its exponential tail, and so that
also the “blurring out” of the compact support of SH(·, t) to subexponential decay
has a rather small impact on the shape of SH , which therefore can be expected to
resemble those given in the Figures of Section 6.

The following sections are devoted to Hilbert–Schmidt operators having exactly
the properties described in Figure 3 (b). All results apply directly to the commu-
nication channels described in this section as long as the narrowband assumption
of Section 3.2 holds for the entire frequency band of the transmitted signals. We
describe in a remark on page 26 how refined versions of our results can be applied to
wideband signals as long as the attenuation factor Aξ of (3.3) is roughly frequency
independent within the transmission frequency band.

Remark. The exponential decay of SH(ν, ·) only affects the just mentioned shape
of SH1 . In general, the reasoning in this and the following sections hold also with
exponential and subexponential decays replaced by other forms of rapid decay.
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4 Discretization of the channel model

In this section we derive finite sum formulas for the computation of the matrix rep-
resentation of the coefficient mapping G in (2.6) for classes of multivariate Hilbert–
Schmidt operators H that satisfy the properties summarized in Figure 3 (b).

For the series expansions in Gabor frames (gq,r) and (γq′,r′) in Section 2.3, H
maps any L2-function s =

∑
q,r∈Zd 〈s, g̃q,r〉 gq,r to

Hs =
∑

q′,r′∈Zd

〈Hs, γq′,r′〉 γ̃q′,r′ =
∑

q′,r′∈Zd

〈
H

∑

q,r∈Zd

〈s, g̃q,r〉 gq,r , γq′,r′

〉
γ̃q′,r′

=
∑

q′,r′∈Zd


 ∑

q,r∈Zd

〈s, g̃q,r〉 〈Hgq,r, γq′,r′〉

 γ̃q′,r′ ,

(4.1)

where convergence in L2(Rd) follows from the continuity of H and of the inner
product. Thus the coefficient mapping G in (2.6) is

G : (〈s, g̃q,r〉)q,r 7→

 ∑

q,r∈Zd

〈s, g̃q,r〉 〈Hgq,r, γq′,r′〉



q′,r′

with biinfinite matrix representation

Gq′,r′;q,r = 〈Hgq,r, γq′,r′〉 , (4.2)

and with 2d-dimensional indices (q′, r′) and (q, r) for rows and columns respectively.
For communications applications with Q carrier frequencies, at least Q samples

of every received symbol are needed in the receiver. Thus a hasty and naive approach
to computing the matrix elements could start with a Q × Q matrix representation
of H for computing the samples of Hgq,r. If every R neighbouring symbols have
overlapping ε-essential support, then we need to compute (RQ)2 matrix elements
〈Hgq,r, γq′,r′〉, which, with this approach, would require R2 · O(Q5) arithmetic oper-
ations with Q typically being at least of the size 256–1024 in radio communications,
and with R = 4 for ε = 10−6 and the optimally well-localized Gaussian windows
that we shall use for our example applications in Section 6 (see Figure 12). This is
a quite demanding task, so there is a clear need for the more efficient formulas and
algorithms that we shall derive in the following sections.

We begin in Section 4.1 with motivating the use of well time-frequency localized
Gabor bases. Then, in Section 4.2 we introduce the tools and notation that we find
most suitable for discretization of Hilbert-Schmidt operators with the properties
summarized in Figure 3 (b). Finally, in Section 4.3 we use these tools for deriving
more efficient formulas for computing the matrix elements under a minimum of
further assumptions, simplifications or approximations.

Remark. If (gq,r) is a frame for its closed linear span but not a Riesz basis,
then the coefficient subspace Cg̃ of (2.6) will be a proper subspace of l2. Thus an
orthogonal projection to Cg̃ in the receiver would add some stability against noise
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and perturbations, but at the cost of an additional requirement on the transmitter
to only use coefficient sequences in Cg̃.

For systems in use today, it is typical to instead use Gabor Riesz bases and ar-
bitrary coefficient sequences with coefficients chosen from some standard coefficient
constellation, such as quadrature amplitude modulation (QAT), with maximum co-
efficient amplitude given by transmission power regulations.

4.1 Gabor bases for near-diagonalization

Although (4.1) holds for any pair of frames (gi) and (γj), Gabor Riesz bases are tra-
ditionally used for communications applications. Gabor systems give good diagonal-
ization of G, especially if all basis elements are narrowband (see below and [KPZ02]).

We call an operator H time-invariant if it commutes with the translation oper-
ator Tt0 for any t0, that is, if Tt0H = HTt0 . Consequently, the impulse response h
of H satisfy h(t0, t) = h(0, t) and (2.9d) becomes a convolution h(0, ·) ∗ s. Then
the family of complex exponentials ei2π〈ξ,·〉 are “eigenfunctions” in the sense that for
inputs of the form s(·) = ei2π〈ξ,·〉χ[0,L](·), there is some complex scalar λξ such that
if supp h = [0, Lh], then Hs = λξs in the interval [Lh, L], as illustrated in Fig-
ure 4. Thus G is easily diagonalized by using Gabor windows g = χ[0,L], γ = χ[Lh,L]

and lattice constants such that the resulting Gabor systems (gk,l) and (γk,l) are
biorthogonal bases for their respective span. This trick is used in wireline commu-
nications, where the smaller support of γ is obtained by removing a guard interval
(often called cyclic prefix) from g. See, for example, [Gri02, Section 2.3] for more
details and further references.

In wireless communications, we can at most hope for approximate diagonalization
of the channel operator due to its time varying nature. In general, two different
time-varying operators do not commute, so both cannot be diagonalized with the
same choice of bases. Thus, diagonalization is usually only possible in the following
sense: Typically, (Hgq,r) is a finite and linearly independent sequence, and thus a

Riesz basis with some dual basis
(
H̃gq,r

)
. In fact, since the computations in (4.1)

are not restricted to Gabor frames, we can set γq′,r′ = H̃gq,r, which gives true

diagonalization of (4.2), but in general, H̃gq,r will not be a Gabor frame or have

any other basic structure that enables efficient computation of all H̃gq,r and all the

inner products
〈
Hgq,r, H̃gq′,r′

〉
.

Thus, for computational complexity to meet practical restrictions we will use

Figure 4: Convolution of a compactly supported complex exponential s(t) =
χ[0,L](t)e

i2πξt with a function h = hχ[0,Lh] will on the interval [Lh, L] equal the same
complex exponential multiplied with a complex scalar.
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“almost dual” Gabor bases (gq,r) and (γq′,r′), such as the Gabor bases proposed
in [MSG+05]. We are primarily interested in bases that are good candidates for
providing low intersymbol and interchannel interference (ISI and ICI). As proposed
in [MSG+05], we expect excellent joint time-frequency concentration of g and γ to
be the most important requirement for achieving that goal.

