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This script contains all the theorems and definitions, but only few examples, covered in
Analysis I in the academic year 2013. The material of Analysis I is contained in Sections 1–4,
the material of Analysis II in Sections 5–8.
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1. NUMBERS

1.1. Sets, relations and functions

Definition 1.1. The cartesian product X1 ×X2 × . . .×Xn of the n sets X1, X2, . . . , Xn is the
set of all (ordered) n-tupels (x1, x2, . . . , xn) with x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn. That is,

X1 ×X2 × . . .×Xn := {(x1, x2, . . . , xn) : x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn}.

Note that A× ∅ = ∅ × A = ∅, and A×B = B × A if and only if A = B or A = ∅ or B = ∅.

Examples 1.2. i. {1, 2, 3} × {7, 12} = {(1, 7), (2, 7), (3, 7), (1, 12), (2, 12), (3, 12)}

ii. {7, 12} × {1, 2, 3} = {(7, 1), (7, 2), (7, 3), (12, 1), (12, 2), (12, 3)}

iii. {7, 12} × {} = {}

iv. {7, 12} × {1, 2} × {a, b}
= {(7, 1, a), (7, 2, a), (12, 1, a), (12, 2, a), (7, 1, b), (7, 2, b), (12, 1, b), (12, 2, b)}

Definition 1.3. Any subset R of the cartesian product X × Y of two sets X and Y , that is,
R ⊂ X×Y , is called relation between X and Y . If X = Y we say that R ⊂ X×X is a relation
on X.

D(R) = DR = {x ∈ X : there exists y ∈ Y with (x, y) ∈ R} is called domain of R, and
R(R) = RR = {y ∈ Y : there exists x ∈ X with (x, y) ∈ R} is called range of R.

Definition 1.4. Let X and Y be sets. A function (or mapping) f : X −→ Y is a rule that
associates to every element in x ∈ X an element f(x) ∈ Y . X is called domain of f and is
denoted by Df .

For A ⊆ X and B ⊆ Y we set

f(A) = {y ∈ Y : there exists x ∈ A with f(x) = y}

and
f−1(B) = {x ∈ X : there exists y ∈ B with f(x) = y}.

The range of f is given by Rf = f(X). The graph of f is the relation Γf = {(x, y) ∈ X × Y :
f(x) = y} between X and Y .

The function f is injective (one–to–one) if f(x) = f(x̃) implies x = x̃, and f is surjective
(onto) if Rf = Y . If f is surjective and injective, we call f bijective We refer to an injective
map also as embedding.

Remark 1.5. Note that the distinction between a function and its graph is done for psychological
reasons only. A strictly axiomatic introduction of analysis is based on set theory and functions
are simply defined as certain subsets of X × Y .

Proposition 1.6. A relation Γ ⊂ X × Y is the graph of a function f : DΓ −→ Y , if and only
if (x, y), (x, ỹ) ∈ Γ implies y = ỹ for all x ∈ X and y, ỹ ∈ Y . In this case we have Rf = RΓf

and Df = DΓf .
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Theorem 1.7. Given a function f : X −→ Y and sets Ai ⊂ X, i ∈ N, and Bi ⊂ Y, i ∈ N, we
have

i. A1 ⊆ A2 implies f(A1) ⊆ f(A2)

ii. B1 ⊆ B2 implies f−1(B1) ⊆ f−1(B2)

iii. A1 ⊆ f−1(f(A1)) and B1 ⊇ f(f−1(B1))

iv. f(
⋃∞
i=1 Ai) =

⋃∞
i=1 f(Ai) and f(

⋂∞
i=1Ai) ⊆

⋂∞
i=1 f(Ai)

If f is injective we have in addition A1 = f−1(f(A1)) and f(
⋂∞
i=1 Ai) =

⋂∞
i=1 f(Ai) and if f is

surjective B1 = f(f−1(B1)).

Proof. We shall only proof that A1 ⊆ f−1(f(A1)) and give an example where equality fails. For
x ∈ A1 we have y = f(x) ∈ f(A1) and x ∈ f−1({y}) ⊆ f−1(f(A1)). Now, consider X = {0, 1}
and Y = {0}. The only function f : X −→ Y that exists, namely, the function f(0) = f(1) = 0
does the job since for A1 = {0} we have f−1(f(A1)) = {0, 1} 6= {0}.

Remark 1.8. Concerning the proof above. In mathematics, we aim for generality when stating
and proving theorems. We aim for simplicity when providing counterexamples. The simpler,
the better.

Definition 1.9. A relation R on X is called

i. reflexive if for all x ∈ X we have (x, x) ∈ R,

ii. transitive if (x, x̃) ∈ R and (x̃, ˜̃x) ∈ R implies (x, ˜̃x) ∈ R,

iii. symmetric if (x, x̃) ∈ R implies (x̃, x) ∈ R, and

iv. antisymmetric if (x, x̃) ∈ R and (x̃, x) ∈ R implies x = x̃.

Definition 1.10. A reflexive, symmetric, and transitive relation R on X is called equivalence
relation. If R is an equivalence relation we shall write x ∼ x̃ if (x, x̃) ∈ R and call x and x̃
equivalent with respect to R.

[x] = {x̃ ∈ X : (x, x̃) ∈ R} is called equivalence class of x, and any x̃ ∈ [x] is called
representative of [x].

Example 1.11. Fix n ∈ N and set X = Z. The relation

RZn = {(k,m) ∈ Z× Z : k −m = l · n for some l ∈ Z}

is an equivalence relation [check reflexivity, transitivity, and symmetry]. The set of equivalence
classes is the group Zn of n elements with addition given by

[k] + [m] = [k +m].

To see this, you would have to check whether addition is well defined and you need to check all
group properties (which are discussed in detail below).
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To see that addition on Zn is well defined, we need to show that the sum of two equivalence
classes A = [k] and B = [m] does not depend on the chosen representatives k and m. Namely,

given k, k̃,m, m̃ ∈ Z with k ∼ k̃ and m ∼ m̃, that is, [k] = A = [k̃] and [m] = B = [m̃] . We

have to show that k +m ∼ k̃ + m̃, that is, [k +m] = A+ B = [k̃ + m̃], to see that addition is
independent of the representatives we choose from A and B.

But this follows from the fact that k ∼ k̃ and m ∼ m̃ imply that k − k̃ and m − m̃ are
multiples of n, hence their sum k − k̃ + m − m̃ = k + m − (k̃ + m̃) is a multiple of n which

shows k +m ∼ k̃ + m̃.

The concept of a partition of a set helps to understand equivalence classes and their equiv-
alence relations.

Definition 1.12. A family of sets {Mi : i ∈ I} is a partition of the set M 6= ∅, if

i. ∅ 6= Mi ⊂M for i ∈ I,

ii. i 6= j implies Mi ∩Mj = ∅ for i, j ∈ I, and

iii.
⋃
i∈IMi = M .

Theorem 1.13. For a set M 6= ∅ we have:

i. The distinct equivalence classes of an equivalence relation on M form a partition on M .

ii. A partition {Mi : i ∈ I} on M induces an equivalence relation on M via

a ∼ b if and only if a, b ∈Mi0 for some i0 ∈ I.

Proof. There is not much to be proven here. For example, given distinct equivalence classes
[xi], i ∈ I with I being an arbitrary index set. If x ∈ [xi] ∩ [xj], then x ∼ xi and x ∼ xj.
By symmetry, we have also xi ∼ x, so transitivity implies xi ∼ xj. Hence [xi] = [xj], which
contradicts that we considered distinct equivalence classes.

Definition 1.14. A relation O on X is called order on X if O is reflexive, transitive, and
antisymmetric. The order O is called linear if for all x, x̃ ∈ X either (x, x̃) ∈ O or (x̃, x) ∈ O.

Example 1.15. The relation ON = {(n,m) ∈ N× N : n ≤ m} is a linear order on N.

Note that the natural order on N can be easily defined using elementary set theory.
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1.2. Groups, fields, the integers and the rational numbers

Definition 1.16. A group is a set G, together with a binary law of composition µ : G×G −→ G
which satisfies the axioms G1, G2, and G3 given below. We shall write xy := µ(x, y).

(G1) Associativity : (xy)z = x(yz) for all x, y, z ∈ G.

(G2) Identity : There exists an element e ∈ G called identity such that xe = ex = x for all
x ∈ G.

(G3) Inverses : To each element x ∈ G exists an element y ∈ G called inverse of x with
xy = yx = e. The inverse to x is denoted by x−1, in the case of additively (using for the
group composition law the symbol “+”) written abelian groups as −x.

A group is called abelian if µ is commutative, that is, if we have

(C) xy = yx for all x, y ∈ G.

Examples 1.17. i. Addition + : N × N −→ N, (n,m) 7→ n + m on the natural numbers
N = {1, 2, 3, . . .} is associative. But N contains no neutral element. Hence, (N,+) is not
a group.

ii. Addition + : N0 × N0 −→ N0), (n,m) 7→ n + m on the natural numbers with zero,
N0 = {0, 1, 2, 3, . . .} is associative and 0 is a neutral element. But no element in N0 other
than 0 has an inverse element! Hence, (N0,+) is not a group as well.

iii. Let X = N× N and define

RZ = {((n,m), (ñ, m̃)) ∈ (N× N)× (N× N) : n+ m̃ = ñ+m}.

RZ is an equivalence relation. The set of equivalence classes Z := {[(n,m)]} equipped
with 1

[(n,m)] +Z [(ñ, m̃)] = [(n+ ñ,m+ m̃)]

is an Abelian group with neutral element [(1, 1)] and inverses −[(n,m)] = [(m,n)].

Note that we can also define a multiplication on Z, namely2

[(n,m)] ·Z [(ñ, m̃)] = [(n · ñ+m · m̃, n · m̃+m · ñ)].

In fact, Z equipped with the addition above and the product below forms a so-called
commutative ring, called ring of integers . Since we shall not use any rings in this course,
we omit a definition of rings.

1Why is the following definition well defined, that is, independent of the representatives of the equivalence
classes?

2To see that this makes sense, recall that [(n,m)] is just a clumsy way of writing the integer n−m without
using “−”. We know that better (n − m)(ñ − m̃) = nñ − nm̃ − m̃n + nñ, which, avoiding “−” is simply
[(n · ñ + m · m̃, n · m̃ + m · ñ)]. So this is how we came up with a definition of multiplication on Z, and in
maths a good guess / good intuition is worth half the money. It still remains to show that this is meaningful,
for example, that this map satisfies associativity.
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We can embed (map injectively) the naturals into this ring of equivalence classes via

i : N −→ Z, n 7→ n∗ := [(n+ 1, 1)].

This mapping is nice, since it respects addition and multiplication on N, that is,

i(n+ ñ) = i(n) +Z i(ñ), and i(n · ñ) = i(n) ·Z i(ñ)

Hence, using an appropriate equivalence relation on N × N, we have created a ring of
equivalence classes which can be identified with the set of integers.3 In the following, we
will not make a distinction between a natural number n and its integer counterpart n∗.
We shall use the common short hand notation z = n − m = [(n,m)] ∈ Z. Note that
[(7, 3)] = [(10, 6)], since 7 + 6 = 3 + 10, that is, 7− 3 = 10− 6.

Note that the relation OZ =
{(

[(n,m)], [(ñ, m̃)]
)
∈ Z× Z : n+ m̃ ≤ ñ+m

}
extends

the order on N to the integers Z.

iv. Let X = Z× N and define

RQ =
{(

(z,m), (z̃, m̃)
)
∈ (Z× N)× (Z× N) : z · m̃ = z̃ ·m

}
.

RQ is an equivalence relation. The set of equivalence classes {[(z,m)]} equipped with

• [(z,m)] +Q [(z̃, m̃)] = [(z ·Z m̃+ z̃ ·Z m,m ·Z m̃)]

• [(z,m)] ·Q [(z̃, m̃)] = [(z ·Z z̃, m ·Z m̃)]

is a field4, called the field of rational numbers . Again, we can embed the integers in a
natural way by setting

i : Z −→ Q, z 7→ z∗ := [(z, 1)].

This embedding respects multiplication and addition, hence, we consider Z as a subring
of the ring (field) of equivalence classes we just defined. The field we defined is the field
of rational numbers. From now on, we shall use them the way we are used to. Certainly,

we shall write r =
z

m
= [(z,m)] ∈ Q.

The relation OQ =
{(

[(z,m)], [(z̃, m̃)]
)
∈ Q×Q : z · m̃ ≤ z̃ ·m

}
extends the order on

Z to the rational numbers Q. In the following we shall simply write r ≤ r̃ if (r, r̃) ∈ OQ.

Starting from the natural numbers we have created the integers, from those we have created
the rationals. Since the embeddings are canonical, we shall ignore its formalism and simply
take

N $ Z $ Q.

Definition 1.18. A field is a set F on which two binary laws of composition, addition ’+’ and
multiplication ’·’ are defined with

3 We only assume a-priori knowledge of the naturals. Similar to the attitude of Leopold Kronecker, 1823-
1891, who supposedly said “God made the integers; all else is the work of man”.

4Fields will be defined shortly.
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(F1) (F ,+) is an abelian group. We shall denote the identiy of (F ,+) as 0.

(F2) (F\{0}, ·) is an abelian group. The identity of (F\{0}, ·) is denoted by 1.

(F3) The distributive law holds, that is, (x+ y) · z = xz + yz for all x, y, z ∈ F .

All orders discussed in Examples and 1.15 and ?? are those orders on N, Z, and Q which
you are familiar with. In our attempt of presenting a self–contained constructive approach to
introduce the real numbers, we include the formal definitions below.

These definitions are not very enlightening and they will not play a crucial part throughout
the remainder of Analysis 1.

Definition 1.19. A field F is called ordered if

(O1) There exists an order ’≤’ on F .

(O2) The order is linear, that is, for all x, y ∈ F either x < y or x > y or x = y.

(O3) x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ F and if x, y > 0 then x · y > 0.

Definition 1.20. An ordered field F is called archimedean if for all x, y ∈ F, x, y > 0, exists
n ∈ N with

nx := x+ x+ . . .+ x︸ ︷︷ ︸
n−times

> y.

Theorem 1.21. The set of rational numbers Q together with the two binary operations addition
and multiplication and the order defined in Examples 1.17.iv is an archimedean ordered field.

Proof. We have discussed the binary operations addition and multiplication by themselves
earlier. To see that both “go hand in hand”, that is, that the distributive law holds, observe
that with k, p, u ∈ Z and l, q, v ∈ N we have

k

l

(
p

q
+
u

v

)
=
k

l

(
pv + uq

qv

)
=

(
kpv + kuq

lqv

)
=

(
kplv + kulq

lqlv

)
=
kp

lq
+
ku

lv
=
k

l

p

q
+
k

l

u

v
.

It is easily checked that the previously introduced order on Q makes Q an ordered field.

It remains to show that the order on the field is archimedean. To this end, let x = k
l
> 0

and y = p
q
> 0. Set n = l(p+ 1) and observe that

nx = l(p+ 1)
k

l
= (p+ 1)k > pk ≥ p

q
= y.
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1.3. Real numbers

Given a right angled, isosceles triangle with two sides of length 1. What is the length l of the
third side?

According to Phythagoras, we have l2 = 12 + 12 = 1 + 1 = 2. We shall write l =
√

2.

Theorem 1.22.
√

2 /∈ Q, that is, there exists no m ∈ Z and n ∈ N with
(
m
n

)2
= 2.

Proof. Assume
(
m
n

)2
= 2 with m

n
in lowest terms. Then m2 = 2n2. Hence, m2 and therefore

m is even, say m = 2k. But then 4k2 = 2n2 and n even. This contradicts that m
n

is in lowest
terms.

We conclude that there exist line segments with non rational length. Can we define a set
S ⊇ Q containing all “lengths”, and to which we can extend all arithmetic properties of Q?
Yes, we can!

Definition 1.23. A Dedekind–cut A|B in Q is a pair of subsets A,B of Q with

i. A ∪B = Q, A 6= ∅ and B 6= ∅, A ∩B = ∅,

ii. for all a ∈ A and b ∈ B we have a < b, that is, a ≤ b and a 6= b, and

iii. A contains no largest element.

For p ∈ Q we call
p? := {q ∈ Q : q < p}|{q ∈ Q : q ≥ p}.

a rational cut in Q.

Dedekind-cuts in Q are called real numbers , the set of all real numbers is denoted by R.

Examples 1.24. The pairs of subsets

{q ∈ Q : q < 2}|{q ∈ Q : q ≥ 2}
{q ∈ Q : q < 0 or q2 < 2}|{q ∈ Q : q ≥ 0 and q2 > 2}

are Dedekind cuts, but

{q ∈ Q : q ≤ 2}|{q ∈ Q : q > 2}
{q ∈ Q : q2 ≤ 2}|{q ∈ Q : q2 > 2}
{q ∈ Q : q < 2}|{q ∈ Q : q ≥ 3}

are not.

To see that indeed, the set of real numbers does not share the shortcoming of Q of having
holes, we define define the following.
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Definition 1.25. Let X be a linearly ordered set, S ⊆ X be not empty. M ∈ X is an upper
[resp. lower ] bound of S, if for each s ∈ S we have s ≤ M [resp. s ≥ M ]. If there is an upper
[resp. lower] bound M ∈ X, then we call S bounded above [resp. bounded below ].

M0 ∈ X is called the least upper bound or supremum [resp. greatest lower bound or infimum]
of S ⊆ X if for all upper [lower] bounds M ∈ X we have M0 ≤ M [resp. M0 ≥ M ]. The least
upper bound [resp. greatest lower bound] of the set S is denoted by supS [resp. inf S].

Definition 1.26. (LUP) An ordered set X has the least upper bound property if any nonempty
subset S of X which is bounded above has a least upper bound (in X).

Example 1.27. The set of rational numbers Q does not have the least upper bound property.
For example, the set {q ∈ Q : q2 < 2} is bounded, for example, by 2, but has no least upper
bound in Q.

Theorem 1.28. The set R, that is, the set of Dedekind cuts in Q, with the linear order ’≤’
defined by

A|B ≤ C|D if A ⊆ C

has the least upper bound property

Proof. Let S = {Ai|Bi, i ∈ I} be a non empty set of Dedekind cuts in Q which is bounded by
C|D. Set A =

⋃
i∈I Ai and B = Q \ A. First, observe that A|B is indeed a Dedekind cut:

i. A ∪B = Q by definition.

ii. A 6= ∅ since S is not empty.

iii. B 6= ∅ since D ⊂ B.

iv. A ∩B = ∅ by definition.

v. For all a ∈ A and b ∈ B we have a < b since a ∈ Ai for some i and b ∈ B implies b /∈ Ai
for all i.

vi. If A would contain a largest element a, any set Ai with a ∈ Ai would obviously also
contain a largest element.

Clearly, Ai ⊆ A implies Ai|Bi ≤ A|B for all i ∈ I, so A|B is an upper bound of S. Suppose
there would exist an upper bound E|F of S with E|F < A|B. Then Ai ⊆ E for all i ∈ I and,
hence, A =

⋃
i∈I Ai ⊆ E ( A, a contradiction.

Remark 1.29. We can embed rational numbers in R via

p 7→ p? := {q ∈ Q : q < p}|{q ∈ Q : q ≥ p}.

A cut of the form p? := {q ∈ Q : q < p}|{q ∈ Q : q ≥ p}, p ∈ Q is called rational cut in
Q. The embeddings discussed so far are N ↪→ Z ↪→ Q ↪→ R. Since ↪→ denotes injective maps
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which respect algebraic properties, we shall omit later the ? notation and identify elements in
the domain with the corresponding elements in the range. That is, we shall write

N ⊆ Z ⊆ Q ⊆ R.

At this point of time, we have not defined any algebraic operations on R (the set of Dedekind
cuts in Q), but we will do this shortly.

Definition 1.30. On R, that is, on the set of Dedekind cuts in Q, we define:

i. A linear order ’≤’ on R via A|B ≤ C|D if A ⊆ C.

ii. For x = A|B, y = C|D ∈ R we set

E := {e ∈ Q : there exists a ∈ A and c ∈ C with e = a+ c}, F := Q\E

and define addition on R via

x+ y = A|B + C|D := E|F.

