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Abstract— In this paper we compare different trans- with the undesired consequence of intersymbol/interchannel
multiplexer structures with respect to the ISI/ICI occur- interference (ISI/ICI).
ing for typical time—invariant channels. In particular we A different nonredundant transmission signal set has been
consider wavelet-type, Gabor-type (the class containing suggested in [7] consisting of so—called channel adapted
OFDM and DMT) and Wilson-type (offset-QAM/OFDM)  wavelet packets which depart from a strictly logarithmic or
transmultiplexer. We present both theoretical results linear frequency scale. However, the level of adaptivity in [7]
(based on a recently developed perturbation theory of co- is unrealistically high and neglects practical problems (such

herent Riesz bases) and numerical simulations. as the enormous overhead when changing a transmultiplexer
Keywords— OFDM, DMT, Wavelets, Gabor Systems, during data transmission ). Another approach with total adap-
Wilson Bases, Offset-QAM tivity on a sound information theoretical basis has been pro-

posed in [8] but it leads to general filter banks (full matrix
multiplications) which is not practically feasible.

Redundancy in the transmission signal set corresponds to
ULTICARRIER —modulation (MCM) is among the Hilbert space completeness within the band. Incomplete,
most popular concepts for data transmission over digonorthogonal systems of transmission signals for a constant-

persive communication channels. FFT-based versionsBbtype (FFT-based) MCM scheme where introduced in [9].
MCM [1] are the basis for the wireless standard HIPERANnother interesting alternative to the standard OFDM scheme
LAN/2 [2] and the digital subscriber line standard ADSL [3]is offset-QAM/OFDM scheme which is claimed to yield ex-
The latter case means baseband modulation called discegkent spectral concentration [10] with nonredundant trans-
multi—~tone (DMT) which is up to a frequency shift mathematmission signal.

ically equivalent to the passband realization called orthogonalln this paper we report about recent mathematical results
frequency division multiplex (OFDM). [11] concerning the robustness of prominent function sys-

One of the key ideas underlying these standard MCM rtems w.r.t. linear distortions (perturbation) caused by typi-

alizations is the use of a guard time that contains a cyckél time—invariant channels. We show that the Gabor struc-
prefix which in essence converts the action of the linear timé&e underlying OFDM, DMT, DWMT is matched to time—
invariant channel to a cyclic convolution. Such a cyclic coriavariant channels in a deep mathematical sense (consistent
volution is diagonalized by the DFT, hence the equalizatiosith the intuitive motivation that led to MCM schemes). On
reduces to a simple scalar multiplication (frequency domaihe other hand we show that one can exclude existence of
equalization). The simple equalization comes at the cost of &)‘'magic wavelet” that outperforms existing MCM schemes

a loss of modulation efficiency (redundancy of transmissiowr.t. implementation efficiency (computational cost of mod-
signal) and (i) poor spectral concentration of the subcarrietdation and equalization).

Alternative approaches to MCM are based on filterbank

(wavelet) theory, which opens up quite different avenues to Il. THE SHIFT—INVARIANT MCM SETUP

h_ighly structured and thus efﬁ_ciently realizable transmission_ The transmission signal of a shift—invariant MCM scheme
signal sets. The most prominent structures correspond & depicted in Figure 1 can be formulated as

ther to a linear (“constant-B”) or logarithmic (“constant-Q”)
type partitioning of the frequency axis. In [4] the authors 0o N-1
suggest the use of what they call discrete wavelet multitone x(t) = Z Z cragi(t — kT)

(DWMT). However, the concrete filter bank design of [4] [R—

is obviously constant-B in contrast to the constant-Q type

wavelet transform defined by the mathematical communityhere ¢, ; are information bearing complex coefficients
[5], [6]. DWMT can be characterized as consisting of parun{xQAM symbols”) andg,(¢) is a finite set of transmission
tary DFT filter banks at the transmitter and receiver. This inpulses. The received signglt) is given by a linearly dis-
plies in particular nonredundancy of the transmission sigrtairted version of the transmission signalt) and additive

I. INTRODUCTION
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noisen(t): Wilson bases correspond to an offset—QAM/OFDM which
y(t) = (Hz) (t) + n(t) allows FFT-based realization. A recently developed theory

The standard receiver strategy is based on an inner prod@"?ws the design of pulsegt) with improved frequency lo-

. . ) alization [10].
representation of the received QAM symbols: . DyadicWavelebases [6] are defined as(c [0, M], n

o0 [0,2m — 1], N = 2M+1 _ 1)
Cr,1 =/ y(t)y(t — kT)dt = (y, Trry)