We will strive to customize decisions like the choice of discretization methods for
channels with the system function properties summarized in Figure 3 (b) and for
windows g and γ that are bandlimited and decay “fast enough” to be represented
by a finite (and reasonably small) number of Nyquist frequency samples. This is the
topic of sections 4.2 and 4.3.

4.2 Discretization tools

Recall first from Section 3.3 and Figure 3 (b) that it is justified to work with spread-
ing functions that can be truncated to compact support with negligible truncation
errors.

Then Proposition 1 below shows that the functions Hgq,r and Ĥgq,r are well
localized around the lattice points of a lattice with the same lattice constants as
the lattice of the Gabor basis (gq,r). This suggests to choose (γq′,r′) to be a Gabor
basis with the same lattice constants as (gq,r). For this scenario, propositions 2–4
in Section 4.3 provide us with formulas that allow an efficient computation of the
matrix elements 〈Hgq,r, γq′,r′〉.
Proposition 1. Suppose that H is a Hilbert–Schmidt operator on L2(Rd),

supp SH ⊆ Iωc,ω × [a, b] and g ∈ L2(Rd). (4.3)

(a) If supp f ⊆ [A,B], then supp Hf ⊆ [A + a, B + b].

(b) If supp f̂ ⊆ ICf ,Bf
, then supp Ĥg ⊆ ICf+ωc,Bf+ω.

The proof of Proposition 1 is rather straightforward and can be found in [GP05].
We will repeatedly apply the following special case of the Poisson Summation

formula [Grö00, Kat04] to the functions gq,r, Hgq,r and γq′,r′ :

Theorem 3 (Sampling theorems). Suppose that f ∈ L2(Rd) has a Fourier trans-

form with support supp f̂ ⊆ ICf ,Bf
. Then f̂ ∈ L1(Rd) ∩ L2(Rd), f is continuous

(modulo modifications on a set of measure 0) and for all ξ ∈ R̂d,

f̂(ξ) = |Tf |χICf ,Bf
(ξ)

∑

k∈Zd

f(kTf )e−i2π〈ξ,kTf〉, Tf =
1

Bf

. (4.4a)

Equivalently (via (2.1)), (4.4a) is also known as the Nyquist sampling theorem

f(t) = |Tf |
∑

k∈Zd

f(kTf )ei2π〈Cf ,t−kTf〉 sincBf
(t− kTf ). (4.4b)
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For a ∈ Zd, some b,Ω ∈ Rd
+ and f equal to gq,r or γq′,r′ , we will consider

time-frequency shifts fq,r
def
= TraTgMqbΩf , for which

Tg
def
=

1

Ω
, supp f̂q,r,⊆ ICf+qbΩ,Bf

, (4.5a)

and the Nyquist frequency samples are

fq,r(kTf ) = f(kTf − raTg)e
i2π〈kTf −raTg ,qbΩ〉. (4.5b)

If Tg = Tf , then (4.5b) becomes

fq,r(kTg) = f((k − ra)Tg)e
i2π〈k−ra,qb〉.

If Tg 6= Tf , then we can instead compute the samples f(kTf − raTg) by apply-
ing (4.4b), which will be a finite sum formula for those f that we will consider.

Proposition 1, Theorem 3, (4.5a) and (4.5b) are the basic tools that we will use
to compute the matrix elements 〈Hgq,r, γq′,r′〉. We will apply these to bandlimited
g and γ that have only a finite number of nonzero samples in the Nyquist recon-
struction formula (4.4b). These samples should be chosen so that g and γ decay
fast enough to allow truncation to compact support with both the maximum and
the L2-norm of the truncation error being less than some ε well below the overall
noise level of the application at hand. In Figure 7 on page 33, we show by example
how such window functions can be constructed. For the scenario that we summa-
rized in Figure 3 (b), we can, in practice, regard SH to be compactly supported and

conclude from Proposition 1 that Hgq,r and Ĥgq,r inherits the good localization
properties of gq,r, ĝq,r and SH . Hence, with negligible truncation errors, we can
assume also Hgq,r to be bandlimited, to be fully described by a finite number of
Nyquist frequency samples and to have ε-essential time-frequency support given by
Proposition 1. (In Section 5 we choose ε = 10−6.) Throughout the paper, we shall
use the following notation for these compact supports and finite index sets.

supp ĝ ⊆IΩc,Ω, Tg
def
= 1

Ω
, Tγ

def
= 1

Ω+ω
, (4.6a)

supp SH ⊆Iωc,ω × IC,L, supp Ĥg ⊆ supp γ̂ ⊆ IΩc+ωc,Ω+ω, (4.6b)

K,M⊂Zd, |K| < ∞, |M| < ∞ and (4.6c)

g(mTg) =γ(kTγ) = (Hg)(kTγ) = 0 for k ∈ Zd \ K and m ∈ Zd \M. (4.6d)

The corresponding supports and index sets for gq,r, Hgq,r and γq,r are easily com-
puted from (4.5) above.

4.3 Computing the channel matrix

For spreading functions and window functions having the properties, supports and
index sets given in (4.6) and Figure 3 (b), the following proposition provides us with
a finite sum formula for computing the matrix elements 〈Hgq,r, γq′,r′〉 from samples
of Hgq,r and γq′,r′ :
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Proposition 2. Let u, v ∈ L2(Rd) be functions with compact, overlapping frequency
supports satisfying

supp û ⊆ ICu,B, supp v̂ ⊆ ICv ,B and ICuv ,Buv

def
= ICu,B ∩ ICv ,B 6= ∅.

For T = 1
B

and k ∈ Zd, suppose that u(kT ) 6= 0 and v(kT ) 6= 0 only for k in
some finite index sets Iu and Iv, respectively. Denote with vbpf the inverse Fourier
transform of the restriction (bandpass filtering) of v̂ to the support of û, that is,

v̂bpf(ξ)
def
= v̂(ξ)χICuv,Buv

(ξ).

Then
〈u, v〉L2(Rd) = |T |

∑

k∈Iu

u(kT )vbpf(kT ). (4.7a)

Further, vbpf = v if Cu = Cv and, otherwise,

vbpf(kT ) = |T |
∑

k′∈Iv

v(k′T )ei2π〈Cuv ,(k−k′)T 〉 sincBuv((k − k′)T ). (4.7b)

Proof. (4.7a) follows from the Plancherel theorem and Parseval’s identity:

〈u, v〉L2(Rd) = 〈û, v̂〉L2(Rd) = 〈û, v̂bpf〉L2(ICv ,B) = |T |
∑

k∈Iu

u(kT )vbpf(kT ).