Further we set−x = A−|B−, withA− =
{
−b, b ∈ B \{smallest element of B (if it exists)}

}
and B− = Q\A−.
(Note that −(−x) = x, that x+(−x) = 0∗ for all x ∈ R, that x ≥ 0 if and only if −x ≤ 0,
and that q∗ + q̃∗ = (q + q̃)∗ and (−q)∗ = −q∗ for all q, q̃ ∈ Q.)

iii. For x = A|B ≥ 0∗, y = C|D ≥ 0∗ ∈ R we set

G := {e ∈ Q : e ≤ 0 or there exists a > 0 ∈ A and c > 0 ∈ C with e = a·c}, H := Q\G

and define the product
x · y = A|B · C|D := G|H.

If x ≥ 0 and y < 0 set x · y = −(x · (−y)), if x < 0 and y ≥ 0 set x · y = −((−x) · y), and
if x < 0 and y < 0 set x · y = (−x) · (−y). Hence, we have (well) defined multiplication

· : R× R −→ R, (x, y) 7→ x · y

(Note that q∗ · q̃∗ = (qq̃)∗ for all q, q̃ ∈ Q.)

Theorem 1.31. The set of Dedekind cuts in Q denoted by R together with the order, the
two binary operations addition and multiplication defined above is an archimedean ordered field
which satisfies the least upper bound property.

Theorem 1.32. Uniqueness of the real number system. R is unique in the following
sense: Let F be an archimedean ordered field which has the least upper bound property. Then
there exists a bijective mapping u : F −→ R which preserves addition, multiplication and order.
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Proof. (Sketch) Let F be an archimedean ordered field with the least upper bound property.
First note that 1F >F 0F since 1F 6=F 0F and if 1F <F 0F we get −1F >F 0F by (O3) and
1F = (−1F )(−1F ) >F 0F by (O3), a contradiction to (O1). Further, observe that N can be
embedded into F via

i : N −→ F, n 7→ nF = 1F + 1F + . . .+ 1F︸ ︷︷ ︸
n−times

.

By definition we have nF + mF = (n + m)F . The injectivity of this mapping follows from an
inductive argument using nF + 1F >F nF + 0F . Let us also note that implies that the order on
N is preserved under the embedding i, a very important fact as we shall see later. Further, all
nF > 0F have an inverse element with respect to addition in F and we may extend i injectively
to Z by setting n 7→ −(−n)F for n < 0. We can show that nF + mF = (n + m)F still holds,
now for all n,m ∈ Z. Note that (F1) together with (O3) on F implies that −1F <F 0, since
else,we would have −1F >F 0F and 0F >F 1F .

Further, we can use the same strategy to extend i to cover al rational numbers by setting

i : Q −→ F,
n

m
7→ nF

mF

= nF ·m−1
F .

(To detail this proof, we would have to show that i is well defined, that is, that the image of q
under i does not depend on the particular representation of q as fraction of integer and natural
number.)

Note that, again, we have 0 < n
m
< ñ

m̃
if and only if 0F <F

nF
mF

<F
ñF
m̃F

due to (O3) since
else nF ·F m̃F > ñF ·F mF . Further qF + rF = (q + r)F and qF ·F rF = (q ·F r)F holds for all
q, r ∈ Q.

After having observed that any ordered field contains a copy of Q as an ordered subfield,
we can proceed to define the ”uniqueness” map u:

u : F −→ R, x 7→ Ax|Bx = {q ∈ Q : qF <F x}|{q ∈ Q : qF ≥F x}.

It remains to show that u is well defined (are these elements on the right really Dedekind cuts?),
it preserves addition, multiplication, and order, and that u is bijective. Note that we still have
not used the fact that the order on F is archimedean and that F has the least upper bound
property.

So let us first look whether the map is well defined. Clearly Ax ∩Bx = ∅ and Ax ∪Bx = Q.
If x >F 0F we have 0 ∈ Ax and Bx 6= ∅ since the archimedean property implies the existence
of n ∈ N such that

nF = 1F +F 1F +F . . .+F 1F︸ ︷︷ ︸
n−times

> x

and therefore nF ∈ Bx. If x ≤F 0F we get Bx 6= ∅ cheaply and we can use a similar argument
as above to show that Ax 6= ∅.

Transitivity shows that for a ∈ Ax and b ∈ Bx we have aF < x ≤ bF and therefore a ≤ b.

To show that Ax has no largest element, we need to show the following fact, which we shall
repeatedly use not only in this proof.

13



Claim: Let F be an archimedean ordered field which has the least upper bound property and
let x, y ∈ F . If x < y, then exists q ∈ Q such that x < qF < y.

Proof of the claim: Fix x, y ∈ F with x < y. Then y− x > 0 and therefore (y− x)−1 > 0. Pick
mF > (y − x)−1 > 0. Set u = sup{n ∈ Z : nF

mF
≤ x}. Then x < uF+1F

mF
< y, since uF+F 1F

mF
> y

would imply uF+F 1F
mF

> y > x ≥ uF
mF

and 1F
mF

= uF+F 1F
mF

− uF
mF

> y − x > 1
mF

, a contradiction.

The set Ax has no largest element, since for any qF , (q ∈ Q) in Ax we can find q̃F , (q̃ ∈ Q)
with x > q̃F > qF .

We have shown that Ax|Bx ∈ R, let us now check surjectivity of u. Let A|B be any cut in
Q. Set AF = {qF ∈ F : q ∈ A} and xA|B = supAF which exists due to the l.u.b. property of
F . It is easy to see that u(xA|B) = Ax|Bx = A|B.

Injectivity follows from the claim proven above (why?). The mapping u preserves multipli-
cation and addition since it does fulfill these properties on Q and due to the definition of R
and u.

That’s it for Dedekind cuts, we are done. From now on, we will think of real numbers as
elements on the real line, its elements are denoted with letters such as x, y, a, b, α, β, . . .. Using
the order ≤ on R as well as < defined by a < b if a ≤ b and a 6= b, we can define closed intervals
[a, b] = {c ∈ R : a ≤ c ≤ b}, [a,∞) = {c ∈ R : a ≤ c}, (−∞, b] = {c ∈ R : c ≤ b}, half
closed intervals (a, b] = {c ∈ R : a < c ≤ b}, [a, b) = {c ∈ R : a ≤ c < b} and open intervals
(a, b) = {c ∈ R : a < c < b}, (a,∞) = {c ∈ R : a < c < b}, (−∞, b) = {c ∈ R : c < b} with
a ≤ b ∈ R. Also, R = (−∞,∞) can be considered an interval. The terminology ”open” and
”closed” intervals will become apparent when we study metric and topological spaces.

Theorem 1.33. For every real number x > 0 and n ∈ N exists exactly one real number y > 0
with yn = x. This y is called n–th root of x and is denoted by x

1
n or n

√
x.

Theorem 1.34. Nested Interval Property. Let In = [an, bn] = {x ∈ R : an ≤ x ≤
bn} ⊂ R be closed intervals with In ⊇ In+1 for all n ∈ N. Then

⋂
n∈N

In 6= ∅.

Proof. The set of left endpoints {an : n ∈ N} is not empty and is bounded by, for example, b1

(but also by all other bn as we shall use below). Hence, {an : n ∈ N} has a least upper bound
α = sup{an : n ∈ N} = sup

n∈N
an. The fact that α is an upper bound of the set implies an ≤ α

for all n. The fact that it is the least upper bound also shows that α ≤ bn for all n as, given
one bn with bn < α, we would have found a smaller lower bound, a contradiction. We conclude
that an ≤ α ≤ bn for all n, that is, α ∈

⋂
n∈N[an, bn].

Definition 1.35. A sequence a in a set X is a function a: N −→ X,n 7→ a(n). Note that by
convention we shall write an instead of a(n), and a is often denoted by (an)n∈N or {an}n∈N. Do
not confuse the sequence a = (an)n∈N = {an}n∈N with the set {an, n ∈ N} = Ra.

Definition 1.36. A set X is countable if there is a surjective function (sequence) a: N −→
X,n 7→ a(n).

Example 1.37. i. Finite sets are countable. For example, consider X = {0, 1, 2} and define
a : N −→ X by a1 = 0, a2 = 1, an = 2 for all n ≥ 3.
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ii. The integers Z are countable. Consider a : N −→ Z given by a1 = 0, a2 = −1, a3 = 1,
a4 = −2, a5 = 2, and so on. That is

an =

{
n−1

2
, if n is odd;

−n
2
, if n is even.

Remark 1.38. Some authors define a set to be countable if there exists as a bijective func-
tion (sequence) a: N −→ X,n 7→ a(n). Then, different from this lecture, finite sets are not
countable! Be aware of both definitions of countability when reading textbooks.

Theorem 1.39. If the sets Am ⊂ X, m ∈ N, are countable, then
⋃
m∈NAm is countable.

Proof. Let am : N −→ Am be surjective, that is, {amn , n ∈ N} = Am for m ∈ N . The elements
of
⋃
m∈NAm appear in the table

a1
1 a1

2 a1
3 a1

4 a1
5 a1

6 a1
7 . . .

a2
1 a2

2 a2
3 a2

4 a2
5 a2

6 a2
7 . . .

a3
1 a3

2 a3
3 a3

4 a3
5 a3

6 a3
7 . . .

a4
1 a4

2 a4
3 a4

4 a4
5 a4

6 a4
7 . . .

a5
1 a5

2 a5
3 a5

4 a5
5 a5

6 a5
7 . . .

a6
1 a6

2 a6
3 a6

4 a6
5 a6

6 a6
7 . . .

a7
1 a7

2 a7
3 a7

4 a7
5 a7

6 a7
7 . . .

...
...

...
...

...
...

...
. . .

and, enumerating diagonally, that is,

b1 = a1
1, b2 = a2

1, b3 = a1
2, b4 = a3

1, b5 = a2
2, b6 = a1

3, b7 = a4
1, b8 = a3

2, b9 = a2
3, . . .

defines a surjective map b : N −→
⋃
m∈NAm.

Corollary 1.40. Q is countable.

Proof. Clearly, Z is countable (see the example below), and so are the sets 1
m
Z = { n

m
, n ∈ Z}

for m ∈ N. Clearly, Q =
⋃
m∈N

1
m
Z, so Q is countable by Theorem 1.39.

Theorem 1.41. The set containing all sequences with values in {0, 1, 2, . . . , n}, n ≥ 1, is not
countable.

Proof. Assume that the set X of sequences with values in {0, 1, 2, . . . , n} are countable. Then
exists a surjective map b : N −→ X, m 7→ bm ∈ X, so X = {bm, m ∈ N}. These countably
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many sequences bm : N −→ {0, 1, 2, . . . , n} in the following way

b1 = b1
1, b1

2, b1
3, b1

4, b1
5, b1

6, b1
7, . . .

b2 = b2
1, b2

2, b2
3, b2

4, b2
5, b2

6, b2
7, . . .

b3 = b3
1, b3

2, b3
3, b3

4, b3
5, b3

6, b3
7, . . .

b4 = b4
1, b4

2, b4
3, b4

4, b4
5, b4

6, b4
7, . . .

b5 = b5
1, b5

2, b5
3, b5

4, b5
5, b5

6, b5
7, . . .

b6 = b6
1, b6

2, b6
3, b6

4, b6
5, b6

6, b6
7, . . .

b7 = b7
1, b7

2, b7
3, b7

4, b7
5, b7

6, b7
7, . . .

...
...

...
...

...
...

...
. . .

Define the sequence b0 : N −→ {0, 1, 2, . . . , n} by b0
n = 1 if bnn = 0 and b0

n = 0 if bnn 6= 0. This
sequence differs from all sequences in bm (in the m-th entry) and is therefore does not appear
in our list. (Sequences are identical if and only if all entries are equal.) Hence, our list was not
exhaustive, a contradiction.

Theorem 1.42. R is not countable.

Proof. We shall embed the space of sequences in {0, 1, 2, . . . , 8} in R by mapping a sequence
b : N −→ {0, 1, 2, . . . , 8} to

i(b) = sup{b1 · 10−1 + b2 · 10−2 + b3 · 10−3 + . . .+ bN · 10−N , N ∈ N}.

It is easily seen that this map is injective. (Note that we did not consider b : N −→ {0, 1, 2, . . . , 8, 9}
as then, for example, the sequences 1, 0, 0, 0, . . . and 0, 9, 9, 9, 9, . . . would map to the same real
number.)

Clearly, if R were countable, so would be any subset of R, for example, the image under
the injective map i. But by injectivity, this would imply that also its domain is countable, a
contradiction.
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1.4. Complex numbers

We shall now define the complex number system.

Definition 1.43. The cartesian product R× R together with the binary operations

+ : (R× R)× (R× R) −→ R× R, ((a, b), (c, d)) 7→ (a+ c, b+ d)

· : (R× R)× (R× R) −→ R× R, ((a, b), (c, d)) 7→ (ac− bd, ad+ bc)

form a field with additive neutral element (0, 0) and multiplicative neutral element (1, 0) which
is called the field of complex numbers. It is denoted by C.

Theorem 1.44. The map G : R −→ C, a 7→ (a, 0) is an embedding of the real numbers into
the complex numbers, that is, G is injective and we have for all a, b ∈ R

G(a+ b) = G(a) +G(b) and G(ab) = G(a) ·G(b).

Hence, we can consider R as a subfield of C.

Proof. This result follows from the definition of addition and multiplication on C.

Remark 1.45. For i := (0, 1), we have i2 = (0, 1) · (0, 1) = (0 − 1, 0 + 0) = (−1, 0), and for
a, b ∈ R we have G(a) + G(b) · i = (a, b). From now on we shall consider R as a subfield of
C and drop the embedding G in our description of complex numbers. Hence, we shall write
a+ bi = (a, b) ∈ C.

Definition 1.46. For z = a+ bi ∈ C with a, b ∈ R we shall call a = <(z) ∈ R the real part of
z and b = =(z) ∈ R the imaginary part of z. The conjugate of z is z = a− bi and the absolute
value of z is |z| =

√
a2 + b2. The argument of z 6= 0 is arg(z) = z · |z|−1, so z = |z| arg(z).

Proposition 1.47. For all z = a+ bi, w = c+ di ∈ C with a, b, c, d ∈ R we have

<(z + w) = <(z) + <(w)

=(z + w) = =(z) + =(w)

|<(z)| ≤ |z|
|=(z)| ≤ |z|
z + w = z + w

zw = z w

zz = |z|2

z + z = 2<(z)

z − z = 2i=(z)

|z||w| = |zw|
|z|+ |w| ≥ |z + w|

z−1 =
1

|z|2
z if z 6= 0.
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Proof. All the results follow from computation. As example, we shall prove |z|+ |w| ≥ |z+w|.
To this end, we compute

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + wz + zw + ww = |z|2 + 2<(zw) + |w|2

≤ |z|2 + 2|zw|+ |w|2 = |z|2 + 2|z| |w|+ |w|2 = |z|2 + 2|z| |w|+ |w|2 = (|z|+ |w|)2.

It remains to argue that if a, b ≥ 0 satisfy a2 ≥ b2 > 0, then a ≥ b. Assume b > a. Since R is
an ordered field, we conclude that b − a > 0 and b + a > 0. Using again that R is an ordered
field, we conclude that

0 < (b− a)(b+ a) = b2 − a2

and, hence, b2 > a2, a contradiction.

Remark 1.48. A more geometrical treatise of complex numbers is contained in the homework.
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2. CONVERGENCE OF SEQUENCES IN METRIC SPACES
AND NUMERIC SERIES

The goal of this section is to discuss real and complex valued sequences and series. Many results
concerning real and complex sequences hold in a more general setup, that is, in metric spaces.
In order to avoid the repetition of arguments, we shall phrase some results in the metric space
setup, nevertheless, at this point of time it might be best to think of only two metric spaces,
that is, the space of real and the space of complex numbers. In these special cases, the distance
between two numbers x and y is d(x, y) = |x− y|.

2.1. Sequences in metric spaces

Definition 2.1. A set X together with a binary function d : X ×X −→ R is a metric space
with metric d if d satisfies

i. d(x, x̃) > 0 if x 6= x̃ and d(x, x) = 0 for all x ∈ X,

ii. d(x, x̃) = d(x̃, x) for all x, x̃ ∈ X,

iii. d(x, ˜̃x) ≤ d(x, x̃) + d(x̃, ˜̃x) for all x, x̃, ˜̃x ∈ X.

The function d is called metric or distance function on the set X and we shall denote a metric
space by (X, d) or simply by X if it is well understood which metric d on X is being considered.

Examples 2.2. i. The set of real numbers R with metric d2(x, y) = |x− y| is a metric space.
If no other metric is explicitly mentioned, we shall always consider R to be equipped with
the euclidean metric d2.

ii. The set of complex numbers C with metric d2(x, y) = |x−y| =
√

(Re(x− y))2 + (Im(x− y))2

is a metric space. If no other metric is explicitly mentioned, we shall always consider C
to be equipped with the d2 metric.

iii. Given any set X, we can define a metric on X via

d0(x, y) =

{
0 if x = y;

1 else
for x, y ∈ X.

This metric is called discrete metric on X.

Definition 2.3. A sequence (xn)n∈N in R is said to converge to x0 ∈ R if for all ε > 0 exists
N ∈ N such that

|xn − x0| < ε for all n ≥ N.

If (xn)n∈N converges to x0 in R we write lim
n→∞

xn = x0, or xn
n→∞−−−→ x0, or simply xn −→ x0.

The element x0 ∈ R is called limit of (xn)n∈N in R.
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Definition 2.4. A sequence (xn)n∈N in a metric space (X, d) is said to converge to x0 ∈ X if
for all ε > 0 (that is, ε ∈ R with ε >R 0R) exists N ∈ N such that

d(xn, x0) < ε for all n ≥ N.

If (xn) converges to x0 in (X, d) we write lim
n→∞

xn = x0, or xn
n→∞−−−→ x0, or simply xn −→ x0.

The element x0 ∈ X is called limit of (xn) in (X, d).

Examples 2.5. i. The sequence ( 1
n
)n∈N in (R, d2) converges to 0 ∈ R.

ii. The sequence ( 1
n
)n∈N in (R, d0) does not converge to any x0 ∈ R, since for any x0 ∈ R we

have d0(x0, xn) < 1
2

for at most one index n ∈ N.

Proposition 2.6. A sequence (zn)n in C converges in (C, d2) (or simply in C) if and only if

Re(zn)
n→∞−−−→Re(z0) in R

and

Im(zn)
n→∞−−−→Im(z0) in R.

That is, sequences converge in C if and only if both, real and imaginary part converge in R.
Therefore, a real valued sequence converges in R if and only if it converges in C.

Proof. Suppose zn −→ z0. We will show that <(zn)
n→∞−−−→Re(z0) in R. Fix ε > 0 and choose

Nε ∈ N with |zn − z0| < ε for all n ≥ Nε. But then

|<(zn)−<(z0)| = |<(zn − z0)| ≤ |zn − z0| < ε, n ≥ Nε,

so <(zn)
n→∞−−−→Re(z0) in R. Replacing Re by Im in the above shows the convergence of the

imaginary part.

Now, we suppose <(zn)
n→∞−−−→Re(z0) and =(zn)

n→∞−−−→ =(z0). Fix ε > 0 and choose Nr so
that |<(zn) − <(z0)| < ε

2
for all n ≥ Nr and Ni with |=(zn) − =(z0)| < ε

2
for all n ≥ Ni. Set

Nε = max{Nr, Ni}. Then

|zn − z0| = |<(zn) + i=(zn)− (<(z0) + i=(z0))|
= |(<(zn)−<(z0) + i(=(zn)−=(z0))|
≤ |<(zn)−<(z0)|+ |i(=(zn)−=(z0))|
= |<(zn)−<(z0)|+ |=(zn)−=(z0)|

<
ε

2
+
ε

2
= ε, n ≥ Nε.

Theorem 2.7. The limit of a converging sequence in a metric space (X, d) is unique, that is,
if xn

n→∞−−−→ x0 ∈ X and xn
n→∞−−−→ x̃0 ∈ X, then x0 = x̃0.
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Proof. Let xn
n→∞−−−→ x0 and xn

n→∞−−−→ x̃0. Fix ε > 0 and choose Nε so that |xn − x0| < ε
2

and
|xn − x̃0| < ε

2
for all n ≥ Nε. Then

0 ≤ d(x0, x̃0) ≤ d(x0, xNε) + d(xNε , x̃0) < ε.

We conclude that d(x0, x̃0) < ε for all ε > 0, hence, d(x0, x̃0) = 0 and x0 = x̃0 follows.

Definition 2.8. A subset S in a metric space (X, d) is called bounded if there is x0 ∈ X and
M ∈ R+ such that d(x0, x) ≤M for all x ∈ S.