— 00

n m m T
where we have introduced the receiver pulse shagésand

a time-shift operatof', acting ag'Tt)(t) def z(t — 7). To Wavelet bases are known to combine relatively good fre-

achieve perfect reconstruction in the case of an ideal chanflsgncy localization with a fast computation algorithm (in
one has to require a biorthogonality condition as follows: Principle faster than FFT).
We assume throughout this paper that the channel distor-
(Trrgr, Torye) = Ok 011 tion corresponds to a translation invariant system, i.e., (all
integrals are oveR and Fourier transforms of signals are de-
The structure and amount of ISI/ICI is governed by the effepoted by capital letters)

tive channel matrix:
(Hz)(t) = (h*x)(t) = / h(t—t") z(t") dt’

def t’

Qgyu(k =K, 1) = (HTkrg,, Trry) (I.1)

hich db . be sh g)r someh € L*(R). Sinceh and thusH is not fixed, but
which (as suggested by our notation) can be shown 10 9ies from case to case, we consider the following ensemble
block—Toeplitz. In the ideal case the matrix is diagonal

of possible impulse responses:

Qgyu(k — kL) = N6k g H={heL*R):supph C [-2,+2],
and, for zero noise, the symbols can be recovered by a scalar /\h(t)|2 vdr =0,sup |H(f)| = 1} )
multiplicationcw = )\%éhl- t

The three conditions imposed érseem realistic for the fol-

lowing reasons:

« The receiver does not know when the transmission starts,

so he has to fix the tim& = 0 in some way. Since this is

equivalent to choosing some translatehofwe may as well

fix h to have vanishing first moment.

« Althoughh does not have compact support, we may cut off

at some point and treat the influence of the remaining part of

h as noise.

« The conditionsup | H(f)| = 1 corresponds to perfect gain
Practically important shift-invariant biorthogonal systemeontrol.

are defined by the action of unitary operators on one specific

prototype pulse (mother wavelet). In particular we consider

one of the following structures: Due to lack of space we cannot perform a detailed statisti-

« Gabor systemgorrespond to a rectangular tiling of thecal analysis of the general MCM-modell (Fig. 1). With regard

time—frequency plane (constant-B), theare modulated ver- to noise sensivity we just note that orthonormal systems with

Fig. 1. The considered MCM scheme

IIl. ORTHOGONAL PERTURBATIONS

sions of a prototype functiog: arbitrary structure are optimum; biorthogonal Riesz bases
B i2m L1 1.2 used for MCM need to have an excellent condition number
gi(t) = go(t)e : (1:2)  \which implies||g; — || < 1 [11]. Hence in what follows we

. : yt the focus on orthonormal systems.
N hat in order to have existen f orthonormal .
ote thatin order to have existence of orthonormal bases CRIEi:or orthonormal systems the total ISI/ICI can be defined

has necessarily = 1. s an off-diagonal norm of the effective channel matrix
« The real-valuedVilsonbases [10] have a structure related 9

to but different from the WH systems«(< [0, M — 1], N = K N_1N-1
. _ de

AM +1): go(t) = g(t), Orgs @ Y 30 3 Qg (kL1 (1~ 81610) -
gm,l(t) — g(t) \/5(]05(27(%(1;)7 k=—K 1=0 I'=0
gm2(t) = g(t—L) V2 cos(2r 2=ty In order to derive useful estimates for the off-diagonal decay
Im.3(t) = g(t) V2sin(2r 2m=1 ), of Qu 4,4(k,1,1") we introduce the orthogonal perturbation

. ) om of each individual basis member as follows (compare Fig-

gma(t) = g(t—3) ﬂsm@”? ) ure 2).
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For a given convolution operator there might be arbitrarily
bad localized functiong which are exact eigenfunctions of
this specific operator, s, i = 0 for this particularh. Such
a situation is depicted in Fig. 3. But recall that for practical
purposes, we require a family of basis functions that are sta-
ble under the action of ah € H. Therefore, to be able to
show that certain bases are inadequate, we want to determine
a lower bound of

dg = sup dgu .
d f heH
2 € 2
dgu = |[Hy|* - |(Hg, ), (.1) " The following theorem is based on the uncertainty principle
Here, and in what follows we assurte g) = ||g||? = 1. in so far as it exploits knowledge of a minimum frequency

With the above definitions, it is straightforward to show SPread given a maximum temporal support length.
Theorem 3:[11](Lower BoundiForg € L*(R), ||g||z> =

Ko N-1 1, with supp g C [, o + T for somea € R andT > 0, we
On,g,g < Z >y have AT T 1
—K 1=0 d22r2<1—75—) for — < —,
9 3 7 To s
which means that the sum of all orthogonal perturbations and &> i(@f for Z S L
bounds the total ISI/ICI. 9= 12\sT 2s