Moreover, the sampling theorem (4.4a) and (2.1) implies that

vbpf(kT ) =

∫

Rd

v̂(ξ)χICuv ,Buv
(ξ)ei2π〈ξ,kT 〉 dξ

= |T |
∑

k′∈Iv

v(k′T )

∫

ICuv ,Buv

ei2π〈ξ,(k−k′)T 〉 dξ

= |T |
∑

k′∈Iv

v(k′T )ei2π〈Cuv ,(k−k′)T 〉 sincBuv((k − k′)T ).

Using (4.6) and (4.7a), we get, for example, that

〈Hg, γ〉L2(Rd) = |Tγ |
∑

k∈K
(Hg)(kTγ)γ(kTγ)

and it remains only to derive efficient formulas for the computation of the samples
(Hg)(kTγ). For this, we derive the finite sum formula (4.10) below with nonzero
terms only for m ∈M when f = g (and similarly for f = gq,r)

4. It is clear that the
following proof holds for arbitrary samples Hf(t0), but by setting t0 = kTγ we get
our results in exactly the form that we use later on.

4In (4.10) it is necessary for f to provide the finite summation index, since there can be a finite
number of nonzero S

Cf ,Ω
H (·, kTγ −mTg) and (Hf)(kTγ) (without alias effects due to undersam-

pling) only if Tγ

Tg
∈ Zd and Tγ = 1

Ω+ω
, that is, only if ω = 0.

22



Proposition 3. Suppose that Cf ,Ω ∈ Rd, f ∈ L2(Rd), supp f̂ ⊆ ICf ,Ω and

(f(mTf ))m∈Zd ∈ l1(Zd), with Tf
def
=

1

Ω
. (4.8)

Let H be a Hilbert–Schmidt operator with spreading function

SH ∈ C∞ ∩ L2(Rd) and supp SH ⊆ Iωc,ω × IC,L. (4.9a)

Define S
Cf ,Ω
H to be the convolution

S
Cf ,Ω
H (ν, t0)

def
=

(
SH(ν, ·) ∗ (ei2π〈Cf+ν,·〉 sincΩ(·))

)
(t0). (4.9b)

Then for all k ∈ Zd and Tγ ∈ Rd
+, we have

(Hf)(kTγ) = |Tf |
∑

m∈Zd

f(mTf )
(
S

Cf ,Ω
H (·,kTγ −mTf )

)
(̂−mTf ). (4.10)

Proof. From (2.9b) and the Fubini–Tonelli theorem,

(Hf)(t0) =

∫

Rd

∫

Rd

SH(ν, t)f(t0 − t)ei2π〈ν,t0−t〉 dt dν

=

∫

Rd

(
SH(ν, ·) ∗ (f(·)ei2π〈ν,·〉)

)
(t0) dν

def
=

∫

Rd

fν(t0) dν, (4.11)

where the Nyquist sampling theorem (4.4b) and then (2.1) gives that

fν(t0) = |Tf |
∑

m∈Zd

f(mTf )
(
SH(ν, ·) ∗ (ei2π〈Cf ,·−mTf〉 sincΩ(· −mTf )ei2π〈ν,·〉)

)
(t0)

= |Tf |
∑

m∈Zd

f(mTf )ei2π〈ν,mTf〉 (
SH(ν, ·) ∗ (ei2π〈Cf+ν,·〉 sincΩ(·))

)
(t0 −mTf ).

Insertion of this in (4.11) gives

(Hf)(kTγ) = |Tf |
∫

Rd

∑

m∈Zd

f(mTf )ei2π〈ν,mTf〉SCf ,Ω
H (ν, kTγ −mTf ) dν. (4.12)

By (4.9a) and (4.9b), S
Cf ,Ω
H is bounded. Hence (4.8), (4.12) and the Fubini–Tonelli

theorem provide

(Hf)(kTγ) = |Tf |
∑

m∈Zd

f(mTf )

∫

Iωc,ω

ei2π〈ν,mTf〉SCf ,Ω
H (ν,kTγ −mTf ) dν

= |Tf |
∑

m∈Zd

f(mTf )
(
S

Cf ,Ω
H (·,kTγ −mTf )

)
(̂−mTf ),

which proves (4.10) and concludes the proof.
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Next, we shall derive the finite sum formula (4.14) for computing the samples of
(SΩc+qbΩ,Ω

H (·, t))̂ that are needed in (4.10) to compute (Hgq,r)(kTγ) for a Gabor
system

gq,r
def
= TraTgMqbΩ g, (q, r) ∈ Q×R

for a finite index set Q×R ⊆ Z2d. Equations (4.9b), (4.6a) and (4.6b) imply that
SΩc+qbΩ,Ω

H (ν, ·) is obtained from bandpass filtering SH(ν, ·) to the frequency band

supp ĝq,r(· − ν) = IΩc+qbΩ+ν,Ω, where ν ∈ supp SΩc+qbΩ,Ω
H (·, t) ⊆ Iωc,ω.

Hence, we can compute all SΩc+qbΩ,Ω
H from the restriction of ̂SH(ν, ·) to the smallest

interval IΩ′
c,Ω′ containing the union of the supports of all ĝq,r(·−ν) for all ν ∈ Iωc,ω,

as illustrated for d = 1 in Figure 5. This means that if Q = [q0, q1] ∩ Zd , then

Ω′
c

def
= Ωc +

q0 + q1

2
bΩ + ωc and Ω′ def

= (q1 − q0)bΩ + Ω + ω. (4.13a)

This observation allows for a two-step discretization based on the system function
properties summarized in Figure 3 (b), namely:

First, recall from Figure 3 (b) that h has compact support which is contained
in some “box” IC0,L0 × IC,L, where IC,L contains the support of SH(ν, ·) for all ν.
Recall also that due to the smooth truncation in Section 3.3, h(·, t) is supported
in an interval IC0,L0 , which is large enough not to affect the channel output in the
time interval under consideration. This together with the impulse response integral
representation (2.9c) of H gives that supp h(·, t) ⊆ IC0,L0 must be large enough to
contain the support of Hgq,r for all r ∈ R. Using element-wise addition of sets, this
condition has the form

supp g +RaTg + IC,L ⊆ IC0,L0 . (4.13b)

Figure 5: For Gabor frames gq,r
def
= TraTgMqbΩg with q ∈ Q def

= [q0, q1] ∩ Zd, the
function |ĝq,r| depends only on q. Proposition 3 shows how to compute all Hgq,r

only from the restriction of ̂SH(ν, ·) to any interval IΩ′
c,Ω′ containing the supports

of all ĝq,r(· − ν) for all ν ∈ Iωc,ω, as is illustrated here for minimal Ω′ and d = 1.
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It follows that

supp ŜH(·, t)(t0) = supp h(t− t0, t) =
{
(t0, t) ∈ R2d : t ∈ IC,L and t0 ∈ It−C0,L0

}
.