A sequence (xn) is bounded in (X, d) if its range {xn : n ∈ N} is a bounded set in (X, d).

Theorem 2.9. Every converging sequence (xn) in a metric space (X, d) is bounded.

Proof. As (xn) is converging, there exists x0 ∈ X and N ∈ N with d(xn, x0) < 1 for all
n ≥ N . Set M = max{d(x1, x0), d(x2, x0), d(x3, x0), . . . , d(xN−1, x0)} + 1. Clearly, we have
d(x0, xn) < M <∞. for all n ∈ N .

Definition 2.10. A sequence (xn) in R is

i. monotonically increasing if xn ≤ xn+1 for all n ∈ N,

ii. strictly monotonically increasing if xn < xn+1 for all n ∈ N,

iii. monotonically decreasing if xn ≥ xn+1 for all n ∈ N, and

iv. strictly monotonically decreasing if xn > xn+1 for all n ∈ N.

A sequence is called monotone if it is either monotonically increasing or decreasing.

Theorem 2.11. Monotone sequences converge in R if and only if they are bounded.

Proof. Converging sequences are bounded, so all that remains to be shown is that a sequence
which is monotonic and bounded does converge.

Let (xn) be a monotonically increasing, bounded sequence. The set {xn, n ∈ N} 6= ∅ is
bounded and R has the least upper bound property, so x0 = sup{xn, n ∈ N} exits. We claim
that xn

n→∞−−−→ x0. To this end, fix ε > 0. As x0 is the least upper bound of {xn, n ∈ N}, x0− ε
is not an upper bound of {xn, n ∈ N} and there exists some Nε > 0 with xNε > x0 − ε. Now,
for n ≥ Nε we have

x0 − ε < xNε ≤ xn ≤ x0 < x0 + ε.

Substracting x0, we get −ε < xn − x0 < ε which is |xn − x0| < ε for all n ≥ Nε.

Theorem 2.12. Algebraic Limit Theorem. If an
n→∞−−−→ a0 and bn

n→∞−−−→ b0 in C. Then

i. can
n→∞−−−→ ca0, c ∈ C,

ii. (an + bn)
n→∞−−−→ a0 + b0,

iii. anbn
n→∞−−−→ a0b0, and
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iv. 1
an

n→∞−−−→ 1
a0

if a0, an 6= 0 for n ∈ N.

Proof. Statement i is simple, statement ii is proven similarly to Proposition 2.6. For statement
iii use the boundedness of converging sequences to choose M such that |an| ≤M and |b0| ≤M
for all n ∈ N. Fix ε > 0 and Nε with |an − a0| < ε

2M
and |bn − b0| < ε

2M
for all n ≥ Nε. Then

|anbn − a0b0| = |anbn − anb0 + anb0 − a0b0| ≤ |anbn − anb0|+ |anb0 − a0b0|

= |an||bn − b0|+ |b0||an − a0| ≤M
ε

2M
+M

ε

2M
= ε, n ≥ Nε.

Let us now show statement iv. As an
n→∞−−−→ a0 and |a0|/2 > 0, there exists N such that

|an − a0| ≤ |a0|/2 for n ≥ N , so an ≥ |a0|/2 for n ≥ N .

Fix ε > 0 and pick Nε ∈ N with Nε ≥ N and |an − a0| < ε|a0|2/w for all n ≥ Nε. Then∣∣∣∣ 1

an
− 1

a0

∣∣∣∣ =

∣∣∣∣a0 − an
ana0

∣∣∣∣ = |a0 − an|
1

|an||a0|
<
ε|a0|2

2

2

|a0|
1

|a0|
= ε, n ≥ Nε.

Theorem 2.13. Order Limit Theorem. If an
n→∞−−−→ a0 and bn

n→∞−−−→ b0 in R with an ≤ bn
for all n ∈ N, then a0 ≤ b0.

Proof. Assume b0 < a0. Then a0−b0
2

> 0 and there exists N with |an − a0| < a0−b0
2

and

|bn − b0| < a0+b0
2

for all n ≥ N . But this implies in particular

bN < b0 +
a0 − b0

2
=
a0 + b0

2
= a0 −

a0 − b0

2
< aN ,

a contradiction to an ≤ bn for all n ∈ N.

Theorem 2.14. Squeezing Theorem. If an ≤ bn ≤ cn for all n ∈ N and an
n→∞−−−→ a0 and

cn
n→∞−−−→ a0 in R, then (bn) converges with bn

n→∞−−−→ a0.

Proof. Homework.

Examples 2.15. i. For p > 0 we have lim
n→∞

1

np
= 0.

ii. For p > 0 we have lim
n→∞

n
√
p = 1.

iii. lim
n→∞

n
√
n = 1.

iv. For p > 0 and α ∈ R we have lim
n→∞

nα

(1 + p)n
= 0.

v. If x ∈ C with |x| < 1, then lim
n→∞

xn = 0.

22



Proof. These examples are taken from Rudin’s book Principles of Mathematical Analysis. We
shall only discuss ii here.

The result is obvious for p = 1. For p > 1 we have n
√
p > 1 (since else p ≤ 1) and

xn = n
√
p− 1 > 0. We have

p = (xn + 1)n =
n∑
k=0

(
n

k

)
xkn 1n−k ≥ 1 + nxn,

where we used the non negativity of the summands in the binomial formula. We conclude
that 0 ≤ xn ≤ p−1

n
. Clearly, with an = 0 for n ∈ N and bn = p−1

n
we have an

n→∞−−−→ 0 and

bn
n→∞−−−→ 0, so the squeezing theorem implies xn

n→∞−−−→ 0. Using the algebraic limit theorem
with the sequence cn = 1, we obtain that n

√
p = xn + 1

n→∞−−−→ 0 + 1 = 1.

Definition 2.16. Let (xn) be a sequence in (X, d) and let n1 < n2 < n3 < . . . be a strictly
increasing sequence of natural numbers. Then (xnk)k∈ N is called subsequence of (xn).

Example 2.17. Given the sequence 1, 1
2
, 1

3
, 1

4
, 1

5
, . . ., we have 1

2
, 1

4
, 1

6
, . . . is a subsequence of

1, 1
2
, 1

3
, 1

4
, 1

5
, . . ., but 1, 1

2
, 1

2
, 1

3
, 1

4
, 1

5
. . . and 1

2
, 1, 1

4
, 1

3
, 1

6
, 1

5
. . . are not. In general, (xnk)k∈N with

xnk = x2k is a subsequence of (xn).

Theorem 2.18. Every subsequence (snk)k of a convergent sequence (sn)n in (X, d) converges
to the same limit as (sn)n.

Proof. Fix ε > 0 and choose Nε with d(sn, s0) < ε for all n ≥ N . Then d(snk , s0) < ε for all
k ≥ N as nk ≥ k ≥ N .

Example 2.19. The sequence 1
2
,

1

2 + 1
2

,
1

2 + 1
2+ 1

2

,
1

2 + 1
2+ 1

2+1
2

, ... , converges to
√

2− 1 in R.

Proof. Boundedness: The sequence is given by x1 = 1
2

and xn+1 = 1
2+xn

, n ≥ 1, so clearly

xn ∈ (0, 1
2
], that is, (xn) is bounded. In fact, xn ∈ (0, 1

2
] implies that xn ≥ 1

2+ 1
2

= 2
5
, so

xn ∈ [2
5
, 1

2
] for all n ∈ N.

Monotonicity: If the sequence was monotone, then boundedness would imply convergence.
But looking at the first terms, 1

2
= 0.5, 2

5
= 0.4, 5

12
= 0.416, 12

29
= 0.4137..., 29

70
= 0.4142..., we

realize that it is not monotone.

But, x1 ≥ x3 ≥ x5 and x2 ≤ x4 ≤ x6. We claim that x2k+3 ≤ x2k+1 and x2k+2 ≥ x2k

for all k ≥ 0, that is, the subsequence with odd indices is monotonically decreasing and the
subsequence with even induces is monotonically increasing. This follows from an inductive
argument. We already realized that x1 ≥ x3 . The fact that

x2k+4 − x2k+2 =
1

2 + x2k+3

− 1

2 + x2k+1

=
2 + x2k+1 − (2 + x2k+3)

(2 + x2k+3)(2 + x2k+1)
=

x2k+1 − x2k+3

(2 + x2k+3)(2 + x2k+1)

then confirms that x4 ≥ x2 and

x2k+1 − x2k+3 =
1

2 + x2k

− 1

2 + x2k+2

=
2 + x2k+2 − (2 + x2k)

(2 + x2k)(2 + x2k+2)
=

x2k+2 − x2k

(2 + x2k)(2 + x2k+2)
,

23



implies x5 ≤ x3. Using the two formulas above in alternating fashion we obtain the claimed
monotonicity.

Convergence and limit: We conclude that the subsequences {x2k+1}k∈N and {x2k}k∈N converge
to, say xodd and xeven in [2

5
, 1

2
] respectively. The algebraic limit theorem implies that

xeven = lim
k→∞

x2k+2 = lim
k→∞

1

2 + 1
2+x2k

=
1

2 + 1
2+limk→∞ x2k

=
1

2 + 1
2+xeven

=
2 + xeven
5 + 2xeven

,

so xeven solves the quadratic equation x2+2x−1 = 0, that is, (x−1)2 = 2. This equation has two
real solutions, namely

√
2− 1 and −

√
2− 1. As xeven ∈ [2

5
, 1

2
] we conclude that xeven =

√
2− 1.

The same arguments show that xodd =
√

2− 1.

Now, it is easy to show that if limk→∞ x2k = limk→∞ x2k+1 then (xn) converges to the same
limit.

Theorem 2.20. Bolzano–Weierstrass Theorem. Every bounded sequence (sn)n in R
has a converging subsequence.

Proof. As (sn)n is bounded, there exists M > 0 such that sn ∈ I0 = [−M,M ] for all n ∈ N.
Then, either sn ∈ [−M, 0] for infinitely many n ∈ N or sn ∈ [−M, 0] for infinitely many n ∈ N.
Let I1 be one of the two intervals that is met infinitely often, and n1 ∈ N so that sn1 ∈ I1. We
split I1 into two intervals of length M/2 and choose I2 to be one the two intervals, one that is
met infinitely often by (sn). Pick n2 > n1 so that sn2 ∈ I2. Continue the process.

As the intervals In are nested, we have A =
⋂
n∈N In 6= ∅. Pick s0 ∈ A. We claim that

snk
k→∞−−−→ s0. To this end, pick ε > 0 and choose K so that 2−K+1M < ε. For k ≥ K we have

snk ∈ IK which also contains s0. As any two points in IK have distance at most 2−K+1M , this
implies |snk − s0| ≤ 2−K+1M < ε for k > K. (Note that the uniqueness of limits implies that
indeed A = {s0}.)

2.2. The extended real number system, lim sup and lim inf

Definition 2.21. The extended real number system is the linear ordered set R∗ = R∪{+∞,−∞}
with −∞ <R∗ x <R∗ y <R∗ +∞ for all x <R y in R.

Note that the field structure on R cannot be extended (in a meaningful way) to R∗. Nev-
ertheless, it is customary to set

x+ (+∞) = +∞ for x ∈ R,
x+ (−∞) = x− (+∞) = −∞ for x ∈ R, and

x

+∞
=

x

−∞
= 0 for x ∈ R.

If x > 0 we set x · (+∞) = +∞, x · (−∞) = −∞, if x < 0 then x · (+∞) = −∞ and
x · (−∞) = +∞.

Further, if for all M ∈ R+ there exists N ∈ N such that

xn ≥M for all naturals n ≥ N,
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then we write lim
n→∞

xn = ∞, or xn
n→∞−−−→ ∞, or simply xn −→ ∞. Correspondingly, if for all

M ∈ R+ there exists N ∈ N such that

xn ≤ −M for all naturals n ≥ N,

then we write lim
n→∞

xn = −∞, or xn
n→∞−−−→ −∞, or xn −→ −∞.

Proposition 2.22. The linearly ordered set R∗ has the least upper bound property. Since in
addition every subset of R∗ is bounded above by ∞, each non–empty subset of R∗ has a least
upper bound.

Definition 2.23. Let (xn) be a sequence of real numbers. Set

E(xn) = {x0 ∈ R∗ : there exists a subsequence (xnk) of (xn) with xnk
k→∞−−−→ x0} ⊆ R∗

and define

lim sup
n→∞

xn = supE(xn) = l.u.b.E(xn) ∈ R∗, and

lim inf
n→∞

xn = inf E(xn) = − l.u.b.(−E(xn)) ∈ R∗.

Any x0 ∈ E(xn) ∩ R is called limit point of the real valued sequence (xn).

Remark 2.24. lim supn→∞ xn and lim infn→∞ xn are well defined since the set of limit points
E(xn) is never empty. Indeed, if its range {xn, n ∈ N} is bounded, then exists a subsequence

converging to some x0 ∈ R. If not, exists (xnk)k with xnk
k→∞−−−→ +∞ or xnk

k→∞−−−→ −∞
Examples 2.25. i. Choose (xn) such that {xn, n ∈ N} = Q. Then lim sup

n→∞
xn = +∞ and

lim inf
n→∞

xn = −∞.

ii. Let xn = (−1)n
(
1 + 1

n

)
for n ∈ N. Then lim sup

n→∞
xn = +1 and lim inf

n→∞
xn = −1.

Lemma 2.26. Let (xn) be a sequence in R and s ∈ R. If s > lim supn→∞ xn, then exists N ∈ N
such that xn ≤ s for all n ≥ N . If s < lim infn→∞ xn, then exists N ∈ N such that xn ≥ s for
all n ≥ N .

Proof. Fix (xn) and s ∈ R with s > lim supn→∞ xn. We shall show that there exists N ∈ N
such that xn ≤ s for all n ≥ N . The second assertion follows verbatim.

Suppose that for any N ∈ N there exists an index nN ≥ N such that xnN > s. In this case,
we can pick n1 such that xn1 > s, then n2 ≥ n1 +1 with xn2 > s, and, inductively nk+1 ≥ nk+1,
k ∈ N.

Since (xnk) is a subsequence of (xn) and, therefore, any subsequence of (xnk) is also a
subsequence of (xn), we have E(xnk )k ⊆ E(xn)n . Pick y ∈ E(xnk )k 6= ∅ and observe that an
application of the order limit theorem to subsequences of (xnk)k implies y ≥ s since xnk ≥ s for
all k ∈ N. The fact that y ∈ E(xn)n implies lim supn→∞ xn ≥ y ≥ s > lim supn→∞ xn, which is
nonsense. Contradiction!
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Remark 2.27. A frequent MISTAKE is to assume that if s ≥ lim supn→∞ xn, then exists N such
that xn ≤ s for all n ≥ N . For example, choose xn = 1

n
. Then lim supn→∞ xn = sup{0} = 0 ≤ 0

but 1
n
> 0 for all n ∈ N.

Theorem 2.28. Order Limit Theorem for lim sup and lim inf. If an ≤ bn for all n ∈ N,
then lim supn→∞ an ≤ lim supn→∞ bn and lim infn→∞ an ≤ lim infn→∞ bn.

Proof. If lim supn→∞ an > lim supn→∞ bn, then lim supn→∞ an > α > lim supn→∞ bn for some
α ∈ R. But then exists N such that bn ≤ α for all n ≥ N . This implies that all limit points of
(bn) are bounded above by α, in particular lim supn→∞ bn ≤ α, a contradiction. The proof for
lim inf is analogous.

Example 2.29. Let (an) be a sequence in R and set bn = a1+a2+...+an
n

. Then lim supn→∞ bn ≤
lim supn→∞ an.

Proof by contradiction. Assume lim supn→∞ bn > α > lim supn→∞ an. Then Lemma 2.26
implies that for some N ∈ N we have an ≤ α for all n ≥ N . Then, for n ≥ N + 1,

bn =
a1 + a2 + . . .+ an

n
=
a1 + a2 + . . .+ aN

n
+
aN+1 + aN+2 + . . .+ an

n

≤ a1 + a2 + . . .+ aN
n

+
n−N
n

α =
a1

n
+
a2

n
+ . . .+

aN
n

+
(
1− N

n

)
α = cn.

Hence,
lim sup
n→∞

bn ≤ lim sup
n→∞

cn = lim
n→∞

cn = α,

a contradiction.

Theorem 2.30. Let (xn) be a sequence in R. Then for x0 ∈ R∗ we have lim
n→∞

xn = x0 if and

only if lim inf
n→∞

xn = lim sup
n→∞

xn = x0.

Proof. Let us first assume lim
n→∞

xn = x0 ∈ R∗. Then E(xn)n = {x0} and therefore lim inf
n→∞

xn =

lim sup
n→∞

xn = x0.

Let us now assume lim inf
n→∞

xn = lim sup
n→∞

xn = x0 with x0 ∈ R. Fix ε > 0 and use Lemma 2.26

to obtain N ∈ N such

x0 − ε < lim inf
n→∞

xn −
ε

2
≤ xn ≤ lim sup

n→∞
xn +

ε

2
< x0 + ε for all n ≥ N.

Since ε > 0 was chosen arbitrarily, we have that (xn) converges and lim
n→∞

xn = x0.

Let us assume lim inf
n→∞

xn = lim sup
n→∞

xn = +∞. Lemma 2.26 implies that for all M < ∞
exists N ∈ N with xn > M for n ≥ N . This gives lim

n→∞
xn =∞.

The case lim inf
n→∞

xn = lim sup
n→∞

xn = −∞ can be treated in the same way as the case

lim inf
n→∞

xn = lim sup
n→∞

xn = +∞.
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2.3. Cauchy sequences and complete metric spaces

Definition 2.31. A sequence (xn) in a metric space (X, d) is called Cauchy sequence if for all
ε > 0 there exists N ∈ N such that d(xn, xm) < ε for all n,m ≥ N .

Proposition 2.32. Every converging sequence in a metric space is a Cauchy sequence.

Proof. Left to the reader.

Proposition 2.33. Every Cauchy sequence in a metric space is bounded.

Proof. Pick N ∈ N so that d(xn, xm) < 1 for all n > m. Then,

d(xN , xn) ≤M := max{1, d(xN , x1), d(xN , x1), . . . , d(xN , xN−1)} <∞, n ∈ N.

Definition 2.34. A metric space (X, d) is called complete if all Cauchy sequences in X converge
in X.

Remark 2.35. Not every metric space is complete. For example, consider the punctured real line
R \ {0} with d(x, y) = |x− y|. The sequence an = 1

n
is Cauchy in R \ {0} with d(x, y) = |x− y|

since for fixed ε > 0 we can pick N > 1
ε

and get

d(xn, xm) = |xn − xm| =
∣∣∣∣ 1n − 1

m

∣∣∣∣ =

∣∣∣∣m− nmn

∣∣∣∣ < 1

max{n,m}
≤ 1

N
< ε

for all n,m ≥ N . Nevertheless, (an) does not converge in R \ {0}. Indeed, if it would converge
to say α ∈ R \ {0}, then it would also converge to α in R. But, clearly, lim 1

n
= 0 in R, so by

uniqueness of limits in metric spaces we conclude α = 0, a contradiction.

Proposition 2.36. Let (X, d) be a metric space and (xn) be a Cauchy sequence with a con-

verging subsequence, that is there exists (xnk) with xnk
k→∞−−−→ x0. Then xn

n→∞−−−→ x0.

Proof. Fix ε > 0 and pick Nε ∈ N with d(xn, xm) < ε/2 for all n,m ≥ N . Choose K ∈ N with
nK ≥ Nε and d(xnK , x0) < ε/2. Then,

d(xn, x0) ≤ d(xn, xnK ) + d(xnK , x0) ≤ ε

2
+
ε

2
= ε, n ≥ N.

Theorem 2.37. R and C are complete.

Proof. Let (xn) be a Cauchy sequence in R. (xn) is bounded, hence exists a converging subse-
quence. By the above, this implies that (xn) converges. So R is complete.

If (xn) is Cauchy in C, then (<xn) and (=xn) are Cauchy in R. By completeness of R
it follows that (<xn) converges to some α and (=xn) to some β, but then (xn) converges to
α + iβ.
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2.4. Real and complex series

Definition 2.38. Let (an) be a sequence in C. We call the expression
∞∑
n=1

an infinite series in

C. Further, SN = a1 + a2 + . . .+ aN =
N∑
n=1

an is called the N–th partial sum of
∞∑
n=1

an.