Since the convolutiodlg = h * g corresponds to multi-
plication in the Fourier domain/, i can be related to the with s €0, 1[ andr € [271[-
frequency localization oj as the f0||0W|ng theorem shows. Based on the above mathematical results we now evaluate
Theorem 1:[11] Letg, h € L*(R) with ||g||z2 = 1. Then the orthogonal distortion on a logarithmic scale
the orthogonal distortion is given by the following variance d’gQ = 10log;, d?;-
d? s =V{H(= . . . .
9.H { ( )} ’ We consider the structures discussed in Section Il and assume
validity of a typical maximum support as imposed by the la-

where= is a random variable with probability density|?, ! ) .
tency constraints for voice communication.

=) ) « Gabor bases allow direct application of Theorem 2 because
V{H = } /‘H —E{H( )H G(E)I” dE the frequency localization is invariant w.r.t. modulation such
that in turn i —d .2
with expected valu&{H (Z)} = [, H(¢) |G(€)|* d¢ . g (i1.2)

Using the expression given |n theorem 1, we can find &wor standard pulse functions such as e.g. the Bartlett window
upper bound for the orthogonal perturbatidng with & €  satisfying the support constraint we get by a straightforward

H. computation: .
Theorem 2:[11] (Upper Boundl Assume that is an im- dg ~ —20dB
pulse response iftt. Then we have foy € L°(R) with | properly designed Wilson(Offset-QAM/OFDM)-type bases
lgllpz =1 ) ) are known for their excellent localization inraal-valued
dgu < (m70)° g2 » sense (i.e., their analytic function shows excellent frequency

localization in the sense of Theorem 2). However, in practical
OFDM systems we use these basis functions with complex
coefficients. In the complex sense the Wilson—type bases do

whereot,, . is the variance ofG|?, i.e.,

J‘QG‘Q = /(f—/i)2 \G(f)|? df with not satisfy a modulation invariance of the orthogonal pertur-
f bation (111.2) rather the frequency localizaton decreases with
=g = / FIGUH)12 df . increasing_ modu_lation index. B_ased on Theorem 3 one can
show that in a Wilson system with at least 200 carriers there

On the other hand, one must expect that signals which agext least ong; with d/2l > —8dB

not well frequency localized potentially undergo a relatively

strong orthogonal perturbation. « Inadyadic wavelet basis, one encounters the problem that,
since scaling on the time side results in reverse scaling on the
frequency side, the frequency localization gets worse with
growing scale index. If we assume to have at least 128 basis
functions per symbol period we needM > 7 scale indices
which based on Theorem 3 leads to

. : . . , d? " ~ —3dB
Fig. 3. Bad localized eigenfunction &f (eigenvaluef)
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IV. SIMULATION RESULTS V. CONCLUSIONS

To illustrate the theoretical results we consider a numerical We have studied various different transmultiplexer struc-
experiment involving a noise—free DSL—channel with loofures with numerically efficient implementation. We have
length 2km (the impulse response is plotted in Fig. 4).  shown that the total ISI/ICI can be bounded by the orthog-
onal perturbation caused by channel. Among the considered
structures, the Gabor structure (constant B-type transmission
signal set) turns out to yield optimum perturbation stability.
The Gabor structure includes standard OFDM implementa-
tions and biorthogonal OFDM with pulse shaping. The opti-
mization of the WH-type transmultiplexers w.r.t. bandwidth
efficiency, peak-to-average ratio, robustness and simplicity of

. . equalization for typical channel scenarios is the natural open
Figure 5 shows linearly scaled contour plots of the eﬁeﬁ'uestion for future research

tive channel matrix for three different orthonormal systems:
nonorthogonal Gabor (OFDM with pulse shaping) without
cyclic prefix, an orthonormal Wilson basis (the prototype de-
Signed according to [10] ) and an orthonormal Wavelet bghe authors would like to express their thanks to H.G.
sis (“symmlets” defined in [6, p.250]) (symmlets were bedteichtinger and M. Hampejs from NUHAG, Mathematics
performing in the sense of this work among a number &epartment, University Vienna for providing an implemen-
prominent wavelet bases). The poor off-diagonal decay t@tion of discrete Wilson bases.

the wavelet basis is clearly visible; to show the difference be- Sponsoring by the German Ministry of Education and Sci-
tween Wilson and Gabor, we have furthermore plotted a 18mce (BMBF) within the KOMNET program under grant 01
slice ofQ, , 1 (0,1,1') in Fig. 6. As expected from the theo-BP 902 is gratefully acknowledged.

retical results, the Wilson basis (broken line) shows relatively

poor off—diagonal decay. REFERENCES

Fig. 4. The considered impulse response
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