Due to this compact support set and the subexponential decay of SH(·, t), we can
apply and truncate the Nyquist sampling theorem (4.4b) to

SH(ν, t) = |ω0|
∑
n∈N

SH(nω0, t)e
i2π〈t−C0,ν−nω0〉 sincL0(ν − nω0),

|N | <∞ and ω0
def
=

1

L0

.

(4.13c)

Second, we shall use that only the restriction of ̂SH(ν, ·) = BH(ν, · − ν) to
IΩ′

c,Ω′ is of importance for our computations. Since SH(ν, ·) has compact support,

we know from Section 2.2 that there is a smooth truncation of ̂SH(ν, ·) to a C∞

function ̂SΩ′′
Ω′′

c
(ν, ·) such that

̂SΩ′′
Ω′′

c
(ν, ·) = ̂SH(ν, ·) in IΩ′

c,Ω′ , supp ̂SΩ′′
Ω′′

c
(ν, ·) ⊆ IΩ′′

c ,Ω′′ (4.13d)

with IΩ′′
c ,Ω′′ compact and such that

SΩ′′
Ω′′

c
(ν, ·) decays subexponentially. (4.13e)

Hence we can apply the sampling theorem (4.4a) to ̂SΩ′′
Ω′′

c
(ν, ·) and truncate it with

no or negligible error to a finite sum

̂SΩ′′
Ω′′

c
(ν, ·)(ξ) = |T ′′|χIΩ′′

c ,Ω′′ (ξ)
∑
p∈P

SΩ′′
Ω′′

c
(ν,pT ′′)e−i2π〈ξ,pT ′′〉,

|P| <∞ and T ′′ def
=

1

Ω′′ .

(4.13f)

We are now ready to state our final proposition.

Proposition 4. For the functions and supports defined in (4.6), (4.9b) and (4.13),

set Ωc,q
def
= Ωc + qbΩ for all q ∈ Q. Then

̂
S

Ωc,q,Ω
H (·, t)(t0) = |ω0T

′′|χIC0,L0
(t− t0)

∑
p∈P

ei2π〈Ωc,q ,t−pT ′′〉 sincΩ(t − pT ′′)×

×
∑
n∈N

SΩ′′
Ω′′

c
(nω0, pT ′′)ei2π〈t−t0−pT ′′,nω0〉. (4.14)

Proof. Note first that if ξ ∈ IΩc,q+ν,Ω, then for all nω0 ∈ Iωc,ω,

ξ − (ν − nω0) ∈ IΩc,q+nω0,Ω ⊆ IΩ′
c,Ω′ ,

so that (4.13d) implies that

̂SH(ν, ·)(ξ − (ν − nω0))χIΩc,q+ν,Ω
(ξ) = ̂SΩ′′

Ω′′
c
(ν, ·)(ξ − (ν − nω0))χIΩc,q+ν,Ω

(ξ).
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Hence, it follows from (4.13), the definition (4.9b) and (2.1) that for all ν ∈ Iωc,ω,

̂
S

Ωc,q,Ω
H (ν, ·)(ξ) = ̂SH(ν, ·)(ξ)χIΩc,q+ν,Ω

(ξ)

= |ω0|
∑
n∈N

̂SH(nω0, ·)(ξ − (ν − nω0))χIΩc,q+ν,Ω
(ξ)e−i2π〈C0,ν−nω0〉 sincL0(ν − nω0) =

= |ω0T
′′|

∑
n∈N

∑
p∈P

SΩ′′
Ω′′

c
(nω0, pT ′′)e−i2π〈ξ−(ν−nω0),pT ′′〉χIΩc,q+ν,Ω

(ξ)×

× e−i2π〈C0,ν−nω0〉 sincL0(ν − nω0)

Inverse Fourier transformation and (2.1) again gives

S
Ωc,q,Ω
H (ν, t) = |ω0T

′′|
∑
n∈N

∑
p∈P

SΩ′′
Ω′′

c
(nω0,pT ′′)

∫

IΩc,q+ν,Ω

ei2π〈ξ,t−pT ′′〉 dξ×

× ei2π〈pT ′′−C0,ν−nω0〉 sincL0(ν − nω0)

= |ω0T
′′|

∑
n∈N

∑
p∈P

SΩ′′
Ω′′

c
(nω0,pT ′′)ei2π〈Ωc,q+ν,t−pT ′′〉×

× sincΩ(t − pT ′′)e−i2π〈pT ′′−C0,nω0〉ei2π〈pT ′′−C0,ν〉 sincL0(ν − nω0).

Since sincL0(· − nω0) is the inverse Fourier transform of χI0,L0
(·)e−i2π〈·,nω0〉,

̂
S

Ωc,q,Ω
H (·, t)(t0)

= |ω0T
′′|

∑
n∈N

∑
p∈P

SΩ′′
Ω′′

c
(nω0, pT ′′)ei2π〈Ωc,q ,t−pT ′′〉 sincΩ(t − pT ′′)×

×
∫

Rd

e−i2π〈ν,t0+C0−t〉 sincL0(ν − nω0) dνe−i2π〈pT ′′−C0,nω0〉

= |ω0T
′′|

∑
n∈N

∑
p∈P

SΩ′′
Ω′′

c
(nω0, pT ′′)ei2π〈Ωc,q ,t−pT ′′〉 sincΩ(t − pT ′′)e−i2π〈pT ′′−C0,nω0〉×

× χI0,L0
(t0 + C0 − t)e−i2π〈t0+C0−t,nω0〉.

This proves (4.14).

Remark. For physical wireless communications channels, we deduced a spreading
function integral representation (3.9c) of the channel which is valid for functions
with frequency localization “near ξ0”. For the OFDM and Satellite communications
examples in Section 6, this assumption holds for the entire frequency band IΩ′c,Ω′ ,
since Ω′/Ω′

c is of the size 3 · 10−3 and 2 · 10−3, respectively. Then, the coefficients
SΩ′′

Ω′′
c
(nω0,pT ′′) above characterize the channel throughout this frequency band. In

the Underwater communications example, however, this is not the case, but the
above theory can still be applied to each computed Hgq,r as long as the relative

bandwidth Ω of gq,r is much smaller than the carrier frequency Ωc,q
def
= Ωc + qbΩ.
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Normally we also want Ω to be larger than the maximum Doppler shift |νPξ| =
∣∣∣VP

Vw
ξ
∣∣∣

of (3.2), so as a rule of thumb |VP/Vw| should be very small, so that a larger but
still small Ω/ξ can be chosen. In this case, and provided that the attenuation
factor Aξ(P) in (3.3) is slowly varying with ξ, the following modifications allow for
a “wideband use” of the propositions in this section:

1. Equation (3.9c) splits into separate operators Hq for basis functions gq,r with
center frequency Ωc,q. For some compact sets Kq ⊆ (−Ωc,q, Ωc,q), these opera-
tors have integral representation

Hqgq,r(·) =

∫

Kq×[A,∞)

SHq(ν
′, t)(TtMν′gq,r)(·) d(ν ′, t),

SHq(ν
′, t) def

=
1

Ωc,q

rξ0

(
ν ′

Ωc,q

, t

)
e−αξ0

tχK×[A,∞)

(
ν ′

Ωc,q

, t

)
.