If the sequence (SN)N∈N of partial sums converges, we set
∞∑
n=1

an = lim
N→∞

SN . (Be aware of

the abuse of notation:
∞∑
n=1

an denotes a series as well as the limit of its partial sums in case of

its convergence).

Example 2.39. Let a ∈ C with |a| < 1. Then SN =
N∑
n=0

an =
aN+1 − 1

a− 1
and

∞∑
n=0

an =
1

1− a
.

Definition 2.40. Set e =
∞∑
n=0

1

n!
∈ R.

Remark 2.41. e is well defined:

SN =
N∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

2
· 1

3
+

1

2
· 1

3
· 1

4
+ . . .+

1

N !

< 1 + 1 +
1

2
+

1

4
+

1

8
+ . . .+

1

2N−1

< 1 +

(
∞∑
n=0

(
1

2

)n)
= 1 +

1

1− 1
2

= 3

Hence, (SN) is bounded. Since (SN) is also monotone, the sequence of partial sums converges

which is the defining property for the series
∞∑
n=0

1

n!
to converge.

Theorem 2.42. lim
n→∞

(
1 +

1

n

)n
= e.
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Proof. We compute

tN =

(
1 +

1

N

)N
=

N∑
n=0

(
N

n

)
1

N

n

=

(
N

0

)
1

N

0

+

(
N

1

)
1

N
+

(
N

2

)
1

N

2

+

(
N

3

)
1

N

3

+ . . .+

(
N

N

)
1

N

N

= 1 +
N

N
+
N(N − 1)

2!

1

N

2

+
N(N − 1)(N − 3)

3!

1

N

3

+ . . .+
N(N − 1)(N − 3) · . . . · 1

N !

1

N

N

= 1 + 1 +
1

2!

N − 1

N
+

1

3!

N − 1

N

N − 2

N
+ . . .+

1

N !

N − 1

N

N − 2

N
· . . . · 1

N

= 1 + 1 +
1

2!
(1− 1

N
) +

1

3!
(1− 1

N
)(1− 2

N
) + . . .+

1

N !
(1− 1

N
)(1− 2

N
) · . . . · (1− N − 1

N
)

≤ 1 + 1 +
1

2!
+

1

3!
+ . . .+

1

N !
=

N∑
n=0

1

n!
= SN .

We conclude that lim supN→∞ tN ≤ lim supN→∞ SN = limN→∞ SN = e.

Clearly, truncation shows that for all M ≤ N we have

tN ≥ 1 + 1 +
1

2!
(1− 1

N
) +

1

3!
(1− 1

N
)(1− 2

N
) + . . .+

1

M !
(1− 1

N
)(1− 2

N
) · . . . · (1− N −M

N
).

which leads to

lim inf
N→∞

tN ≥ lim inf
N→∞

1 + 1 +
1

2!
(1− 1

N
) +

1

3!
(1− 1

N
)(1− 2

N
)+

. . .+
1

M !
(1− 1

N
)(1− 2

N
) · . . . · (1− N −M

N
)

= 1 + 1 +
1

2!
+

1

3!
+ . . .+

1

M !
= SM .

As this holds for all M , we have lim infN→∞ tN ≥ limM→∞ SM = e.

Theorem 2.43. e is irrational.

Proof. See Rudin.

Theorem 2.44. Cauchy Criterion. The complex series
∞∑
n=1

an converges in C if and only

if for all ε > 0 there exists N ∈ N such that∣∣∣∣∣
m∑
n=k

an

∣∣∣∣∣ < ε for all m ≥ k ≥ N.

Proof. With SN =
∑N

n=1 an, we have
∑m

n=k an = Sm−Sk−1, so the Cauchy criterion establishes
that the partial sums form a Cauchy sequence. Completeness of C then guarantees convergence
of the partial sums.
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Proposition 2.45. If
∞∑
n=1

an converges in C then an
n→∞−−−→ 0.

Proof. This follows from the Cauchy Criterion. (Why?)

Theorem 2.46. Dominated Convergence Theorem (DCT). Let (an) be a sequence in
C.

i. If there is a real valued, non–negative sequence (bn) with
∞∑
n=1

bn converges and |an| ≤ bn

for all n ≥ N0, n ∈ N, then
∞∑
n=1

an converges.

ii. If an ≥ bn > 0 for n ≥ N0, n ∈ N and if
∞∑
n=1

bn diverges, then
∞∑
n=1

an diverges.

Proof. Part i. follows from Cauchy Criterion since∣∣∣∣∣
m∑
n=k

an

∣∣∣∣∣ ≤
m∑
n=k

|an| ≤
m∑
n=k

bn =

∣∣∣∣∣
m∑
n=k

bn

∣∣∣∣∣ .
Part ii. follows from part i. as convergence of

∞∑
n=1

an would imply convergence of
∞∑
n=1

bn.

As a direct consequence, we have the following.

Corollary 2.47. Let (an) be a sequence in C. If
∞∑
n=1

|an| converges, so does
∞∑
n=1

an.

Definition 2.48. A complex valued series
∞∑
n=1

an with
∞∑
n=1

|an| converges, is called absolutely

convergent. If
∞∑
n=1

an converges, but
∞∑
n=1

|an| does not converge, the we call
∞∑
n=1

an conditionally

convergent .

Definition 2.49. Let (cn) be a sequence of complex numbers and let π : N→ N be bijective.

Then we call the series
∞∑
n=1

cπ(n) a rearrangement of the series
∞∑
n=1

cn.

Theorem 2.50. i. If
∞∑
n=1

cn converges absolutely, then any rearrangement
∞∑
n=1

cπ(n) con-

verges absolutely to the same limit, that is
∞∑
n=1

cπ(n) =
∞∑
n=1

cn for any bijective π : N −→ N.
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ii. If (cn)n is real and if
∞∑
n=1

cn converges conditionally, then for any x ∈ R exists bijective

πx : N→ N such that
∞∑
n=1

cπx(n) = x.

Proof. We shall only prove the first part, the second part is assigned as homework problem.

Fix ε > 0. Since
∞∑
n=1

|cn| converges, the Cauchy criterion provides us with some M ∈ N such

that
k∑

n=m

|cn| <
ε

3
for all k,m ≥ M . Hence,

∞∑
n=M

|cn| <
ε

2
. Now, let N = max{n ∈ N : π(n) <

M}, so
{1, 2, . . . ,M − 1} ⊆ {π(n), n = 1, 2, . . . , N}

and observe that for for p, q ≥ N , we have

q∑
n=p

|cπ(n)| ≤
∞∑
n=N

|cπ(n)| ≤
∞∑

n=M

|cn| <
ε

2
< ε

which, by means of the Cauchy criterion, shows absolute convergence of
∞∑
n=1

cπ(n).

To see that indeed
∞∑
n=1

cπ(n) converges to c =
∞∑
n=1

cn, we first observe that, clearly,

|c−
M−1∑
n=1

cn| = lim
R→∞

|
R∑
n=1

cn −
M−1∑
n=1

cn| = lim
R→∞

|
R∑

n=M

cn| ≤ lim
R→∞

R∑
n=M

|cn| =
∞∑

n=M

|cn| <
ε

2
.

We now compute for p > N ,

|c−
p∑

n=1

cπ(n)| = |c−
M−1∑
n=1

cn|+ |
M−1∑
n=1

cn −
p∑

n=1

cπ(n)|

<
ε

2
+ |
∑
n∈A

cn| ≤
ε

2
+

∞∑
n=M

|cn| <
ε

2
+
ε

2

where
A = {π(n), n = 1, 2, . . . , p} \ {1, 2, . . . ,M − 1}.
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Example 2.51. Take S =
∞∑
n=1

(−1)n
1

n
6= 0. Consider:

S = −1 +
1

2
− 1

3
+

1

4
− 1

5
+

1

6
− 1

7
+

1

8
− . . . ≤ −1

2

+
1

2
S = −1

2
+

1

4
− 1

6
+ . . .+

1

8
−−− − −−−−−−−−−−−−−−−−−−−−−

=
3

2
S = −1 + 0− 1

3
+

1

2
− 1

5
+ 0− 1

7
+

1

4
+ . . .

but
3

2
S 6= −1 +

1

2
− 1

3
+

1

4
− 1

5
+

1

6
− 1

7
+

1

8
− . . . = S

since S 6= 0. Hence,
∞∑
n=1

(−1)n
1

n
converges conditionally.

The following criterion is helpful to prove convergence of series which do not converge
absolutely.

Theorem 2.52. Leibniz Criterion for Alternating Series. Let (an) be a decreasing

sequence of positive real numbers with an −→ 0. Then
∞∑
n=0

(−1)nan converges.

Proof. The sequence of partial sums

S2N+1 = a0 − a1 + a2 − a3 + . . .+ a2N−2 − a2N−1 + a2N − a2N+1

= (a0 − a1) + (a2 − a3) + . . .+ (a2N−2 − a2N−1) + (a2N − a2N+1)

= a0 − (a1 − a2)− (a3 − a4)− . . .− (a2N−1 − a2N)− a2N+1

is monotonically increasing and bounded above by a0. Hence S2N+1 converges to some s ∈ R.
The algebraic limit theorem implies that S2N = S2N+1 + a2N+1 converges to s+ 0 = s. As the
summands with even index and the summands of odd index both converge to the same limit,
we conclude thate SN converges to that limit s too.

Theorem 2.53. Cauchy Condensation Theorem. Suppose a1 ≥ a2 ≥ . . . ≥ 0. Then
∞∑
n=1

an converges if and only if
∞∑
k=1

2ka2k converges.

Proof. See homework.

Proposition 2.54. For p ∈ R we have
∞∑
n=1

1

np
converges if and only if p > 1.
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Proof. The sequence of summands decreases to 0, so we can use the Cauchy Condensation

Theorem to establish convergence of
∞∑
n=1

1

np
by observing that

∞∑
k=1

2k
1

(2k)p
=
∞∑
k=1

2k(1−p)

converges if and only if p > 1.

Theorem 2.55. Root Test. Given a complex series
∑
an, set α = lim sup

n→∞

n
√
|an|.

i. If α < 1, then
∑
an converges absolutely.

ii. If α > 1, then
∑
an diverges.

iii. If α = 1, then
∑
an might converge or diverge.

Proof. This follows from the dominated convergence theorem. Indeed, if α = lim sup
n→∞

n
√
|an| <

β < 1, then Lemma 2.26 implies that for some N ∈ N, we have n
√
|an| ≤ β for all n ≥ N . But

then |an| ≤ βn for n ≥ N and convergence of
∑
βn, |β| < 1 establishes i.

If α > 1, then |an| > 1 for infinitely many n ∈ N, so an does not converge to 0, a necessary
condition for

∑
an to converge.

For iii., note that lim sup
n→∞

n

√
1

n
=

1

limn→∞
n
√
n

= 1 but
∑

1
n

does not converge.

On the other hand, lim sup
n→∞

n

√
1

n2
= 1 and

∑ 1

n2
does converge.

Theorem 2.56. Ratio Test. Let
∞∑
n=1

an be a series of complex numbers.

i. If lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1, then
∞∑
n=1

an converges absolutely.

ii. If there is N ∈ N with
∣∣∣an+1

an

∣∣∣ ≥ 1 for all n > N , then
∞∑
n=1

an diverges.

Proof. If lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < β < 1, then for some N ∈ N, we have |an+1

an
| ≤ β, and, hence,

|an+1| ≤ β|an| for n ≥ N . This implies that |an| ≤ |aN |βN−n for n ≥ N and we can apply again
the dominated convergence theorem.

For ii. observe that that the condition implies |an| ≥ |aN | > 0 for all n ≥ N , so lim an = 0
is violated once more.
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Examples 2.57. i. Let an = 1
n
. Then lim sup

n→∞

an+1

an
= lim sup

n→∞

n

n+ 1
= lim

n→∞

n

n+ 1
= 1, but

the series
∞∑
n=1

1

n
does not converge.

ii. Let bn = 1
n2 . Then lim sup

n→∞

bn+1

bn
= lim sup

n→∞

n2

(n+ 1)2
= lim

n→∞

n2

(n+ 1)2
= 1 and

∞∑
n=1

1

n2
does

converge.

Definition 2.58. The series
∞∑
n=0

cnz
n is called a power series with coefficients cn ∈ C, n ∈ N.

For α = lim supn→∞
n
√
|cn| ∈ [0,∞] ⊂ R∗ we call

R(cn) =


1
α

if α ∈ (0,∞);

∞ if α = 0;

0 if α =∞

the radius of convergence of the power series
∞∑
n=0

cnz
n.

Theorem 2.59. The series
∞∑
n=0

cnz
n converges if |z| < R(cn) and diverges if |z| > R(cn), and

∞∑
n=0

cnz
n may or may not converge for z ∈ C with |z| = R(cn).

Proof. For fixed z ∈ C we apply the root criterion to
∑
an =

∑
cnz

n. Clearly,

β = lim sup
n→∞

n
√
|cnzn| = lim sup

n→∞
|z| n
√
|cn| = |z| lim sup

n→∞

n
√
|cn|,

so β < 1 if and only if |z| < R(cn). The result now follows from the root test.

Remark 2.60. It is easy to see that a series of the form
∞∑
n=0

cn(z−z0)n converges if |z−z0| < R(cn)

and diverges if |z−z0| > R(cn), a fact which is relevant when discussing Taylor series of a function
f at a point z0 ∈ R. (See Section 4.)

We conclude this section with a brief discussion of the exponential function exp(z) =
∞∑
n=0

zn

n!
,

z ∈ C. To derive the functional equation exp(z+w) = exp(z) exp(w) we use theorem discussing
the product of two series. This theorem is based on diagonal summation of the terms in

(a0 + a1 + a2 + . . .) · (b0 + b1 + b2 + . . .) = a0b0 + a0b1 + a0b2 + a0b3 + . . .
+ a1b0 + a1b1 + a1b2 + a1b3 + . . .
+ a2b0 + a2b1 + a2b2 + a2b3 + . . .
+ a3b0 + a3b1 + a3b2 + a3b3 + . . .

...
...

...
...

,

= c0 + c1 + c2 + c3 + . . .
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that is, with cn =
∑n

k=0 akbn−k, we have that c0 is the sum of red terms, c1 is the sum of blue
terms, c2 is the sum of green terms, c3 is the sum of magenta terms, and so on. For the partial
sums, we can resort the (finitely many) summands to obtain

N∑
n=0

cn =
N∑
n=0

n∑
k=0

akbn−k =
N∑
k=0

ak

N−k∑
n=0

bn =
N∑
k=0

dk.

For N = 3, we first sum red, then blue, then green, then magenta in the equation below:

3∑
n=0

cn = d0 + d1 + d2 + d3 = a0b0 + a0b1 + a0b2 + a0b3

+ a1b0 + a1b1 + a1b2

+ a2b0 + a2b1

+ a3b0

,

Theorem 2.61. Product of series. Let (an) and (bn) be complex sequences with∑∞
n=0 an = A converges absolutely, and

∑∞
n=0 bn = B. For cn =

∑n
k=0 akbn−k, n ∈ N0 we have∑∞

n=0 cn = A ·B.

Proof. Fix ε > 0. Set C =
∑∞

k=0 |ak| < ∞ and D = sup{|B −
∑N

k=0 bk|, N ∈ N} < ∞. Pick
Nε ∈ N so that for all N ≥ Nε we have

∣∣A− N∑
k=0

ak
∣∣ < ε

3B
,
∣∣B − bN2 c∑

`=0

b`
∣∣ < ε

3C
,
∣∣C − bN2 c∑

n=0

|an|
∣∣ < ε

3D
,

where bxc denotes the largest integer smaller than x.

For N ≥ Nε we compute∣∣∣AB − N∑
n=0

cn

∣∣∣ =
∣∣∣AB − N∑

n=0

N∑
k=0

akbn−k

∣∣∣
=
∣∣∣AB − N∑

k=0

ak

N−k∑
n=0

bn

∣∣∣
=
∣∣∣AB −B N∑

k=0

ak +B

N∑
k=0

ak −
N∑
k=0

ak

N−k∑
n=0

bn

∣∣∣
≤ |B|

∣∣∣A− N∑
k=0

ak

∣∣∣+
∣∣∣ N∑
k=0

ak

(
B −

N−k∑
n=0

bn

)∣∣∣
< |B| ε

3B
+

N∑
k=0

|ak|
∣∣∣B − N−k∑

n=0

bn

∣∣∣
≤ ε

3
+

bN/2c∑
k=0

|ak|
∣∣∣B − N−k∑

n=0

bn

∣∣∣+
N∑

k=bN/2c+1

|ak|
∣∣∣B − N−k∑

n=0

bn

∣∣∣
<
ε

3
+ C

ε

3C
+

ε

3D
D = ε.
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Remark 2.62. Note that the hypotheses in Theorem 2.61 do not imply that
∑∞

n=0 cn converges
absolutely. In fact, (an) = 1, 0, 0, . . . and (bn) = ((−1)n 1

n
) satisfy the hypothesis, but cn =∑n

k=0 akbn−k = bn implies that (cn) does not converge absolutely.

Corollary 2.63. For z, w ∈ C we have exp(z + w) = exp(z) exp(w).

Proof. Let (an) = ( z
n

n!
) and (bn) = (w

n

n!
), so

∑∞
n=0 an and

∑∞
n=0 bn converge absolutely. Since

cn =
n∑
k=0

akbn−k =
n∑
k=0

zk

k!

wn−k

(n− k)!
=

1

n!

n∑
k=0

n!

(n− k)!k!
zkwn−k =

1

n!

n∑
k=0

(
n

k

)
zkwn−k =

(z + w)n

n!
,

we can apply Theorem 2.61 to obtain

exp(z) exp(w) =
( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=
∞∑
n=0

cn = exp(z + w).

Corollary 2.64. For x ∈ Q we have exp(x) = ex.

Proof. This is clear for x = 1. The equality then follows for x = 2 = 1 + 1 since

e2 = e · e = exp(1) · exp(1) = exp(1 + 1) = exp(2).

Similarly, we obtain exp(x) = ex for x ∈ N. Since, clearly, exp(−1) is the (unique) muliplicative
inverse of e = exp(1), we have e−1 = exp(−1) and exp(x) = ex follows for x ∈ Z.

For x = 1
n
, n ∈ N, we observe that exp( 1

n
) > 0 and exp( 1

n
)n = exp( 1

n
+ . . .+ 1

n
) = exp(1) = e,

so exp( 1
n
) is the (unique) n-th non-negative root of e. But then also for x = m

n
, m,n ∈ N, we

obtain that (
exp

(m
n

))n
= exp

(m
n

+ . . .+
m

n

)
= exp(m) = em

and the result follows. Clearly, using e−1 = exp(−1) allows us to extend this argument to
negative x ∈ Q.

We shall show later that exp(x) = ex holds for all x ∈ R. Motivated by this, we shall then
write ez for exp(z) for any z ∈ C.
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Figure 1. A graph of the function f from Example 3.2.

3. TOPOLOGY AND CONTINUITY

3.1. Continuous functions

Definition 3.1. A function f : R→ R is continuous at x0 ∈ R if for all ε > 0 exists δ > 0 s.t.
|f(x)− f(x0)| < ε if |x− x0| < δ.

Example 3.2. The function

f : R −→ R, x 7→


x+ 2, if x ≤ −1;
x2, if − 1 < x < 2;
−x+ 7, if 2 ≤ x.

is continuous at any point x0 in R\{2} and discontinuous at x0 = 2. See Figure 3.1 for a graph
of this function.

Remark 3.3. Continuous functions have some remarkable properties. Most prominently, the
intermediate value theorem and the maximum value theorem for real valued functions defined
on R state that given a continuous function f : [a, b] −→ R then exists c, d ∈ R, such that
f([a, b]) = [c, d]. (See Corollary 3.60.)

This theorem can be generalized to metric spaces: If X is a compact and connected metric
space, and f : X −→ Y is continuous, then f(X) is compact and connected. In case of Y = R
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we get immediately f(X) = [c, d] for some c, d ∈ R since closed intervals are the only subsets
of R which are both, compact and connected. Well, we need some new vocabulary.

Definition 3.4. Let (X, dX) be a metric space, x0 ∈ X, and r ∈ R+. The open [respectively
closed ] ball in X of center x0 and radius r is the set

Br(x0) = {x ∈ X : dX(x, x0) < r} ⊆ X

[resp. Bclosed
r = {x ∈ X : dX(x, x0) ≤ r}]

We shall also refer to the open ball Br(x0) as r-neighborhood of x0.