2. A straightforward multivariate extension of (3.9c) gives an operator spreading
function SH for signals with frequency localization near some fixed center
frequency ξ0. Then the operator’s action on narrowband functions gq,r with

center frequency Ωc,q
def
= Ωc + qbΩ is given by a spreading function

SHq(ν, t)
def
=

∣∣∣∣
ξ0

Ωc,q

∣∣∣∣SH

(
ξ0

Ωc,q

ν, t

)
(4.15)

3. With ξ0 chosen so that all [0,Ωc,q] ⊆ [0, ξ0], we keep the notation (4.6), now
with Iωc,ω×IC,L being the smallest interval containing supp SHq for all q ∈ Q.

4. These changes do not affect Propositions 1–3, but if ŜH(·, t) has the support

given by (4.13b), then the dilation with a factor ξ0

Ωc,q
in (5) gives that ̂SHq(·, t)

has its support in

IC0,q ,L0,q

def
= I ξ0

Ωc,q
C0,

ξ0
Ωc,q

L0
.

5. Hence we also know from (4.15) that if ω0,q
def
= 1

L0,q
, then

|ω0,q|SHq(nω0,q, t) =

∣∣∣∣
ξ0

Ωc,q

ω0,q

∣∣∣∣SH

(
n

ξ0

Ωc,q

ω0,q, t

)
def
= |ω0|SH (nω0, t)

so that (4.13c) takes the form

SHq(ν, t) = |ω0|
∑
n∈N

SH(nω0, t)e
i2π〈t−C0,q ,ν−nω0,q〉 sincL0,q(ν − nω0,q).

Insertion of this in the proof of Proposition 4 then changes (4.14) into the

following formula for computing all
̂

S
Ωc,q,Ω
Hq

(·, t) from the same coefficients

SΩ′′
Ω′′

c
(nω0, pT ′′):

̂
S

Ωc,q,Ω
Hq

(·, t)(t0) = |ω0T
′′|χC0,q ,L0,q(t−t0)

∑
p∈P

ei2π〈Ωc,q ,t−pT ′′〉 sincΩ(t − pT ′′)×

×
∑
n∈N

SΩ′′
Ω′′

c
(nω0,pT ′′)ei2π〈t−t0−pT ′′,nω0,q〉. (4.16)
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Remark. The described procedure can also be used for the analysis of channel
operators applied to signals not generated by a Gabor frame with narrowband win-
dow function, as well as for the analysis of Hilbert–Schmidt operators satisfying the
properties in Figure 3 (b) in general. Then, the narrowband windows g and γ are
chosen to investigate properties of the operator. Diagonalizati0n properties are still
useful, but now in the sense that they give a “simple” discretized descriptions of the
operator.

Remark. The derivation of equation (4.2) does not require (gq,r) or (γq′,r′) to be
Gabor frames. Thus one possible future variation of the results of this paper is to
use, for example, compactly supported wavelet bases, such as B-spline, Daubechies
or Morlet wavelets, which also give synthesis and analysis of signals that can be
reconstructed from a finite number of sample values with bandlimiting conditions
replaced by projections on certain shift-invariant wavelet subspaces [EG05, EG04].

Gabor bases are a natural first choice for the OFDM applications that we have
described. Wavelet frame modifications of our algorithm might be more interesting
for a wideband communications scenario since the “frequency-dependent modula-
tion” in (3.2a) is actually a dilation that can only be reduced to a modulation in
the narrowband scenario described in Section 3.2.

5 The algorithm and its implementation

In Section 5.1 we summarize the results of the last section in an algorithm for the
coefficient operator matrix computation. Then we propose some further refinements
for a fast implementation and compute its complexity in Section 5.2, followed by
suggestions for how to choose windows and parameters in Section 5.3.

5.1 The algorithm

The results of Section 4 lead to the following procedure for computing the coefficient
operator matrix of a Hilbert-Schmidt operator satisfying the conditions outlined in
Figure 3(b).

1. Choose the spreading function coefficients SΩ′′
Ω′′

c
(nω0, pT ′′), the Gabor windows

g, γ and set all parameters to values typical for the application at hand. We
give suggestions for how to do this in Section 5.3 and 6.

2. For all q, q′ ∈ Q and r, r′ ∈ R, compute the matrix element 〈Hgq,r, γq′,r′〉 in
the following way:

(a) Compute the samples, index sets and supports of gq,r and γq′,r′ as de-
scribed in (4.5) and (4.6).

(b) Compute the matrix elements 〈Hgq,r, γq′,r′〉 by applying (4.7) to Hgq,r

and γq′,r′ . For this we need the samples (Hgq,r)(kTγ), which we obtain
by setting f = gq,r in the finite sum formula (4.10), in which we get the
samples (

SΩc+QbΩ,Ω
H (·,kTγ −mTg)

)
(̂−mTg)
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from the finite sum formula (4.14) or (4.16) for the more wideband un-
derwater communications example below.

See [GP05] for a fully documented MATLAB implementation of this procedure in
the univariate case.

5.2 Refinements and complexity

For an efficient implementation, we also recommend the following two refinements
of the above algorithm:

1. In step 2 (b), the sum (4.7b) can be obtained from a simple modulation of a
small number of sample values which should be computed in advance.

In fact, for the setup given in (4.6a) let Iq and Îr be the smallest intervals

such that Hgq,r ⊆ Ir and Ĥgq,r ⊆ Îq for all q ∈ Q and r ∈ R. We shall
see below that there is only a small number of q′ ∈ Q and r, r′ ∈ R such
that the overlaps Ir ∩ supp γq′,r′ and supp Î0 ∩ supp γ̂r′,q′ are nonempty.
With (4.7b) computed for the above overlaps, we only need simple modulation
to also compute (4.7b) for u = Hgq,r, v = γq′,r′ , q, q′ ∈ Q and r, r′ ∈ R in
Proposition 2.