Definition 3.5. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is continuous
at x0 ∈ X, if for all ε ∈ R > 0 exists δ > 0 s.t. dY (f(x), f(x0)) < ε if dX(x, x0) < δ, that is,
f(Bδ(x0)) ⊆ Bε(f(x0)).

Examples 3.6. i. The most important metric on Rn respectively Cn is given by Euclidean
distance, namely, d2(x, y) =

√∑n
i=1 |xi − yi|2.

ii. Almost equally important is the 1 metric on Rn respectively Cn is given by d1(x, y) =∑n
i=1 |xi − yi|.

iii. Same holds for the∞ metric on Rn respectively Cn is given by d∞(x, y) = maxi=1,...,n |xi−
yi|.

iv. A bit obscure example is the discrete metric on a set X (e.g., Rn or Cn) given bey
d0(x, y) = 1 if x 6= y and d0(x, x) = 0.

See Figure 3.1 illustrating respective balls of radius 1.

To compare balls with respect to different metrics, the following is useful.

Theorem 3.7. Cauchy–Schwarz Inequality.
Let a1, . . . , an, b1, . . . , bn ∈ C. Then∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣
2

≤
n∑
i=1

|ai|2
n∑
i=1

|bi|2.

In Hilbert space terminology, this reads that the modulus of the inner product of two vectors
in a Hilbert spaces does not exceed the product of their norms. The proof given below does
not generalize to this setting but establishes the fact for the Hilbert space Cn with Euclidean
inner product. (Obviously, you are not expected to know yet what a Hilbert space is.)

Proof. If a1 = a2 = . . . = an = 0, then the result follows trivially. Else,
∑n

i=1 |ai|2 > 0 and for
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Figure 2. The boundaries of balls of radius one with respect to the d1 metric (green), the d2

metric (red), and the d∞ metric (magenta). The ball of radius one with respect to the discrete
metric d0 is {0} and shown in blue.
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x ∈ R, we compute

0 ≤
n∑
i=1

(|ai|x+ |bi|)2 =
n∑
i=1

|ai|2x2 + 2|ai||bi|x+ |bi|2

=
( n∑
i=1

|ai|2
)
x2 + 2

( n∑
i=1

|ai||bi|
)
x+

( n∑
i=1

|bi|2
)

=
( n∑
i=1

|ai|2
)(
x+

∑n
i=1 |ai||bi|∑n
i=1 |ai|2

)2

−

(∑n
i=1 |ai||bi|

)2

(∑n
i=1 |ai|2

)2 +
( n∑
i=1

|bi|2
)
.

Using the triangular inequality for the first inequality below and setting x = −
∑n
i=1 |ai||bi|∑n
i=1 |ai|2

to

obtain the second inequality, we have∣∣∣ n∑
i=1

aibi

∣∣∣2 ≤ ( n∑
i=1

|ai||bi|
)2

≤
( n∑
i=1

|ai|2
)( n∑

i=1

|bi|2
)
.

Theorem 3.8. If f : (Rn, di0)→ (Rm, dj0) is continuous at x0 ∈ Rn for some i0, j0 ∈ {1, 2,∞},
then f : (Rn, di)→ (Rm, dj) for any i, j ∈ {1, 2,∞}.

Proof. We shall first prove that

B∞ε (x) ⊇ B2
ε (x) ⊇ B1

ε (x) ⊇ B2
ε/
√
m(x) ⊇ B∞ε/m(x).(1)

See Figure 3.1 for an illustration of this inclusion in the case of n = m = 2.

Using Cauchy Schwarz, we observe that for any x, y ∈ Rm we have

0 < max
i=1,...,m

|xi − yi| ≤

√√√√ m∑
i=1

|xi − yi|2 ≤
m∑
i=1

|xi − yi| =
m∑
i=1

|xi − yi| · 1

≤

√√√√( m∑
i=1

|xi − yi|2
)( m∑

i=1

12
)

=
√
m

√√√√ m∑
i=1

|xi − yi|2 ≤
√
m

√√√√ m∑
i=1

(
max

i=1,...,m
|xi − yi|

)2

= m max
i=1,...,m

|xi − yi|,

that is, d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤
√
md2(x, y) ≤ md∞(x, y). Now, d2(x, y) < ε implies

d∞(x, y) < ε and, hence, B2
ε (x) ⊆ B∞ε (x). Similarly, d2(x, y) < ε implies d1(x, y) <

√
mε, and,

hence, B2
ε (x) ⊆ B∞√

mε
(x). These arguments provide (1).

Fix i, j ∈ {0, 2,∞} and ε > 0. As f : (Rn, di0)→ (Rm, dj0) is continuous at x0 ∈ Rn, there
exists r > 0 such that f(Bi0

r (x0)) ⊆ Bj0
ε/m(f(x0)) and set δ = r

n
> 0. Then

f(Bi
δ(x0)) ⊆ f(Bi0

nδ(x0)) = f(Bi0
r (x0)) ⊆ Bj0

ε/m(f(x0)) ⊆ Bj
ε (f(x0)).
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Figure 3. Illustration of inclusion of balls of different metrics which proves Theorem 3.8 and
Theorem 3.12.
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Remark 3.9. Obviously, continuity does depend on the metric of choice. Nevertheless, different
metrics (not all) lead to the same concept of continuity. We shall now extract the essence of
continuous functions between metric spaces which will lead to a whole new class of spaces,
namely topological spaces.

Definition 3.10. Let (X, d) be a metric space. U ⊆ X is called (metric-) open if for each
x0 ∈ U exists ε > 0 s.t. Bε(x0) ⊆ U . A set A ⊆ X is called (metric-) closed if its complement
Ac is (metric-) open.

We should check consistency of our vocabulary. We did define open balls before defining
open sets after all, so open balls better be open sets.

Theorem 3.11. Let (X, d) be a metric space, then open balls are (metric-) open.

Proof. For the open ball Bδ(y0) choose x0 ∈ Bδ(y0). Set ε = δ − d(x0, y0) > 0 and observe
for x ∈ Bε(x0) we have d(x, y0) ≤ d(x, x0) + d(x0, y0) < δ − d(x0, y0) + d(x0, y0) = δ due the
triangular inequality. Hence, Bε(x0) ⊆ Bδ(y0). Such ε exists for each x0, hence, Bδ(y0) is
open.

Proposition 3.12. U is open in (Rn, d∞) if and only if U is open in (Rn, d1) if and only if U
is open in (Rn, d2).

Proof. This follows again from Bi
ε/
√
n
(x0) ⊆ Bi

ε(x0) for all i, j ∈ {1, 2,∞}.

Theorem 3.13. A function f : (X, dX) → (Y, dY ) is continuous on X (that is, continuous at
all x0 ∈ X) if and only if f−1(U) is open in (X, dX) for all U open in (Y, dY ).

Proof. “⇒” Let U be open in (Y, dY ). To show that the pre image f−1(U) is open in (X, dX),
choose x0 ∈ f−1(U). Then f(x0) ∈ U , and, as U open, exists ε > 0 such that Bε(f(x0)) ⊂ U .
Now, use continuity of f at x0 to choose δ > 0 with f(Bδ(x0)) ⊆ Bε(f(x0)).

“⇐” The obtain the reverse inequality, just note that for ε > 0 and x0 ∈ X, we have
f−1(Bε(f(x0)) is an open set containing x0. Hence, there exists δ > 0 such that Bδ(x0) ⊆
f−1(Bε(f(x0))), that is, f(Bδ(x0)) ⊆ Bε(f(x0)) ⊆ U , but this is again just Bδ(x0) ⊆ f−1(U).

Theorem 3.14. Let U be a family of (metric-) open sets in (X, d). Then

i. ∅, X are open,

ii.
⋃
U∈U

U is open in (X, d), and

iii. U ∩ V is open in (X, d) for any U, V ∈ U.
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Proof. i. There exists no x0 ∈ ∅, hence, there is nothing to check to show that ∅ is open. As
any Bε(x0) ⊆ X, in particular, for x0 ∈ X, we have B1(x0) ⊆ X.

ii. Let x0 ∈
⋃
U∈U

U . Then x0 ∈ U0 for some U0 ∈ U. As U0 is open, there exists δ > 0 such

that Bδ(x0) ⊆ U0

⋃
U∈U

U .

iii. Let x0 ∈ U ∩ V . As U and V are open, there exists δU > 0 and δV > 0 with
BδU (x0) ⊆ U and BδV (x0) ⊆ V . But then, setting δ = min{δU , δV } implies Bδ(x0) ⊆ U ∩ V .

Let us now provide a very important and useful result for the understanding of open sets
in subspaces of metric spaces. This result will be used extensively when discussing connected
subsets of metric spaces.

Theorem 3.15. Inheritance Principle. Let (X, dX) be a metric space and A ⊆ X. Then
(A, dA) becomes a metric space when setting dA = dX |A×A, that is, dA(a, b) = dX(a, b) for
a, b ∈ A. Further, the following hold:

i. B ⊆ A is open in (A, dA) if and only there exists B̃ open in (X, dX) such that B = A∩ B̃.

ii. B ⊆ A is closed in (A, dA) if and only there exists B̃ closed in (X, dX) such that B = A∩B̃.

iii. B ⊆ A is clopen (closed and open) in (A, dA) if there exists B̃ clopen in (X, dX) such that

B = A ∩ B̃.

3.2. Topological spaces

Theorem 3.14 provides all properties of metric spaces needed to extend the concept of continuous
maps on metric spaces to maps between more general spaces, namely, topological spaces.

Definition 3.16. Let X be any set and let T be a collection of subsets of X which satisfies

i. X, ∅ ∈ T,

ii.
⋃
i∈I

Ui ∈ T whenever Ui ∈ T, i ∈ I, and

iii. U ∩ V ∈ T if U, V ∈ T.

Then we call T a topology on the topological space X, the members U of T are called (topology-)
open. A set A ⊆ X is called closed if Ac = X \ A ∈ T, that is, if A is the complement of an
open set.

Example 3.17. i. Any set X becomes a topological space when choosing the trivial topology
T = {∅, X}. This topology is also called indiscrete topology.

ii. Any set X becomes a topological space when choosing as topology the powerset of X,
that is, T = P(X). This topology is also called discrete topology .
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iii. The metric open sets in a metric space (X, d) form a topology on X (see Theorem 3.14).
This topology is induced by the metric d and we denote it by Td.

iv. Note that for any set X and discrete metric d0 on X, (ii ) and (iii ) lead to the same
topology, that is, Td0 = P(X). This is easy to see since in (X, d0) (d0 denotes the discrete
metric) we have that B1(x) = {x} for any x ∈ X. Hence, all singletons (sets with only
one element) are open and any S ∈ P(X) is open since it can be written as union of open

sets, for example, S =
⋃
x∈S

{x}.

v. It is not difficult to construct (maybe meaningless) topologies on any set. For example,
the set T = {∅, [0, 1], R} defines a topology on R. By definition, [0, 1] is open, (0, 1) and
[1, 2] are not since they are not listed in T.

Remark 3.18. Recall that, using properties of (metric-) open sets in a metric space (X, d), we
introduced a new family of spaces which is custom made to study continuous maps.

Many properties of metric induced topologies now serve as defining properties when dealing
with general topological spaces. For example, given a topological space (X,T) and a subset A
in X, we can equip A with the so called relative topology TA = {A ∩ U : U ∈ T} to obtain a
topological space (A,TA). (Compare to the inheritance principle, Theorem 3.15.)

By virtue of Theorem 3.13 we can extend the concept of continuous maps to general topo-
logical spaces:

Definition 3.19. Let (X,T), (Y,F) be topological spaces. A function f : X → Y is called
continuous if f−1(V ) ∈ T for all V ∈ F.

Theorem 3.20. Let (X,T), (Y,F), and (Z, S) be topological spaces and f : X −→ Y and
g : Y −→ Z be continuous. Then g ◦ f : X −→ Z, x 7→ g ◦ f(x) = g(f(x)) is continuous.

Proof. Let U ∈ S and observe that

(g ◦ f)−1(U) = {x ∈ X : g(f(x)) ∈ U} = {x ∈ X : f(x) ∈ g−1(U)}
= {x ∈ X : x ∈ f−1(g−1(U))} = f−1(g−1(U)).

As g is continuous, we have g−1(U) ∈ F and, f continuous implies then

(g ◦ f)−1(U) = f−1(g−1(U)) ∈ T. As we chose arbitrary U ∈ S, we conclude that g ◦ f
continuous.

In the mathematical discipline topology, one studies whether two topological spaces X and
Y have “identical topologies”, that is, whether there exists a continuous, bijective map which
maps open sets to open sets (that is, f−1 (which exists and is defined on all of Y since f is
bijective) is continuous as well).

Definition 3.21. If f : X −→ Y is bijective and continuous, and if the function f−1 : Y −→ X
is continuous as well then we call f a homeomorphism.
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Definition 3.22. The topological spaces (X,T) and (Y,F) are called homeomorph if there
exists a homeomorphism f : X −→ Y .

Definition 3.23. A sequence (xn) in the topological space (X,T) converges to x0 in (X,T), if
for all U ∈ T with x0 ∈ U there exists N0 ∈ N s.t. xn ∈ U if n ≥ N0.

Our back is covered:

Theorem 3.24. A sequence (xn) converges to x0 in the metric space (X, d) if and only if xn
converges to x0 in the metric induced topological space (X,Td).

Proof. “⇒” Let xn → x0 in (X, d), that is, X considered as metric space. Fix U ∈ T with
x0 ∈ U . As U open, there exists ε > 0 with Bε(x0) ⊆ U . Now, xn → x0 in (X, d) implies that
for some N ∈ N we have xn ∈ Bε(x0) ⊆ U for all n ≥ N , and xn → x0 in (X,Td) is shown.

“⇐” Now, let xn → x0 in (X,Td), that is, X considered as topological space. Fix ε > 0.
As Bε(x0) ∈ Td and xn → x0 in (X,Td), there exists N ∈ N such that xn ∈ Bε(x0) for all
n ≥ N , and xn → x0 in the metric space (X, d) is shown.

Example 3.25. The function

f : [0, 2π) −→ Rf = {z ∈ C : |z| = 1} ⊂ C, x 7→ cos(x) + i sin(x),

is continuous, 1-1, surjective, and continuous, but f−1 is not continuous at 1 = cos(0)+ i sin(0).
Hence, f is not a homeomorphism. (We shall define cos and sin in Section 4.3. At this point
of time, we only assume High–School knowledge of trigonometric functions.)

To see this, observe that lim
n→∞

cos(2π− 1
n
) + i sin(2π− 1

n
) = 1, but its image under f−1 is the

sequence
(
f−1(cos(2π − 1

n
) + i sin(2π − 1

n
))
)
n

=
(
2π − 1

n

)
n

which does not converge in [0, 2π)

In fact, we shall see later that [0, 2π) and Rf = {z ∈ C : |z| = 1} are not homeomorphic,
that is, there exist no homeomorphism f : [0, 2π) −→ {z ∈ C : |z| = 1}.
Example 3.26. In the following table we shall consider sequences in R where R is equipped with
different topologies.

Td0 = P(R) T = {∅,R} T = {∅, [0, 1],R} Td2
xn = 1 lim

n→∞
xn = 1 ∀x ∈ R: lim

n→∞
xn = x lim

n→∞
xn = 1 lim

n→∞
xn = 1

yn = 1
n

not convergent ∀y ∈ R: lim
n→∞

yn = y ∀y ∈ R: lim
n→∞

yn = y lim
n→∞

yn = 0

zn = − 1
n

not convergent ∀z ∈ R: lim
n→∞

zn = z ∀z ∈ R \ [0, 1]: lim
n→∞

zn = z lim
n→∞

zn = 0

un = n not convergent ∀ u ∈ R : lim
n→∞

un = u ∀u ∈ R \ [0, 1]: lim
n→∞

un = u not convergent

vn = (1 + 1
n
)−n not convergent lim

n→∞
vn = v for all v ∈ R ∀v ∈ R: lim

n→∞
vn = v lim

n→∞
vn = 1

e

The ambivalence in columns T = {∅,R} and T = {∅, [0, 1],R} are only possible since these
topologies are not induced by a metric on R. (We have shown earlier that a sequence in a
metric space can only converge to one point.)

Theorem 3.27. Let (X, d) be a metric space, then A is closed in (X,Td) if and only if for any
sequence (xn) in A with xn → x0 ∈ X we have x0 ∈ A.
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Proof. Let A be closed and xn → x0 with (xn) in A. If x0 ∈ Ac, which is open, then exists
N ∈ N with xn ∈ Ac for n ≥ N , so in particular, xN ∈ Ac, a contradiction to (xn) in A.

Conversely, assume that A has the property that given any sequence (xn) in A with xn →
x0 ∈ X then automatically x0 ∈ A. Assume A not closed, that is, Ac not open. Then exists x0

in Ac with Bε(x0)∩A 6= ∅ for all ε > 0. In particular, for n ∈ N we can pick xn ∈ B1/n(x0)∩A
and observe that (xn) in A with xn → x0 ∈ X but x0 /∈ A, a contradiction.

Remark 3.28. The characterization of closed sets in metric spaces in Theorem 3.27 does not
hold in general topological space. In general topological spaces we need to replace the concept
of converging sequence with converging filters.

Continuity at a point x0 ∈ X can be described in numerous ways.

Theorem 3.29. Let (X, dX), (Y, dY ) be metric spaces, x0 ∈ X, and f : X −→ Y . The following
are equivalent:

i. The function f is continuous at x0, that is, for all ε > 0 exists some δ > 0 such that
f(Bδ(x0)) ⊆ Bε(f(x0)).

ii. For all sequences (xn) in X with lim
n→∞

xn = x0 we have lim
n→∞

f(xn) = f(x0).

iii. For all open sets U in Y with f(x0) ∈ U exists V open in X with x0 ∈ V and f(V ) ⊆ U .

Proof. i “⇒” ii. Fix ε > 0. To find N with f(xn) ∈ Bε(f(x0)) for all n ≥ N , we first choose δ
with f(Bδ(x0)) ⊆ Bε(f(x0)) and then N = Nδ with xn ∈ Bδ(x0) for all n ≥ N . By construction,
f(xn) ∈ Bε(f(x0)) for all n ≥ N .

ii “⇒” iii. Fix U open in Y with f(x0) ∈ U . As U is open, we have Bε(f(x0)) ⊆ U for
some ε > 0. Then, ii delivers δ > 0 with V = Bδ(x0) satisfies f(V ) ⊆ Bε(f(x0)) ⊆ U .

iii “⇒” i. Fix ε > 0. For open U = Bε(f(x0)) exists V open in X with x0 ∈ V and
f(V ) ⊆ U . But as V is open and contains x0, there is δ > 0 such that Bδ(x0) ⊆ V , hence,
f(Bδ(x0)) ⊆ Bε(f(x0)).

Theorem 3.30. Let (X, dX), (Y, dY ) be metric spaces and f : X −→ Y . The following are
equivalent:

i. The function f is continuous at every x0 ∈ X, that is, for all x0 ∈ X and all ε > 0 exists
some δ = δx0,ε > 0 such that f(Bδ(x0)) ⊆ Bε(f(x0)).

ii. For all sequences (xn) that converge in X we have lim
n→∞

f(xn) = f( lim
n→∞

xn).

iii. For all open sets U in Y we have f−1(U) is open in X.

iv. For all closed sets A in Y we have f−1(A) is closed in X.

Proof. Equivalence of i and ii follows from Theorem 3.29 as both statements describe continuity
at each point x0. The equivalence to iii is Theorem 3.13 Statements iii and iv are equivalent
since f−1(Ac) =

(
f−1(A)

)c
.
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Definition 3.31. Let (X,T) be a topological space and let A ⊆ X.

i. The interior A◦ of A is given by A◦ =
⋃
U⊆A
U∈ T

U .

ii. The closure Ā of A is given by Ā =
⋂
C⊇A

C closed

C. The set A is dense in X if A = X.

iii. The boundary ∂A of A is given by ∂A = Ā ∩ AC .

iv. A point x0 ∈ X is called cluster point of A, if there exists a sequence (xn) in A with
xn 6= x0 and lim

n→∞
xn = x0. We denote by A′ the set of all cluster points of A, that is

A′ = {x0 ∈ X : there exists a sequence (xn) in A with xn 6= x0 and lim
n→∞

xn = x0}.

3.3. Compact sets

Even though the concept of compact and connected sets and spaces are of topological nature, we
shall restrict our treatise to metric spaces (which certainly are just a special breed of topological
spaces.)

Definition 3.32. Let A be a subset of a metric space (X, d) and let U and V be collections of
subsets of X.

i. The family U is a covering of A if A ⊆
⋃
U∈U

U .

ii. The family V is a U-subcovering of A if V ⊆ U and A ⊆
⋃
U∈V

U .

iii. A family of sets U is called open if all U ∈ U are open.

iv. The family U is finite if U consists of finitely many sets (which in turn might contain
infinitely many elements of X.)

Definition 3.33. A subset A of a metric space (X, d) is called (covering-) compact if every
open cover U of A contains a finite U-subcover V.

Examples 3.34. i. Any finite set is compact. Indeed, if U is an open cover of a finite set
{x1, . . . , xN}, then we can choose V = {U1, . . . , UN} ⊆ U with xi ∈ Ui for i = 1, . . . , N .

ii. The set { 1
n

: n ∈ N} is not compact. To see this, note that U = {Un = ( 1
n+1

, 1
n−1

), n ∈ N}
is an open cover of { 1

n
: n ∈ N} which has no finite U-subcover of A. Indeed, the only

U-subcover of A is U itself which is not finite.

iii. The set { 1
n

: n ∈ N} ∪ {0} is compact. Let U be an arbitrary open cover of { 1
n

: n ∈
N} ∪ {0}. Choose U0 ∈ U with 0 ∈ U0. As U0 is open and limn→∞

1
n

= 0, there exists
N ∈ N such that 1

n
∈ U0 for all n ≥ N . For n = 1, . . . , N − 1, pick Un ∈ U such that

1
n
∈ Un. Then, clearly, V = {U0, U1, . . . , UN−1} is a finite U-subcover of { 1

n
: n ∈ N}∪{0}.
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iv. In general, let (xn) be a converging sequence in the metric space (X, d). Then
{xn : n ∈ N} ∪ { lim

n→∞
xn} is compact.

v. The open interval (0, 1) ⊂ R is not compact in (R, d2), since U = {( 1
n
, 1)} is an open

cover of (0, 1) which contains no finite U-subcover.

Definition 3.35. A subset A in the metric space (X, d) is sequentially compact if any sequence
(an) in A has a subsequence (ank) with lim

k→∞
ank = a0 and a0 ∈ A.

One of the main goals of this section is to prove that in metric spaces sequentially com-
pactness and covering compactness are the same, that is, a set A is sequentially compact if and
only if A is covering compact. Be aware that this theorem does not hold in general topological
spaces.

Before proving this theorem, we shall discuss some consequences of compactness.

Theorem 3.36. Let (X, d) be a metric space and A ⊆ X be compact. If B ⊂ A is closed in
X, then B is compact. Shortly: closed subsets of compact sets are compact.

Proof. Let U be an open cover of B. As Bc is open too, Ũ = U ∪ {Bc} is an open cover of A.

Since A is compact, there exists a finite Ũ-subcover Ṽ of A. Clearly, Bc does not contribute to
covering B, so V = Ṽ \ {Bc} is a finite U-subcover of B and the result is proven.

Theorem 3.37. Any compact set A in (X, d) is bounded, that is, compact sets are bounded.

Proof. Pick x0 ∈ A. Clearly U = {Bn(x0), n ∈ N} is an open cover of X and, hence, also
of A ⊆ X. As A is compact, there exist n1 < n2 < . . . < nK ∈ N such that A ⊆ Bn1(x0) ∪
Bn2(x0) ∪ . . . ∪BnK (x0) = BnK (x0), so A is bounded.

Theorem 3.38. Any infinite subset B of a compact set A in (X, d) has at least one cluster
point in A.

Proof. Suppose that there exists no cluster point of B in A. Hence, for all x ∈ A exists ε(x) > 0
such that Bε(x)(x) contains only finitely many points from B. Clearly, U = {Bε(x)(x), x ∈ A}
is an open cover of A, hence, there exists a finite U-subcover V = {Bε(xi)(xi), i = 1, . . . , N}.
Since B ⊆ A, B is covered by V, but, on the other hand, each of the finitely many V ∈ V covers
only finitely many points in B, a contradiction to B is infinite.

Theorem 3.39. Compact sets are closed.

Proof. Theorem 3.27 implies that if the compact set A is not closed, then exists a sequence
(xn) in A with limn→∞ xn = x0 ∈ Ac. Clearly, xn 6= x0 and it is not hard to see that the range
of the sequence {xn, n ∈ N} is an infinite set in A. Also, limn→∞ xn = x0 implies x0 ∈ Ac

is the only cluster point of {xn, n ∈ N} in X, so {xn, n ∈ N} has no cluster point in A, a
contradiction to A compact (Theorem 3.38).
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Theorem 3.39 combines with Theorem 3.37 to the statement that compact sets are closed
and bounded. Does the converse hold? This would be nice since it would give us a criterium for
compactness that is easily checked. Sadly, the converse does not hold in general (see Remark
3.48, but it does hold in euclidean space, that is, Rn.

To prove the main result of this chapter, we need to introduce the concept of a Lebesgue
number.

Definition 3.40. Let U be a covering of a set A in the metric space (X, d). Any number λ > 0
with the property that for all a ∈ A exists U ∈ U such that Bλ(a) ⊆ U is called a Lebesgue
number for the covering U of A.

Lemma 3.41. Let U be an open covering of a sequentially compact set A in the metric space
(X, d). Then exists a Lebesgue number λ > 0 for the covering U of A.

Proof. Assume there is an open cover U of A for which there exists no Lebesgue number, that
is for all n ∈ N we can choose some an ∈ A such that for all B 1

n
(an) 6⊆ U for all U ∈ U.

Since A is sequential compact, we can extract a convergent subsequence (ank)k of (an) and
set a0 := limk ank ∈ A. Since U is a covering, we have a0 ∈ U0 for some U0 ∈ U. Since U0 is
open, there is an n ∈ N such that B 1

n
(a0) ⊆ U0.

Pick K ∈ N such that K ≥ 2n and d(anK , a0) < 1
2n

. We have B 1
nK

(anK ) ⊆ B 1
n
(a0) since

d(a, an2n) < 1
2n

implies d(a0, a) < d(a0, anK ) + d(anK , a) < 1
2n

+ 1
2n

= 1
n
.

We conclude that B 1
nK

(anK ) ⊆ B1/n(a0) ⊆ U0, a contradiction to B 1
nK

(anK ) not being subset

of any U ∈ U.

Now we can prove the main result of this chapter.

Theorem 3.42. Let (X, d) be a metric space. The set A ⊆ X is sequentially compact if and
only if A is covering compact.

Proof. Suppose A is covering compact. Let (xn) be an arbitrary sequence in A. We have to
find a convergent subsequence.

Cover A with balls of radius 1. Since (by covering-compactness) finitely many of them
suffice, we throw away all but finitely many of them. Now among the remaining finitely many
balls there has to be at least one ball containing xn for infinitely many values of n. Let us call
this ball B1. Let n1 be an index such that xn1 is contained in B1.

Now we do the same thing again: cover the set B1 ∩ A, which is a covering-compact set,
with (finitely many!) balls of radius 1

2
; one of them, which we call B2, must have the property

that B2∩B1 is visited infinitely often by the sequence. Choose n2 > n1 such that xn2 ∈ B2∩B1.
Now continue with B2 and radius 1

4
to construct B3 and n3 and continue the process.

Set Cn =
⋂n
k=1 Bk ∩ A and observe that sequence X ⊇ C1 ⊇ C2 ⊇ . . .. Since the nested

intersection of non-empty compact sets whose diameter tends to zero is a single point x0 (check!),
we get by construction, xnk → x0. Since A is closed, we have x0 ∈ A.
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Let us now suppose that A is sequentially compact. Let U be an arbitrary open cover. We
want to show that U admits a finite subcover. By Lemma 3.41, this cover has a Lebesgue-
number λ > 0: for every x ∈ X exists Ux ∈ U such that Bλ(x) ⊆ Ux.

Choose any x1 ∈ X. Then either Ux1 covers X and we are done. Otherwise choose any
x2 ∈ X \ Ux1 . Again, either Ux1 ∪ Ux2 already covers X and we are done, or we can choose
x3 ∈ X \ (Ux1 ∪ Ux2) and so on. Either X is covered after a finite number of steps, or this
construction produces an infinite sequence (xn) in X. However, this sequence has no convergent
subsequence, because for all m 6= n, d(xm, xn) ≥ λ. Hence this case is impossible.

Lemma 3.43. For a ≤ b we have [a, b] is compact in R. (Recall, if not specified otherwise, we
let d = d2 in Rn, so in case of R, d(x, y) = |x− y|.)

Proof. The Bolzano Weierstrass Theorem (Theorem 2.20) states that [a, b] is sequentially com-
pact.

Lemma 3.44. Let A be compact in (Rn, di) and B be compact in (Rm, dj), i, j ∈ {1, 2,∞}.
Then A×B is compact in (Rn+m, dk), k = 1, 2,∞.

Proof. Since the topology on (Rn, di), (Rm, dj) and (Rn+m, dk) do not depend on i, j, k ∈
{1, 2,∞}, we may assume that i = j = k = 1.

For
(
(xn, yn)

)
n∈N we have lim

n→∞
(xn, yn) = (x0, y0) in (Rn+m, d1) if and only if lim

n→∞
xn = x0

(Rn, d1) and lim
n→∞

yn = y0 and (Rm, d1), since d1

(
(xn, yn), (x0, y0)

)
= d1

(
xn, x0

)
+ d1

(
yn, y0

)
Let

(
(an, bn)

)
n∈N be a sequence in A×B. We shall construct a subsequence of

(
(an, bn)

)
n∈N

which converges in A×B.

Using sequential compactness of A, we choose a subsequence (ank)k∈N of
(
an
)
n∈N which

converges to a0 ∈ A. Similarly, we pick a subsequence (bnkl )l∈N of (bnk)k∈N which converges

to b0 ∈ B. The subsequence
(
(ankl , bnkl )

)
l∈N of

(
(an, bn)

)
n∈N obviously converges to (a0, b0) ∈

A×B.

Theorem 3.45. Any set of the form [a1, b1]× [a2, b2]× . . .× [an, bn] ⊂ Rn is compact.

Proof. Proof by induction using Lemma 3.44.

Theorem 3.46. (Heine–Borel) Consider the metric space Rn equipped with one of the stan-
dard metrics d1, d2 or d∞. Any A ⊂ Rn is compact if and only if A is closed and bounded.

Proof. If A is bounded it is contained in some set of the form [a1, b1]×[a2, b2]×. . .×[an, bn] ⊂ Rn

which is compact by Theorem 3.45. Since A is therefore a closed subset of a compact set, we
have A compact by Theorem 3.36.

Remark 3.47. Heine-Borel does not hold in generic metric spaces. The easiest example is the
metric space Q with distance metric inherited from R, so d(2, 9

2
) = 5

2
. Clearly, the set A

of rationals of absolute value less than or equal to 3 is closed and bounded in Q, but not
compact. Indeed, the sequence {(1 + 1

n
)n}n∈N is in A but has no convergent subsequence in A

(it approaches e which is not rational).
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Even if we “kill the gaps” by requiring the metric space to be complete, Heine-Borel is not
generally applicable. For example, it does not hold in the infinite dimensional metric space
`2(N) which consists of those complex valued sequences with ‖{cn}n∈N‖2 =

√∑∞
n=1 |cn|2 <∞,

equipped with metric

d({cn}, {dn}) = ‖{cn} − {dn}‖2 =

√√√√ ∞∑
n=1

|cn − dn|2.

Indeed, the closed unit ball in `2(N) is closed and bounded, but not compact. To see this,
simply observe that the sequence of sequences {ek}k∈N with ekn = 1 if k = n and 0 else satisfies
d(ek, e`) =

√
2 if k 6= `, and, hence, {ek}k∈N has no convergent subsequences.

In case of complete metric spaces, this problem can be fixed by replacing bounded by a
stronger concept, namely, totally bounded . A set A is called totally bounded if for each ε > 0
there exists a finite set of points {x1, . . . , xN} in A with A ⊆

⋃N
n=1 Bε(xn).

We claim that a subset of a complete metric space is compact if and only if it is totally
bounded and closed. The one direction is trivial, compactness implies clearly totally bound-
edness, and we proved above that it implies that the set is closed. Now, let assume that a set
A in a complete metric space is totally bounded and closed. Given a sequence, we construct
a subsequence as in Theorem 3.42. The completeness of the metric space implies that the
intersection of nested sets whose diameter tends to zero contains exactly one point x0. Since A
is closed, and the original sequence was in A, we have that x0 ∈ A. Hence, the sequence has a
subsequence that converges in A, so we showed that the set is sequentially compact, which is
equivalent to covering compact in metric spaces.

Remark 3.48. The continuous functions

fn : [0, 1] −→ R, x 7→


1, for x ≤ 1

n+1

−n(n+ 1)x+ n+ 1, for 1
n+1

< x ≤ 1
n

0, for 1
n
< x ≤ 1

in C([0, 1]) have the properties d(fn, fm) = 1 if n 6= m and d(fn, 0) = 1. The set A = {fn, n ∈
N} ⊂ B2(0) is bounded in C([0, 1]) and closed, since any convergent sequence in A converges
to a limit in A (there are no convergent sequences in A). But A is not compact, since the open
covering

U = {B 1
2
(fn)}

contains no finite U–subcovering of A. See Figure 3.3 for an illustration of this example.

As additional example let us consider R with the discrete metric and A = (0, 1), or Rn with

the metric d̃2 : (x, y) 7→ d2(x,y)
1+d2(x,y)

and A = Rn. In both cases A is bounded and closed but not
compact.

Theorem 3.49. A compact metric space (X, d) is complete.

Proof. Let (xn) be Cauchy in X. Since X is sequentially compact, (xn) has a subsequence that
converges in X. But then, (xn) converges in X (to the same limit) by Proposition 2.36.
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Figure 4. The functions f1 (red), f2 (yellowish green), f3 (green), f4 (blue), and f5 (purple)
from Remark 3.48.
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Theorem 3.50. Let (X, dX) be compact, and f : (X, dX) −→ (Y, dY ) be continuous. Then
Rf = f(X) is compact in (Y, dY ).

Proof. We shall show that every sequence in Rf has a subsequence that converges in Rf . Let
(yn) be a sequence in Rf . Choose xn with f(xn) = yn. The sequence (xn) has a subsequence
(xnk) with limk→∞ xnkx0 by compactness of X, continuity then implies that its image (ynk)
converges.

To appreciate compactness some more, let us visit a strong form of continuity.

Definition 3.51. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X −→ Y is
uniformly continuous on X, if for all ε ∈ R > 0 exists δ > 0 s.t. dY (f(x), f(x̃)) < ε for all x, x̃
with dX(x, x̃) < δ.

This is obviously equivalent to ∀ε > 0 ∃ δ > 0 s.t. ∀x ∈ X f(Bδ(x)) ⊆ Bε(f(x)).

Proposition 3.52. Any uniformly continuous function f : (X, dX) −→ (Y, dY ) is continuous.

Example 3.53. i. f : R −→ R, x 7→ 2x is uniformly continuous.

ii. f : R+ −→ R, x 7→ 1
x

is continuous but not uniformly continuous.

Theorem 3.54. Any continuous function defined on compact metric spaces is uniformly con-
tinuous. That is, given a compact metric space (X, dX) and continuous f : (X, dX) −→ (Y, dY ),
then f is uniformly continuous as well.

3.4. Connected sets

While dealing with a topological concept, we consider only metric spaces.

Definition 3.55. A separation of a metric space (X, d) is a pair of nonempty open subsets
U, V ⊂ X with X = U ∪ V and ∅ = U ∩ V . (Note that then U and V are also complements of
open sets, that is, closed sets.)

A metric space (X, d) is connected if there exists no separation of X, that is, if X and ∅ are
the only subsets of X that are both, open and closed.

A subset A of the metric space (X, d) is connected if the metric space (A, d|A×A) is connected.

Example 3.56. i. The set [0, 1] ∪ (3, 4] is a subset of R which is not connected. To see this,
we have to find a subset A of the metric space ([0, 1] ∪ (3, 4], dR) which is open, closed, not
empty, and, not all of [0, 1] ∪ (3, 4]. But indeed, [0, 1] is such a set. At first sight, it may be
surprising that the set [0, 1] is open, and, it is indeed not open as a subset of R. But here,
we need to show that [0, 1] is an open subset of the metric space ([0, 1] ∪ (3, 4], dR). To see
this, you can use the inheritance principle, i.e., it satisfies to find an open set U in R such that
[0, 1] = U ∩ ([0, 1] ∪ (3, 4]). Clearly, the set U = (−1, 2) has this property.

ii. The set [0, 1] is a connected subset of R. First, observe that if A is a closed subset of
([0, 1], dR), then A is also closed in R. Indeed, the inheritance principle states that for A closed
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in ([0, 1], dR) exists Ã closed in R with Ã ∩ [0, 1] = A which is closed as intersection of closed
sets.

Now, assume that A ( [0, 1] is closed and open in ([0, 1], dR), and non-empty. Without loss
of generality, 1 /∈ A (else, replace A by Ac). Let x0 = supA ∈ R. As the discussion above
showed that A is not only closed in ([0, 1], dR), but also in (R, dR), we have x0 ∈ A (Choosing
xn ∈ A with xn → x0 in R, A closed in R implies x0 ∈ A.) This implies in particular,
x0 < 1. As A is also open in the metric space ([0, 1], dR), there exists ε > 0 such that if
x ∈ [0, 1] satisfies |x− x0| < ε, then x ∈ A. This clearly contradicts that x0 = supA ∈ R since
x0 + min{ ε

2
, 1−x0

2
} ∈ A.

The most important result of this section is fairly elementary:

Theorem 3.57. If (X, dX) is connected and f : (X, dX) −→ (Y, dY ) is continuous, then Rf =
f(X) is connected.

Proof. We have to show that (f(X), dY ) is a connected metric space. To this end, first observe

that the continuity of f : (X, dX) −→ (Y, dY ) implies the continuity of f̃ : (X, dX) −→
(f(X), dY ), f̃(x) = f(x) for x ∈ X. Indeed, the inheritance principle states that doe U open

in f(X) exists Ũ open in Y such that U = Ũ ∩ f(X). Then f̃−1(U) = f−1(Ũ) is open in X by
continuity of f .

We proof the result by contraposition. If f(X) is not connected, then exists a nontrivial

(neither f(X), nor ∅) clopen subset A in (f(X), dY ). By continuity of f̃ , f−1(A) is clopen in
(X, dX), and, clearly, f−1(A) 6= X, ∅, that is, X is not connected.

Remark 3.58. Using the fact that images of compacts under continuous transformations are
compact and that images of connected sets under continuous transformations are connected,
we can easily see that none of the sets

i. [0, 1] ⊂ R.

ii. [0, 1) ⊂ R.

iii. S1 = {z ∈ C : |z| = 1} in C.

iv. The 8 set S1 ∪ {z ∈ C : |z − 2i| = 1} in C.

is homeomorphic to another set in the list.

Theorem 3.59. Let us consider the real line R with metric d1, d2, and d∞. The following are
equivalent:

i. The set A ⊂ R is connected.

ii. For any a, b ∈ A ⊂ R and any c ∈ R with with a < c < b we have c ∈ A.

iii. The set A ⊂ R is an (possibly unbounded) interval.
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That is, connected sets in R are exactly the intervals.

Proof. i⇒ ii. If there exist a, b, c ∈ R with a < c < b and a, b ∈ A but c /∈ A, then A∩(−∞, c)
and B ∩ (c,∞) are two nonempty open sets in (A, dR) whose union is A.

ii⇒ i. Proof by contradiction. Let U , V form a separation of (A, dR). Choose u ∈ U ⊆ A and
v ∈ V ⊆ A. Without loss of generality, u < v. Property ii. implies that then [u, v] ⊆ A. Also,
the inheritance principle implies that U ∩ [u, v] and V ∩ [u, v] are a separation of ([u, v], dR).
But as seen for u = 0 and v = 1 in Example 3.56.ii, [u, v] is connected.

ii⇔ iii. This is obvious.

Corollary 3.60. Let f : [a, b] −→ R be continuous. Then exists c, d ∈ R with f([a, b]) = [c, d].

Proof. As [a, b] is compact and connected, so is its image f([a, b]). But the only sets in R that
are compact and connected are closed intervals.