2. Recall from (4.14) and Figure 5 that |N | · |P| is the number of Fourier co-
efficients needed to describe the smooth truncation SΩ′′

Ω′′
c

of BH(ν, ·) to the
frequency interval IΩ′′

c ,Ω′′ .

It is clear from Proposition 4 that |P| is proportional to the total bandwidth
IΩ′

c,Ω′ occupied by the Gabor basis (gq,r) and thus also proportional to |Q|.
This dependence on |Q| comes from our choice to compute all Hgq,r from
the same SΩ′′

Ω′′
c
. This simplified the presentation and is also memory-efficient,

since it minimizes the total bandwidth IΩ′′
c ,Ω′′ \ IΩ′

c,Ω′ added for the smooth
truncation that is necessary to obtain a finite index set P finite. Thus it
also minimizes the total number of coefficients that are needed to describe the
channel behaviour in the entire frequency band IΩ′

c,Ω′ . The resulting algorithm
is also fast enough for the 2048× 2048-matrix examples of Section 6.

For more computational efficiency when |Q| is large, however, it is favourable

to do a separate smooth cut-off S
Ω′′

q

Ω′′
c,q

of BH(ν, ·) for every q to an interval

IΩ′′
c,q,Ω′′

q
⊇ IΩc+qbΩ,Ω. This results in the coefficients SΩ′′

Ω′′
c
(nω0, pT ′′) of (4.14)

being replaced with a larger total number of coefficients, but with index sets
|Pq| proportional to |Ω|.

With these refinements, the complexity of the above procedure is that of one nested
sum over the index sets K, M, N and P for each q, q′ ∈ Q and r, r′ ∈ R. Alto-
gether, this requires O(|K| · |M| · |N | · |P| · (|Q| · |R|)2) arithmetic operations. The
following are typical index set sizes for the example applications of Section 6.

• |R| is the number of symbols for which the ISI shall be computed. For some
example applications with optimally well time-frequency localized Gaussian
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window g, Figure 12 below shows that |R| of size 4–5 is enough to cover a
decay of the average ISI/ICI to 10−6 times the average of the diagonal entries.
For other windows g, we expect a need for larger |R|.

• |Q| is the number of carrier frequencies, which normally equals the number
of samples per received symbol. In radio communications |Q| is typically in
the range 128–1024. For the inherently more wideband underwater example in
Section 6, much smaller |Q| is possible. With the window and lattice matching
described in Section 5.3, |Q| = 47 in our underwater example plots.

• |K| and |M| depend on the time-frequency localization of γ and g, respectively.
For the Gaussian windows used below, |K| · |M| = 28 · 19 = 532 for the
underwater channel and |K| · |M| = 19 · 19 = 361 for the other two.

• |N | · |P| is a constant that depends on |Ω| and is proportional to the area
〈ω,L〉 of the spreading function support. Below |N | · |P| equals 13 · 27 = 351,
13 · 58 = 754, and 59 · 237 = 13983 in the OFDM, satellite and underwater
example, respectively.

Hence, if g and γ have roughly M = |M| nonzero Nyquist frequency samples, and if
the received symbols have Q = |Q| nonzero Nyquist frequency samples and if R =
|R|, then our refined algorithm requires R2 ·O(M2 ·Q2) arithmetic operations. This
can be compared to the R2 ·O(Q5) operations of the more naive and straightforward
matrix computation approach discussed in section 4, which is clearly slower when
the number of carrier frequencies Q is larger than M .

Example 1. We show in Figure 7 that the Gaussian window approximation used
in Section 6 has M = 19 Nyquist frequency samples. We can compare this with

the B-spline windows B0
def
= I0,1 and Bn

def
= Bn−1 ∗ I0,1, which also were proposed

in [MSG+05]. Since B̂n(ξ) = sinc1(ξ)
n+1, its ε-essential support is contained in

the interval I0,Ω for which 1/(πΩ/2)n+1 = ε, that is, Ω = 2ε−1/(n+1)/π. Since the
length of the support of Bn is n + 1, M is now the smallest integer larger than
2ε−1/(n+1)(n + 1)/π + 1, which we plot for ε = 10−6 and some n in Figure 6. The
smallest M is 25, which we get for B12, B13 and B14.

20 40 60 80 100

10
2

10
3

n

M

Figure 6: Number of nonzero Nyquist frequency samples for some B-splines Bn.
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5.3 Parameters and window functions

In the operator discretizations (4.1), the shape of the Gabor window g can be op-
timized in different ways depending on the application. For wireless multicarrier
systems, the pulse shaping of g is an active research topic in its own, which we
do not pursue further here (see, for example, [MSG+05] for more details and refer-
ences). We have already motivated in Section 4 that both bases should be Gabor
bases with the same lattice parameters. For reasons described below, we choose to
set the lattice “time” parameter to aTg with a ∈ Z+. Similarly, for some b ∈ Rd

+ we
set the lattice frequency parameter to bΩ, so that the unit cell “area” aTgbΩ = ab
only depends on a and b. In the examples of Section 6, we choose parameters so
that ab > 1, which gives undersampling (see [Grö00]) and a Gabor system that is
a Riesz basis for its span. In general, for finite index sets Q ×R, we will consider
Gabor Riesz bases

gq,r = TraTgMqbΩg and γq,r = TraTgMqbΩg, (q, r) ∈ Q×R. (5.1a)

We are primarily interested in windows with very good joint time-frequency lo-
calization, which is of utmost importance for low ISI and ICI. Good frequency local-
ization also allows for high transmission power and, therefore, large signal-to-noise
ratio in the transmission band without exceeding power leakage bounds for other
frequency bands. Such leakage is strictly regulated for radio communications, but
not (yet) for underwater sonar communications, where, however, frequency bands
already in use by, for example, the human ear or dolphins should be respected!

In the following, we shall use standard Gaussian windows

g(x) = e−〈αx,x〉. (5.1b)

Gaussian windows have optimal time-frequency localization [Grö00, Section 2.2],
which results in very low ISI/ICI. This also has the advantage of making the effects
of truncation to ε-essential support clearly visible in the plots of Section 6.

The window γ is set to γ = Hg in the example applications of Section 6. Lower
ISI/ICI can be obtained with other choices described in [MSG+05].

Other application-dependent parameters we choose in the following way:

1. Index sets: Choose the Gabor basis index set R, the number of carrier fre-
quencies |Q| and the desired minimum size of the index sets N and P . Larger
|N | and |P| can be used for obtaining better control of the smoothness and
decay of SΩ′′

Ω′′
c
.

2. Channel-dependent parameters: For the channel at hand, choose the total
allowed frequency band [Ω0,Ω1], a “rectangle” Iωc,ω × IC,L containing the ε-
essential support of SH and the type of time-decay of SH . (See Section 6 for
examples.)

3. Choose the lattice constants a and b, as well as the parameter α in (5.1b),
which uniquely determines the ε-essential support Ω = 1

Tg
of ĝ. For non-

Gaussian g, this step corresponds to the choice of a dilation parameter α in

an equation of the kind g(x)
def
= g0(αx).
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We have done the following choice, inspired by a similar design criterion
in [KM98, Koz97, Mat00] For the smallest “rectangle” IAc,A× IBc,B that con-
tains the ε-essential support of the short-time Fourier transform of g with
window g (defined in (2.8)), choose a, b and α such that

ω

L
=

B

A
=

bΩ

aTg

(5.2)

and such that (gq,r) is a Riesz basis for its span (obtained by setting ab > 1
in the results presented in Section 6). See [GP05] for details.

4. Choose Q so that the supports of all ĝq,r are in the allowed frequency band
[Ω0,Ω1]. Set Ω′

c and Ω′ according to (4.13a). Set Ω′′
c = Ω′

c and choose Ω′′

to be large enough to obtain the desired minimum size of P and also large
enough to for the desired smooth truncation (4.13d) and (4.13e) (Ω′′ ≥ 1.5Ω′

in our implementation). Set Tγ = 1
Ω+ω

and T ′′ = 1
Ω′′ .

5. Choose L0 and C0 so that (4.13b) holds and such that L0 is large enough to
obtain the desired minimum size |N | = ω

ω0
= ωL0. Also set ω0 = 1

L0
.

6. Compute the Nyquist frequency samples of the restriction of g to its ε-essential
support (as illustrated in Figure 7 (a)).

7. Compute the samples SΩ′′
Ω′′

c
(nω0, pT ′′) that appear as coefficients in (4.14).

There are basically two ways to obtain these coefficients:

(a) Compute them from measurements or from a detailed model of a real
channel.

(b) Generate a random choice of the samples that satisfies the decay and
support properties described in Section 3 and Section 6.

For the results in Section 6 we have chosen approach (b).

6 Applications

We shall now describe parameter values and show sample plots for three channels
with different spreading function support areas.

6.1 Mobile phone communications

For a mobile phone moving at 100 km/h, equations (3.2) imply that the maximum
Doppler spread is VP

Vw
ξ = 100/(299792.458 · 3600)ξ ≈ 10−7ξ. For the GSM mobile

phone frequency bands ξ is ranging from 450.4–1990 MHz, so that frequency shifts
caused by the Doppler effect is in the interval [−184, 184] Hz. Typical time delays
are of the order 10−6 s, so the spreading function support area is of size 4 · 10−4.
This support would exceed the critical value 1 (see page 11) if the highest channel
frequencies in use exceed 5 THz. These are infrared light frequencies, for which
the water in the Earth’s atmosphere absorbs too strongly for us to expect these
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Figure 7: We use the Gabor window/pulse shape g that we obtain from a Gaussian
g0(x) = e−αx2

by assuming ĝ0 to have bandwidth Ω given by its ε-essential support
and truncating the reconstruction of g0 from its Nyquist frequency samples to sam-
ples in the ε-essential support of g0. We do this for ε = 10−6. Plots (a) and (b) show
a comparison of the resulting g and ĝ with g0 and ĝ0, respectively.
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frequencies to be useful for wireless communications. Thus, with the terminology of
Section 2.4, mobile phone channels are inherently underspread.

With other parameters chosen as described in Section 5.3, we obtain a Gaussian
window g0 with Fourier transform ε-essential support Ω. Hence we can approximate
g0 by reconstructing it from the Nyquist sampling theorem with sample interval Tg =
1/Ω and samples outside the ε-essential support of g0 discarded. This construction
gives a very small upper bound for both the supremum and the L2-norm of the
resulting truncation error when only a small number of nonzero samples are kept, as
can be seen in the plots of g0, g, ĝ0 and ĝ in Figure 7. In practice, ε should be chosen
small enough for the resulting errors to be dominated by the overall noise level of the
application at hand. For example, note in Figure 7 (a) how the truncation to a truly
bandlimited g with a finite number of nonzero samples gives “Gaussian decay” down
to amplitudes below ε and then a slowly decaying tail with negligible amplitude and
L2-norm. In this and the following examples, ε = 10−6.

We show some example plots in Figure 8 for a system with 128 carrier frequencies
and 16 OFDM symbols. In (a) we show the ε-essential support of the short-time
Fourier transform Vgq,rgq,r (defined in (2.8)) for some neighbouring basis functions
gq,r, from which we se that we can expect nonzero ISI and ICI at least for basis
functions at distance

‖(q, r)− (q′, r′)‖l2
def
=

√
(q − q′)2 + (r − r′)2 ≤ 4

in the Gabor lattice. In (b) we plot the “bandpass filtered spreading function”
SΩ′′

Ω′′
c
(ν, ·) computed from its samples by using (4.13c) and (4.13f) in a way similar

to the proof of Proposition 4 (see [GP05] for details). In this plot we have assumed
an environment with a very large amount of small scatterers adding up to a white
Gaussian noise distribution of the coefficient values (see Section 6.4 for examples
with a “smother” spreading function with more correlated coefficients).

For plotting the coefficient operator matrix, we need to define a linear ordering
of the index sets

Q×R = {q0, q0 + 1, q0 + 2, . . . , q0 + (|Q| − 1)}×{r0, r0 + 1, r0 + 2, . . . , r0 + (|R| − 1)} .

We have chosen to group together indices belonging to the same OFDM symbol by
using the order

nq,r
def
= (r − r0) · |Q|+ q − q0 + 1, (6.1)

for which we have plotted the 10-logarithm of the matrix element amplitudes in
Figure 8 (c). With this ordering, the matrix is divided into 16 × 16 submatrices,
such that in each submatrix, r and r′ are fixed. The submatrices for which r = r′

show the ICI of symbol number r. Submatrices for which r 6= r′ show the ISI
between OFDM symbols number r and r′.

Due to the matching of the Gabor lattice and the shape of the frequency lo-
calization of g to the shape of the spreading function support, which we explained
in Section 5.3, the size of |〈Hgq,r, γq′,r′〉| should mainly depend on the distance
‖(q, r)− (q′, r′)‖l2 between the time-frequency support centerpoints in the Gabor
lattice. For making this off-diagonal decay more visible, we have grouped together
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matrix elements for which this distance is the same and plotted the average ampli-
tude in Figure 8 (d). Note the clearly visible effect that occurs at distances more
than four, which is caused by the truncations of windows and spreading functions
to their ε-essential support.