Theorem 3.61. (Intermediate value theorem) Let (X, d) be connected and f : X −→ R
be continuous. Given any x1, x2 in X and c ∈ R with f(x1) < c < f(x2), then exists x ∈ X
with f(x) = c.

Theorem 3.62. Let Si, i ∈ I be a family of connected sets in a metric space (X, d). If⋂
i∈I

Si 6= ∅, then
⋃
i∈I

Si is connected.

Proof. Homework.

Example 3.63. Open and closed balls in (Rn, di), i = 1, 2,∞ are connected. To see this, let A
be an open or closed ball in (Rn, di0), for some i0 ∈ {1, 2,∞}. For x ∈ A consider

fx : [0, 1] −→ Rn, t 7→ tx+ (1− t)x0.

The functions fx are continuous and their ranges Rfx are therefore connected. The result follows
from Theorem 3.62 since

A =
⋃
x∈A

Rfx and
⋂
x∈A

Rfx = {x0} 6= ∅.

Definition 3.64. A metric space (X, d) is called totally disconnected if for each x ∈ X and
ε > 0 exists a clopen set A in X with x ∈ A ⊆ Bε(x).

Example 3.65. Cantor’s middle third set is an uncountable set which is totally disconnected.
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3.5. Sequences of functions, uniform convergence

In this section we shall discuss in detail the metric space C(X) of continuous, complex valued
functions defined on a compact metric space X. You may want to read X to be a compact
interval in R with the usual metric. The functions considered are complex valued, but C (with
its usual metric) can be easily replaced with another metric space (Y, dY ). (For Theorem3.72
we need (Y, dY ) to be complete.)

The metric on C(X) has been discussed in numerous homework problems.

Definition 3.66. Let (X, dX) be a metric space and let B(X) be the set of all bounded,
complex valued functions on X, that is,

B(X) =
{
f : X −→ C : for f exists M ∈ R+ such that |f(x)| ≤M for all x ∈ X

}
.

On B(X) we can define the metric

d∞(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

The set of continuous, complex valued functions on X is denoted by C(X).

Definition 3.67. Let (X, dX) be a metric spaces and let fn : X −→ C, n ∈ N be a sequence
of functions mapping X to Y .

The sequence (fn)n∈N converges pointwise to f0 : X −→ C, if lim
n→∞

fn(x) = f0(x) for all

x ∈ X, that is, if for all x ∈ X and ε > 0 exists N = N(x, ε) ∈ N such that |fn(x)− f0(x)| ≤ ε
for all n ≥ N .

The sequence (fn)n∈N converges uniformly to f0 : X −→ Y , if for all ε > 0 exists N =
N(ε) ∈ N such that

|fn(x)− f0(x)| < ε for all x ∈ X and for all n ≥ N.

That is
d∞(fn, f0) = sup

{
|fn(x)− f0(x)| : x ∈ X

} n→∞−→ 0.

Remark 3.68. Note that if (fn) converges uniformly to f0, then (fn) converges also pointwise
to f0.

Example 3.69. Let us revisit the functions given in Remark 3.48 and shown in Figure 3.3. The
functions

fn : [0, 1] −→ R, x 7→


1, for x ≤ 1

n+1

−n(n+ 1)x+ n+ 1, for 1
n+1

< x ≤ 1
n

0, for 1
n
< x ≤ 1

are continuous functions in B([0, 1]) that converge pointwise to the discontinuous function

f0 : [0, 1] −→ R, x 7→
{

1, for x = 0
0, for 0 < x ≤ 1

As d∞(fn, fm) = 1 if n 6= m, the sequence (fn) is not Cauchy in (B([0, 1]), d∞) and does
therefore not converge in (B([0, 1]), d∞) (convergent sequences are always Cauchy). Hence fn
does not converge uniformly to f0.

56



Theorem 3.70. C(X) ∩ B(X) is a closed set in (B(X), d∞), hence, if (fn) is a sequence of
continuous functions in (B(X), d∞) which converges uniformly to f0, then f0 is continuous on
X.

Proof. Fix x0 ∈ X and ε > 0. Uniform convergence of (fn) provides us with N ∈ N such that
d∞(fn, f0) = sup

{
dY (fn(x), f0(x)) : x ∈ X

}
< ε/3 for all n ≥ N . Now, use continuity of fN

to pick δ > 0 with fN(Bδ(x0)) ⊆ Bε/3(fN(x0)). Then

|f0(x0)− f0(x)| ≤ |f0(x0)− fN(x0)|+ |fN(x0)− fN(x)|+ |fN(x)− f0(x)| < ε/3+ε/3+ε/3 = ε

for all x ∈ Bδ(x0), that is, f0(Bδ(x0)) ⊆ Bε(f0(x0)), so f0 is continuous.

Remark 3.71. The result above allows us to interchange limits in the following setting. Let (xk)
in X with lim

k→∞
xk = x0. Then

lim
k→∞

lim
n→∞

fn(xk) = lim
k→∞

f0(xk)
!

= f0(x0) = lim
n→∞

fn(x0) = lim
n→∞

lim
k→∞

fn(xk).

Quite a few results in analysis require to interchange limits as in
limk→∞ limn→∞ fn(xk) = limn→∞ limk→∞ fn(xk). But this always requires careful justification.
For example,

lim
k→∞

lim
n→∞

k

k + n
= lim

k→∞
0 = 0 6= 1 = lim

n→∞
1 = lim

n→∞
lim
k→∞

1

1 + n
k

= lim
n→∞

lim
k→∞

k

k + n
.

Theorem 3.72. The metric spaces (B(X), d∞) and (C(X) ∩B(X), d∞) are complete.

Proof. Let (fn) be a Cauchy sequence in (B(X), d∞). Fix ε > 0 and x0 ∈ X. Choose N ∈ N
such that d∞(fn, fm) < ε/2 for all n,m ≥ N . Then, in particular

|fn(x0)− fm(x0)| ≤ d∞(fn, fm) < ε/2 for all n,m ≥ N,(2)

and, completeness of C implies that there exists y0 with limn→∞ fn(x0) = y0.

This argument works for any x0 ∈ X, hence, we assign to any x = x0 a y = y0, thereby
defining a function f0 on X with f0(x0) = y0 and fn converges pointwise to f0.

For uniform convergence, simply observe that, for n ≥ N ,

d∞(fn, f0) = sup
x∈X
|fn(x)− f0(x)| = sup

x∈X
lim
m→∞

|fn(x)− fm(x)| ≤ ε/2 < ε.

Any closed subspace of a complete metric space is complete, hence, completeness of (C(X) ∩
B(X), d∞) follows from Theorem 3.70.

Corollary 3.73. If (X, d) is compact, then (C(X), d∞) is a complete metric space.

Proof. Since (X, d) is compact we have f(X) is compact and therefore bounded for any continu-
ous f : X −→ C. Hence C(X) ⊆ B(X) and (C(X), d∞) = (C(X)∩B(X), d∞) is complete.
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4. DIFFERENTIATION

4.1. Central results

In this section, we shall discuss derivatives of real valued functions defined on subsets of R. One
of our objectives is to illuminate the interplay of continuity and differentiability in analysis.

To define derivatives of real valued functions, we shall analyze so–called difference quotients.
The discussion of such requires the following definition of functional limits.

Definition 4.1. Let (X, dX) and (Y, dY ) be metric spaces and let f map X to Y . If x is a
cluster point in X, we write f(x) → y0 as x → x0 or lim

x→x0
f(x) = y0 if y0 ∈ Y and if for any

ε > 0 exists δ > 0 such that dY (f(x), y0) < ε whenever 0 < dX(x, x0) < δ. The point y0 ∈ Y is
called functional limit of f as x approaches x0.

Remark 4.2. If we restrict ourselves to cluster points, we could rephrase previous results using
functional limits. For example., we have:

i. If x is a cluster point in (X, dX), then lim
x→x0

f(x) = y0 if and only if for all sequences (xn)

in X with xn 6= x0, n ∈ N, we have lim
n→∞

f(xn) = y0.

ii. Let (X, dX) and (Y, dY ) be metric spaces, let f map X to Y , and let x be a cluster point
in (X, dX). Then lim

x→x0
f(x) = f(x0) if and only if f is continuous at x0.

iii. For U open in R we have U ′ ⊃ U , hence, the restriction to cluster points will not play a
role in the following discussion of derivatives. By the way, any set A in a metric space
(X, d) with A = A′ is called perfect.

Definition 4.3. Let A ⊆ R and f : A −→ R. We say that f is differentiable at a cluster point
x0 in A, that is, at x0 ∈ A ∩ A′, if

lim
x→x0

f(x)− f(x0)

x− x0

= L

for some L ∈ R. In this case L is called derivative of f at x0 and we write f ′(x0) = L. If
A ⊆ A′ and f is differentiable at x for all x ∈ A, then we call f differentiable on A.

Further, we have that f ′(x0) = L if and only if lim
h→0

f(x0 + h)− f(x0)

h
= L.

In order to avoid “cluster point” disclaimers, we shall mostly restrict ourselves to consider
open sets U as domains of differentiable functions. Open subsets of R have the property that
all its elements are cluster points.

Proposition 4.4. For exp : R −→ R, x 7→
∞∑
n=0

xn

n!
, we have exp′(x) = exp(x).
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Proof. For x0 ∈ R,

exp(x0 + h)− exp(x0)

h

(1)
=

exp(x0) exp(h)− exp(x0)

h
= exp(x0)

exp(h)− 1

h

= exp(x0)

∑∞
n=0

hn

n!
− 1

h
= exp(x0)

1 + h+ h2

2
+ h3

3
+ . . .− 1

h

(2)
= exp(x0)

h+ h2

2
+ h3

3
+ . . .

h

(3)
= exp(x0)

(
1 +

h

2
+
h2

3
+ . . .

)
(4)
= exp(x0)

(
1 + h

(1

2
+
h

3
+ . . .

))
.

Note that (1) follows from Corollary 2.63 and (2), (3), and (4) from the algebraic limit theorem
applied to the partial sums

∑N
n=0

hn

n!
. As 1

2
+ h

3
+ . . . is easily seen to converge in R for |h| ≤ 1,

we have invoking again the algebraic limit theorem, limh→0

(
1 + h

(
1
2

+ h
3

+ . . .
))

= 1.

Differentiable functions are continuous:

Theorem 4.5. For U open in R and f : U −→ R differentiable at x0 ∈ U we have f continuous
at x0.

Theorem 4.6. (Sum, product, and quotient rule) Let U be open in R and f, g : U −→ R
be differentiable at x0 ∈ U . Then

i. f + g is differentiable at x0 and (f + g)′(x0) = f ′(x0) + g′(x0).

ii. fg is differentiable at x0 and (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

iii. If g(x0) 6= 0, then f
g

is differentiable at x0 and

(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)

g(x0)2
.

Proof. These are direct consequences of the algebraic limit theorem. These are applicable to
functional limits, as if x0 is a cluster point in the domain of a function F , then limx→x0 F (x) = α
if and only if limn→∞ F (xn) = α for all xn −→ x0 with xn 6= x0.

To show iii, first consider the case f(x) = 1 for all x ∈ U and then upgrade your result by
using ii.

Theorem 4.7. (Chain rule) Let U, V be open in R and f : U −→ V be differentiable at
x0 ∈ U and g : V −→ R be differentiable at y0 = f(x0) ∈ V . Then g ◦ f is differentiable at x0

and we have (g ◦ f)′(x0) = g′(f(x0))f ′(x0).

Proof. Let

g̃(y) =

{
g(y)−g(y0)
y−y0 , if y ∈ V, y 6= y0

g′(y0), if y = y0.
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We have g(y) − g(y0) = g̃(y)(y − y0) for all y ∈ V and differentiability of g at y0 implies that
limy→y0 g̃(y) = g′(y0). We have

g(f(x))− g(f(x0))

x− x0

=
g̃(f(x))(f(x)− f(x0))

x− x0

= g̃(f(x))
f(x)− f(x0)

x− x0

.

Since f is differentiable at x0, the second factor converges as x → x0. As f is also continuous
at x0 and g̃ is continuous at f(x0), the algebraic limit theorem implies

lim
x→x0

g(f(x))− g(f(x0))

x− x0

= lim
x→x0

g̃(f(x)) lim
x→x0

f(x)− f(x0)

x− x0

= g′(f(x0))f ′(x0).

Examples 4.8. For n = 0, 1, 2, 3 set fn(x) =

{
xn sin

(
1
x

)
if x 6= 0

0 if x = 0
. Note that fn, n = 0, 1, 2, 3,

is continuous and differentiable on R\{0}, and its derivative is a continuous function on R\{0}.

i. f0 is not continuous at 0.

ii. f1 is continuous at 0 but not differentiable at 0.

iii. f2 is differentiable at 0, and, hence, on R, but its derivative f ′2 is not continuous at 0.

iv. f3 is again differentiable on R and its derivative f ′3 is continuous on R.

Theorem 4.9. Interior extremum theorem. Let U ⊂ R be open and f : U −→ R be
differentiable at x0 ∈ U . If there exists a maximum [resp. minimum] of f at x0, then f ′(x0) = 0.

Proof. Assume f(x0) ≥ f(x) for all x ∈ U . Choose xn −→ x0, xn < x0 for all n ∈ N. Then
f(xn)−f(x0)

xn−x0 ≥ 0 for all n ∈ N, and, by the algebraic limit theorem

f ′(x0) = lim
n→∞

f(xn)− f(x0)

xn − x0

≥ 0.

Similarly, choosing x̃n −→ x0, x̃n > x0 for all n ∈ N, we obtain f(x̃n)−f(x0)
x̃n−x0 ≤ 0 for all n ∈ N

which implies f ′(x0) ≤ 0, and, in combination with f ′(x0) ≥ 0 we obtain f ′(x0) = 0.

For f(x0) ≤ f(x) for all x ∈ U , apply the previous case to f̃(x) = −f(x).

Theorem 4.10. Rolle’s theorem. Let b > a, and f : [a, b] −→ R be continuous and
differentiable on (a, b). If f(a) = f(b), then exists x0 ∈ (a, b) such that f ′(x0) = 0.

Proof. Corollary 3.60 states that f([a, b]) = [α, β] for some α, β ∈ R. If α = β, then f(x) = α
for all x ∈ (a, b) and f ′(x) = 0 for all x ∈ (a, b). Else, β > α, and at most one of the bounds
can be attained by f(a) = f(b). Hence, either exists x0 ∈ (a, b) with f(x0) = α or f(x0) = β.
In either cases, the Interior Extremum Theorem implies f ′(x0) = 0.

Theorem 4.11. Mean value theorem. Let b > a, and f : [a, b] −→ R be continuous and

differentiable on (a, b). Then exists x0 ∈ (a, b) such that f ′(x0) = f(b)−f(a)
b−a .
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Proof. This follows from applying Rolle’s theorem to the function F (x) = f(x)− f(b)−f(a)
b−a (x−a).

(You have to check whether F satisfies the hypothesis in Rolle’s theorem and then see that,

indeed, the x0 supplied by Rolle satisfies f ′(x0) = f(b)−f(a)
b−a )

Theorem 4.12. Generalized Mean Value Theorem. Let b > a, and f, g : [a, b] −→ R
be continuous and differentiable on (a, b). Then exists c ∈ (a, b) such that (g(b)− g(a))f ′(c) =
(f(b)− f(a))g′(c).

Proof. Apply Rolle’s theorem to h(x) = (g(b)− g(a))f(x) = (f(b)− f(a))g(x), x ∈ [a, b].

We have seen that not all functions which are differentiable on an open interval have con-
tinuous derivatives. Nevertheless, they do not have so-called “jump–discontinuities”:

Theorem 4.13. Darboux’s theorem. Let f : (a, b) −→ R be differentiable. Then the
function f ′ : (a, b) −→ R has the intermediate value property, that is, for u, v ∈ (a, b) and
ξ ∈ R with f ′(u) < ξ < f ′(v) exists c ∈ (min{u, v},max{u, v})) with f ′(c) = ξ.

Definition 4.14. A function f : A −→ R is

i. monotonically increasing, or simply increasing, if f(x) ≤ f(y) for all x, y ∈ A, with x < y

ii. strictly monotonically increasing, or simply strictly increasing, if f(x) < f(y) for all
x, y ∈ A, with x < y

iii. monotonically decreasing, or simply decreasing, if f(x) ≥ f(y) for all x, y ∈ A, with x < y,
and

iv. strictly monotonically decreasing, or simply strictly decreasing, if f(x) > f(y) for all
x, y ∈ A, with x < y.

A function is called monotone if it is either monotonically increasing or decreasing, and strictly
monotone if it is either strictly increasing or strictly decreasing.

Theorem 4.15. Let f : (a, b) −→ R be differentiable. Then f is

i. monotonically increasing if and only if f ′(x) ≥ 0 for all x ∈ (a, b), and

ii. monotonically decreasing if and only if f ′(x) ≤ 0 for all x ∈ (a, b).

Proof. We shall show i, ii then follows from applying i to f̃(x) = −f(x).

If f is monotonically increasing, then f(x)−f(x0)
x−x0 ≥ 0 for all x, x0 in (a, b) and f ′(x) ≥ 0 for

all x ∈ (a, b) follows.

The Mean Value Theorem implies that If f ′(x0) < 0 for some x0 ∈ (a, b), then exists α < β

with f(β)−f(α)
β−α = f ′(x0) < 0, so f is not monotonically increasing.

Example 4.16. Note that f(x) = x3 is strictly increasing on R but f ′(0) = 0.
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Theorem 4.17. Let f : [a, b] −→ R be continuous and strictly monotone. Let [c, d] = f([a, b])
and g : [c, d]→ R be the inverse function of f .

i. The inverse function g is continuous on [c, d].

ii. If f is differentiable at x0 ∈ (a, b) with f ′(x0) 6= 0, then g is differentiable at y0 = f(x0) ∈
(c, d) and g′(y0) =

1

f ′(x0)
=

1

f ′(g(y0))
.

Proof. Let us consider the case that f is strictly increasing.

First, we show that continuity of f at x0 ∈ (a, b) implies that g is continuous at y0 = f(x0).
Indeed, for ε > 0 choose x1 ∈ (x0 − ε, x0) ∩ (a, b) and x2 ∈ (x0, x0 + ε) ∩ (a, b), observe
that monotonicity implies that for some small δ, we have Bδ(y0) ⊆ (f(x1), f(x2)). But then,
g(Bδ(y0)) ⊆ g((f(x1), f(x2)) = (x1, x2) ⊆ Bε(x0).

Choose yn 6= y0 with yn → y0. Then xn = g(yn)→ g(y0) = x0 with xn 6= x0 and

g(yn)− g(y0)

yn − y0

=
1

f(xn)−f(x0)
xn−x0

−→ 1

f ′(x0)
=

1

f ′(g(y0))
.

Example 4.18. The function exp(x) =
∑∞

k=0
xk

k!
is differentiable, hence, continuous on R and

clearly strictly increasing on [1,∞]. Then, exp(−x) = exp(x)−1 shows that exp is strictly
monotone on all of R. As limx→∞ exp(x) = ∞ (see Definition 4.19 below) we also obtain
limx→−∞ exp(x) = limx→∞ exp(x)−1 = 0 and exp : R −→ R+ is bijective. The inverse function
of exp(x) is called natural logarithm and is denoted by ln : R+ −→ R. Theorem 4.17 implies
that

ln′(x) =
1

exp′(ln(x))
=

1

exp(ln(x))
=

1

x
.

Definition 4.19. Infinite limits and limits at infinity. Let f : A −→ R, A ⊆ R
and let x0, L ∈ R∗ = R ∪ {+∞,−∞}. For ε > 0, we call (1

ε
,∞) an ε-neighborhood of ∞ and

(−∞,−1
ε
) an ε-neighborhood of −∞.

Further, we say that f(x)→ L as x→ a or f(x) approaches L as x approaches x0, if for all
ε > 0 exists a δ > 0 with

x0 ∈ A′ ⊂ R : 0 < |x− x0| < δ
or x0 =∞ : x0 >

1
δ

or x0 = −∞ : x0 < −1
δ

 with x ∈ A implies


f(x) ∈ Bε(x0), if L ∈ R;
f(x) ∈ (1

ε
,∞) if L =∞;

f(x) ∈ (−∞,−1
ε
), if L = −∞.