6.2 Satellite communications

The speed of a communications satellite in geostationary orbit is about 3 km per
second. Thus the maximum Doppler shift is VP

Vw
ξ = (3/299792.458)ξ ≈ 10−5ξ. With

typical transmission frequencies 1-30 GHz [MB02], we can expect Doppler shifts up
to some 104 Hz. Here, we will use an example from [MB02, p. 47] with transmission
frequency 6 GHz and Doppler shift 18 kHz. Again, we assume the maximum time-
spread to be some 10−6 s. Then the spreading function support area is less than
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Figure 8: OFDM channel example. (a) ε-essential support of the short-time Fourier
transform Vgq,rgq,r for some neighbouring basis functions gq,r. (b) The spreading
function. (c) The 10-logarithm of |〈Hgq,r, γq′,r′〉| with index ordering nq,r defined
in (6.1). (d) Off-diagonal decay.
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0.036, so this is an underspread channel as well.

We show the same plots as for the OFDM example in Figure 9. Note that as a
result of the window and lattice constant matching, the plots (a) in Figure 8 an 9
are largely the same up to scaling.

6.3 Underwater sonar communications

For a vehicle travelling at 30 knot in sea water and using sonar communications, we
have VP

Vw
ξ ≈ 30·0.51444

1531
ξ ≈ 10−2ξ. We will use parameters typical for some medium

range systems described in [Sto99] with maximum time spread around 0.01 s and
a typical frequency band 20-35 kHz, so that the maximum Doppler shift is about
350 Hz. (More examples can be found, for example, in [LO97, Mid87, Sto96, ZK00,
ZT02].) These settings give spreading function support area 7 and an overspread
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Figure 9: Satellite channel example. (a) ε-essential support of the short-time Fourier
transform Vgq,rgq,r for some neighbouring basis functions gq,r. (b) The spreading
function. (c) The 10-logarithm of |〈Hgq,r, γq′,r′〉| with index ordering nq,r defined
in (6.1). (d) Off-diagonal decay.
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channel, which is typical for underwater sonar communications channels in general.

We show the same plots as for the previous two examples in Figure 10.

6.4 Further spreading function examples

In the above examples we used independent Gaussian distributions to obtain the
spreading function coefficients. For a “nicer” environment, one can expect more
correlation between the samples. We show examples of such spreading functions in
Figure 11. In Figure 12 we compare these two different spreading functions with all
other channel parameters being identical. The plots show that these two different
correlations of the spreading function samples do not affect the speed of the off-
diagonal decay significantly.
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Figure 10: Underwater channel example. (a) ε-essential support of the short-time
Fourier transform Vgq,rgq,r for some neighbouring basis functions gq,r. (b) The
spreading function. (c) The 10-logarithm of |〈Hgq,r, γq′,r′〉| with index ordering
nq,r defined in (6.1). (d) Off-diagonal decay.
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(a)–(c) shows the spreading functions for the OFDM, satellite and underwater ex-
ample, respectively. Figure 12 shows a comparison of the resulting off-diagonal
decays with those in figures 8–10.
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7 Conclusions

Using a refinement of the standard multipath propagation model for the short time
behaviour of narrowband wireless channels, we have derived a spreading function
integral representation of such channels with a C∞ spreading function with subex-
ponential decay.

This, together with a channel discretization using well time-frequency localized
Gabor bases, allowed us to derive formulas and an algorithms for the efficient com-
putation of certain matrix representations of communication channels. The elements
of this matrix describe the intersymbol and intercarrier interference for the trans-
mitted signal. We derived the algorithm, as well as some refinements of it, under a
minimum of assumptions or simplifications beyond the channel and signal properties
that are known from our channel and signal model.

Next, we discussed parameter choices in general and for three different channels.
For these channels we used a MATLAB implementation of our algorithm to compute
example plots showing the time-frequency localization of the Gabor basis functions,
the spreading functions, the coefficient operator matrix, and its off-diagonal decay.

Our implementation is fast enough for at least 2048× 2048 matrices and consid-
erably faster than a simpler and more straightforward approach to computing the
matrix elements.

Due to bandwidth and delay restrictions, multicarrier communications must use
bandlimited basis functions defined by a finite number of nonzero Nyquist frequency
samples. Our plots show clearly how such restrictions affect the off-diagonal decay
of the coefficient operator matrix. Thus the algorithm and software can be useful
for the numerical comparisons of the off-diagonal decay for different pulse shapes
and parameter settings.

Moreover, although we primarily consider communications applications in this
paper, we derived our algorithm in a more general multivariate setting, as an analysis
tool for certain classes of Hilbert Schmidt operators with potential other theoretical
and practical applications.
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[LPW05] James Lawrence, Götz Pfander, and David Walnut. Linear in-
dependence of Gabor systems in finite dimensional vector spaces.
J. Fourier Anal. Appl., 11(6):715–726, 2005. To appear. WWW:
http://www.math.iu-bremen.de/pfander/publications.php.

[LZG03] Geert Leus, Shengli Zhou, and Georgios B. Giannakis. Orthog-
onal multiple access over time- and frequency-selective channels.
IEEE Trans. Inform. Theory, 49(8):1942–1950, August 2003. WWW:
http://ieeexplore.ieee.org/xpl/abs free.jsp?arNumber=1214073.

[Mat00] Gerald Matz. A Time-Frequency Calculus for Time-Varying
Systems and Nonstationary Processes with Applications. Ph.d.
thesis, Vienna University of Technology, November 2000. WWW:
http://www.lss.supelec.fr/perso/matz gerald.OLD/GM other.html.

[MB02] Gérard Maral and Michel Bousquet. Satellite Communications Sys-
tems: Systems, Techniques and Technology. John Wiley & Sons, fourth
edition, 2002.

[MG02] Xiaoli Ma and Georgios B. Giannakis. Maximum-diversity
transmissions over time-selective wireless channels. In Wire-
less Communications and Networking Conference, 2002.
(WCNC2002), volume 1, pages 497–501, March 2002. WWW:
http://ieeexplore.ieee.org/xpl/abs free.jsp?arNumber=993547.

[MG03a] Xiaoli Ma and Georgios B. Giannakis. Full-diversity full-
rate complex-field space-time coding. IEEE Trans. Sig-
nal Process., 51(11):2917–2930, November 2003. WWW:
http://ieeexplore.ieee.org/xpl/abs free.jsp?arNumber=1237423.

[MG03b] Xiaoli Ma and Georgios B. Giannakis. Maximum-diversity
transmissions over doubly selective wireless channels. IEEE
Trans. Inform. Theory, 49(7):1832–1840, July 2003. WWW:
http://ieeexplore.ieee.org/xpl/abs free.jsp?arNumber=1207384.

[MH99] Gerald Matz and Franz Hlawatsch. Time-frequency sub-
space detectors and application to knock detection. AEÜ Int.
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