Theorem 4.20. L’Hospital’s rule Suppose that f and g are real valued differentiable func-
tions defined on (a, b) where a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}, g′(x) 6= 0 on (a, b), and
f ′(x)

g′(x)
→ L ∈ R∗ as x→ a.

If f(x) → 0 and g(x) → 0 as x → a, or if g(x) → ∞ as x → a, then
f(x)

g(x)
→ L ∈ R∗ as

x→ a.

An analogous statement holds of course if x→ b or if g(x)→ −∞.
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Proof. The proof of this result is a bit technical. The main idea is the following. The generalized
mean value theorem (Theorem 4.12) implies that for any x, y exists cx,y between x and y such

that f(x)−f(y)
g(x)−g(y)

= f ′(cx,y)

g′(cx,y)
As x, y → a, automatically cx,y → a. Now, letting y → a faster than x,

we can use f(y)→ 0 and g(y)→ 0 to observe that then f(x)−f(y)
g(x)−g(y)

behaves as f(x)
g(x)

.

4.2. Taylor series

Definition 4.21. Higher derivatives. For r ∈ N we say that f : U −→ R, U open in R,
has an n-th derivative at x0 if f (0) = f , f (1) = f ′, f (2) = f ′′, . . . , f (n−1) = f (n−2) ′ are defined on
(x0 − ε, x0 + ε) for some ε > 0 and f (n−1) is differentiable at x0.

If f has an n-th derivative on U , that is, f has an n-th derivative at x0 for all x0 ∈ U , and
if f (n) = f (n−1) ′ is continuous on U , then we write f ∈ Cn(U). If f ∈ Cn(U) for all n ∈ N,
then we write f ∈ C∞(U) and say f is called smooth.

Certainly, we shall also write Cn(A) or C∞(A) if the requirement on A to be open is
weakend to the property that all its members are cluster points, that is, A ⊆ A′. For example,
one frequently considers C2([0, 1]).

Remark 4.22. Note that the notation described above is in accordance to the symbol C0(U) =
C(U) of continuous functions on U .

If U is an interval, for example U = (a, b) we shall write Cn(a, b) rather than Cn
(
(a, b)

)
.

Theorem 4.23. Taylor’s Theorem. Given f : (a, b) −→ R and n ∈ N with f ∈ Cn−1(a, b)
and f (n) defined (but not necessarily continuous) on (a, b). For x0 in (a, b) define the n− 1-th
degree Taylor polynomial as

Pf,x0(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k, x ∈ (a, b).

For any x ∈ (a, b) exists a ξx between x0 and x such that

f(x) = Pf,x0(x) +
f (n)(ξx)

n!
(x− x0)n.

Proof. Let x and x0 be fixed. Choose M ∈ R with f(x)− Pf,x0(x) = M(x− x0)n. We have to

show that for some ξx between x0 and x we have f (n)(ξx)
n!

= M .

Remark 4.24. Taylor’s Theorem is used to compute approximate values of functions by means
of evaluating polynomials.

For example, if |f (n)(ξ)| < M for all ξ between x and x0, then we have

|f(x)− Pf,x0(x)| =
∣∣∣∣f (n)(ξx)

n!
(x− x0)n

∣∣∣∣ ≤ M

n!
|x− x0|n

For x being close to x0 the right hand side, and, therefore, the approximation error, is small.
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Corollary 4.25. If f ∈ Cn(a, b) with f (n)(ξ) = 0 for all ξ ∈ (a, b), then f is a polynomial of
degree at most (n− 1).

Corollary 4.26. If for f ∈ C∞(a, b) there exists M > 0 with |f (n)(ξ)| ≤ M for all ξ ∈ (a, b)
and n ∈ N, then for any x0 ∈ (a, b), we have

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k, x ∈ (a, b).

Definition 4.27. For f ∈ C∞(a, b) and x0 ∈ (a, b), the formal power series

Tf,x0(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k, x ∈ (a, b)

is the Taylor series of f at x0.

Remark 4.28. i. The radius of convergence of a Taylor series is not necessarily larger than
0.

ii. Even if the Taylor series of a function converges, it might not converge to the function.

For example, consider f(x) =

{
e−

1
x

2

, for x 6= 0
0, else.

satisfies f ∈ C∞(R), f (n)(0) = 0 for

n ∈ N and, therefore, Tf,0 has radius of convergence R = ∞ and Tf,0(x) = 0 6= f(x) for
x 6= 0.

Theorem 4.29. Assume that (fn) is a sequence of functions which are differentiable on (c, d),

and let [a, b] ⊂ (c, d). If
∞∑
n=1

fn(x) converges at some x0 ∈ [a, b] and
∞∑
n=1

f ′n(x) converges

uniformly on [a, b], then
∞∑
n=1

fn(x) converges to a differentiable function, and

(
∞∑
n=1

fn(x)

)′
=
∞∑
n=1

f ′n(x).

Proof. Use Theorem 3.70.

Proposition 4.30. If f(x) =
∞∑
k=0

ck(x − x0)k for x ∈ (a, b), then f ∈ C∞(a, b) and f (k)(x) =

ck k! for k ∈ N. Further, we have f ′(x) =
∞∑
k=1

ck k(x − x0)k−1 for x ∈ (a, b), that is, we can

differentiate the series of functions f term by term.

Proof. Use Theorem 4.29.
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4.3. The exponential function and friends

The following theorem lists important facts regarding the exponential function exp(z) =
∞∑
k=0

zk

k!
,

z ∈ C, some of which we stated and proved earlier.

Theorem 4.31. The Exponential Function.

i. exp(z) =
∞∑
k=0

zk

k!
converges absolutely for z ∈ C.

ii. exp(z + w) = exp(z) exp(w) for z, w ∈ C.

iii. exp(x) = exp(1)x = ex for x ∈ R.

iv. exp′(x) = exp(x) for x ∈ R.

v. exp(x) > 0 for x ∈ R and exp is strictly monotonically increasing.

vi. exp(x)→∞ as x→∞ and exp(x)→ 0 as x→ −∞.

vii. exp : R→ R+ is bijective.

viii.
xn

exp(x)
→ 0 as x→∞ for all n ∈ N.

Definition 4.32. The inverse function of exp : R −→ R+ is called natural logarithm and is
denoted by log : R+ −→ R.

Proposition 4.33. i. log(xy) = log(x) + log(y) for x, y ∈ R+.

ii. The natural logarithm is a differentiable function with log′(x) = 1
x

for x ∈ R+.

iii. For x > 0 we have xa = exp(a log(x)) = ea log(x) and f : R+ −→ R, x 7→ xa is differen-
tiable with f ′(x) = axa−1.

iv. For a > 0 we have again ax = exp(x log(a)) = ex log(a) and g : R −→ R, x 7→ ax is
differentiable with g′(x) = ax log(a).

Proof. ii. Use Theorem 4.17, iii. and iv. by chain rule.

Definition 4.34. For a > 0, the function of g(x) : R −→ R+, x 7→ ax is bijective and its
inverse is called logarithm to base a. We shall denote g−1 by loga : R+ −→ R.

After discussing the behavior of the restriction of the function exp : C −→ C to the
real axis R, that is, exp : R −→ C, we shall now consider its restriction to the imaginary
axis iR ⊂ C. Once we described its properties, we fully understand exp : C −→ C since
exp(a+ bi) = exp(a) exp(bi) for a, b ∈ R.

We shall study exp : iR −→ C by studying its real and imaginary part.
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Definition 4.35. We define the sine function sin : R −→ R by setting sin(x) = = exp(ix) for
x ∈ R and the cosine function cos : R −→ R by setting cos(x) = < exp(ix) for x ∈ R.

For convenience, we shall write cosx for cos(x), sinx for sin(x), cosn x for (cos(x))n, and
sinn x for (sin(x))n, for x ∈ R and n ∈ N.

Theorem 4.36. i. sinx =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
for x ∈ R.

ii. cosx =
∞∑
k=0

(−1)k
x2k

(2k)!
for x ∈ R.

iii. sin′ = cos and cos′ = − sin.

iv. sin2 x+ cos2 x = 1 for x ∈ R.

v. cos and sin are 2π–periodic, that is, sin(x+ 2π) = sinx, cos(x+ 2π) = cosx, where π
2

is
the smallest x > 0 such that cosx = 0.

Corollary 4.37. exp : C −→ C is 2πi–periodic.

Proof. exp(z + 2πi) = exp(z) exp(2πi) = exp(z)(cos(2π) + i sin(2π)) = exp(z) for z ∈ C.

4.4. Fixed point theorems and approximative methods

Definition 4.38. An element x0 ∈ X is called fixed point of f : X −→ X if f(x0) = x0.

Definition 4.39. A contraction on a metric space (X, d) is a map f : X −→ X such that for
some constant k, 0 ≤ θ < 1, we have

d(f(x), f(y)) ≤ θ d(x, y) for all x, y ∈ X .

Proposition 4.40. Contractions are uniformly continuous mappings.

Theorem 4.41. Banach Fixed Point Theorem. If f : X −→ X is a contraction on a
complete metric space (X, d), then exists a unique fixed point x∗ ∈ X, and for any choice of
x0 ∈ X, the sequence (xn) defined by

x0, x1 = f(x0), x2 = f(x1), x3 = f(x2) = f(f(x1)) = f ◦ f(x1), . . . , xn+1 = f(xn), . . . ,

converges to x∗. Moreover, we have

d(xn, x
∗) ≤ θ

1− θ
d(xn, xn−1) ≤ θn−1

1− θ
d(x1, x0).
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Proof. First note that if x∗ and x? are both fixed points, then

0 ≤ d(x∗, x?) = d(f(x∗), f(x?)) ≤ θd(x∗, x?),

and 0 ≤ θ < 1 implies d(x∗, x?) = 0 so x∗ = x? and uniqueness is shown.

To show that the constructed sequence (xn) converges, we shall establish that it is Cauchy.
Indeed, with m ≥ n, we have

d(xm, xn) = d(f(xm−1), f(xn−1)) ≤ θd(xm−1, xn−1) ≤ . . . ≤ θnd(xm−n, x0)

≤ θn
(
d(xm−n, xm−n−1) + d(xm−n−1, xm−n−2) + . . .+ d(x2, x1) + d(x1, x0)

)
≤ θn

(
θm−nd(x1, x0) + θm−nd(xm−n−2, xm−n−3) + . . .+ θd(x1, x0) + d(x1, x0)

)
= θnd(x1, x0)

m−n∑
k=0

θk ≤ θnd(x1, x0)
1

1− θ
,

which implies that (xn) is Cauchy since for fixed ε just choose N so that θNd(x1, x0) < (1−θ)ε.
Completeness of X now ensures that (xn) converges to some x∗. Letting m → ∞ above

shows that d(xn, x∗) ≤ θn

1−θd(x1, x0). Moreover, a contradiction is easily seen to be continuous.
Hence,

f(x∗) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x∗,

and x∗ is a fixed point.

Theorem 4.42. Newton’s Method.5 Let f be continuous on [a, b] and twice differentiable
on (a, b). If f(a) ≤ 0, f(b) > 0, f ′(x) ≥ δ > 0 and 0 ≤ f ′′(x) ≤ M for x ∈ (a, b), then exists
a unique point ξ ∈ (a, b) with f(ξ) = 0. Moreover, for any x1 with f(x1) > 0 the sequence
recursively defined by

xn+1 = xn −
f(xn)

f ′(xn)

converges to ξ and we have

|xn+1 − ξ| ≤
2δ

M

∣∣∣∣M2δ (x1 − ξ)
∣∣∣∣2n .

Theorem 4.43. Let f : [a, b]→ R, a < b, be a differentiable function with f([a, b]) ⊂ [a, b] and
let q < 1 such that |f ′(x)| ≤ q,∀x ∈ D. For x1 ∈ [a, b] set xn = f(xn−1) for n ≥ 1. Then the
sequence (xn) converges to the unique solution ξ ∈ D of the equation f(ξ) = ξ and the following
inequalities holds:

|ξ − xn| ≤
q

1− q
|xn − xn−1| ≤

qn

1− q
|x1 − x0|.

5We shall only give one of the many cases/versions of Newton’s method.
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5. INTEGRATION

5.1. The Riemann integral

Definition 5.1. A partition P of the closed interval [a, b] ⊂ R, a < b, is a finite set P =
{x0, x1, . . . , xN} such that a = x0 < x1 < x2 < . . . < xN−1 < xN = b. The mesh or width of P
is given by meshP = max{xn − xn−1 : n = 1 : N}. A sampling set T associated to P is a set
T = {t1, t2, . . . , tN} with a = x0 ≤ t1 ≤ x1 ≤ t2 ≤ x2 ≤ . . . ≤ xN−1 ≤ tN ≤ xN = b.

The Riemann sum R(f, P, T ) of f : [a, b] −→ R corresponding to P, T is

R(f, P, T ) =
N∑
n=1

f(tn) (xn − xn−1).

Definition 5.2. A function f : [a, b] −→ R is Riemann integrable if there exists a real number
If such that for all ε > 0 exists a δ > 0 with the property that for any partition P with
meshP < δ and any corresponding sampling set T we have |R(f, P, T )− If | < ε.

In this case, we call the number If Riemann integral of f on [a, b] and we write∫ b

a

f(x) dx = If .

The set of all Riemann integrable functions on [a, b] is denoted by R([a, b]).

Theorem 5.3. Any Riemann integrable function is bounded.

Proof. Let us assume that f : [a, b] −→ R is unbounded and Riemann integrable. For ε = 1
choose δ > 0 so that |R(f, P, T ) − If | < 1 for all partitions P with meshP < δ and any
corresponding sampling set T . Fix such P = {x0, x1, . . . , xN} with meshP < δ and T =
{t1, t2, . . . , tN}.

Since f is unbounded on [a, b] there exists n such that f is unbounded on [xn−1, xn]. However
small xn−xn−1 is, we can find sn ∈ [xn−1, xn] with |f(sn) (xn−xn−1)−f(tn) (xn−xn−1)| > 1000.
We set T ′ = {t1, . . . , tn−1, sn, tn+1, . . . tN

)
} and conclude that

1000 < |R(f, P, T )−R(f, P, T ′)| ≤ |R(f, P, T )− If |+ |If −R(f, P, T ′)| < 1 + 1 = 2,

a contradiction.

Theorem 5.4. Linearity of the Riemann integral. The set R([a, b]) of Riemann inte-
grable functions on [a, b] is a real vector space and the map∫ b

a

: R([a, b]) −→ R f 7→
∫ b

a

f(x) dx

is linear.

Theorem 5.5. Monotonicity of the integral. If f, g ∈ R([a, b]) and f(x) ≤ g(x) for

all x ∈ R, then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.
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Definition 5.6. For a bounded function f : [a, b] −→ R and a partition P = {x0, x1, . . . xN},
we call

L(f, P ) =
N∑
n=1

mn(xn − xn−1), mn = inf{f(x) : x ∈ [xn−1, xn]} = inf f([xn−1, xn])

for n = 1, . . . N

lower sum of f with respect to P , and

U(f, P ) =
N∑
n=1

Mn(xn − xn−1), Mn = sup f([xn−1, xn]) for n = 1, . . . N

upper sum of f with respect to P .

Definition 5.7. The lower [resp. upper] integral of a bounded function f : [a, b] −→ R is
I(f) = sup

P
L(f, P ) [resp. I(f) = inf

P
U(f, P ).

If I(f) = I(f), then we call f Darboux integrable on [a, b] and I(f) = I(f) = I(f) the
Darboux integral of f on [a, b].

Definition 5.8. A partition P ′ of [a, b] refines the partition P of [a, b] if P ′ ⊃ P . P ′ is called
refinement of P .

A partition P ′ of [a, b] which refines simultaneously two partitions P1 and P2 is called
common refinement of P1 and P2.

Lemma 5.9. Refinement Principle. If P ′ refines P on [a, b] and f : [a, b] −→ R is bounded,
then L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).

Lemma 5.10. A bounded function f : [a, b] −→ R is Darboux integrable if and only if

for all ε > 0 exists a partition Pε such that U(f, Pε)− L(f, Pε) < ε.

Theorem 5.11. A function f : [a, b] −→ R is Darboux integrable if and only if f is Riemann

inegrable. Further,

∫ b

a

f(x) dx = I(f).

Proof. Let us first assume f is Riemann integrable. Fix ε > 0 and choose δ > 0 so that
|If −R(f, P, T )| < ε

3
for all P with width less than δ. Fix such P

Note that
U(f, P ) = sup

T
R(f, P, T ) and L(f, P ) = inf

T
R(f, P, T )

and, hence |If − U(f, P )| ≤ ε
3

and |If − L(f, P )| ≤ ε
3
, and, therefore

|U(f, P )− L(f, P )| ≤ |If − U(f, P )|+ |If − L(f, P )| ≤ ε

3
+
ε

3
< ε,

so Pε = P does the job.
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Now assume f is Darboux integrable. Fix ε > 0 and choose Pε = {x0, . . . , xN} so that
U(f, Pε)− L(f, Pε) <

ε
2
. Let M be chosen with M ≥ |f(x)| for all x ∈ [a, b] and set δ = ε

4MN
.

Let P = {y0, y1, . . . , yÑ} be a partition of width δ and T a respective sampling set. Note
that

N∑
n=1

mnχ[xn−1−xn])(x) ≤
Ñ∑
n=1

f(tn)χ[yn−1−yn])(x) ≤
N∑
n=1

Mnχ[xn−1−xn])(x), x ∈ A,

where A contains all points in [a, b] with the possible exception of the union of N intervals of
size less than or equal to δ. Hence, with I(f) denoting the Darboux integral, we have

I(f)−R(f, P, T ) < I(f)− L(f, Pε) + 2MNδ <
ε

2
+
ε

2

and
R(f, P, T )− I(f) < U(f, Pε)− I(f) + 2MNδ <

ε

2
+
ε

2
.

Theorem 5.12. Riemann Integrability Criterion. A bounded function is Riemann
integrable if and only if

for all ε > 0 exists a partition Pε such that U(f, Pε)− L(f, Pε) < ε.

Corollary 5.13. C([a, b]) ⊂ R([a, b]), that is, continuous functions are Riemann integrable.

Lemma 5.14. For x ∈ R\{. . . ,−4π,−2π, 0, 2π, 4π, . . .} we have
1

2
+

N∑
n=1

cosnx =
sin(N + 1

2
)x

2 sin 1
2
x

.

Example 5.15. An application of Lemma 5.14 shows that for a < 0 we have

∫ 0

a

cosx dx = sin a.

Theorem 5.16. Let a < b < c and f : [a, c] −→ R. Then f ∈ R([a, c]) if and only if
f |[a,b] ∈ R([a, b]) and f |[b,c] ∈ R([b, c]). If these conditions are satisfied, we have∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

In light of Theorem 5.16 we shall now extend the definition of Riemann integral.

Definition 5.17. For a < b and f ∈ R([a, b]), we set

∫ a

a

f(x) dx = 0 and

∫ a

b

f(x) dx =

−
∫ b

a

f(x) dx.

The conscientious reader should check which ones of the properties of the Riemann integral
depend on a < b in

∫ b
a
f(x) dx. For example, linearity does not, while monotonicity does.
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Definition 5.18. A set Z ⊂ R is called zero set if for all ε > 0 exists a countable covering of
open intervals (an, bn), n ∈ N, that is,

⋃∞
n=1(an, bn), with

∑∞
n=1(bn − an) < ε.

Example 5.19. i. Finite sets are zero sets.

ii. Q is a zero set.

iii. Subsets of zero sets are zero sets.

iv. if Zr, r ∈ N are zero sets, then Z =
⋃∞
r=1 Zr is a zero set.

Definition 5.20. Let f : [a, b] −→ R and x0 ∈ [a, b]. The oscillation of f at x0 is given by

oscx0(f) = lim sup
x→x0

f(x)− lim inf
x→x0

f(x) = lim
n→∞

(
sup f([x0 − 1

n
, x0 + 1

n
])− inf f([x0 − 1

n
, x0 + 1

n
])
)

with the obvious adjustments if x0 = a or x0 = b.

Lemma 5.21. The function f : [a, b] −→ R is continuous at x0 ∈ [a, b] if and only if oscx0(f) =
0.

Theorem 5.22. Riemann–Lebesgue Theorem. A function f : [a, b] −→ R is Riemann
integrable if and only if f is bounded and its set of discontinuities

D = {x ∈ [a, b] : f is not continuous at x}

is a zero set.

Corollary 5.23. The product of Riemann integrable functions is Riemann integrable, that is,
if f, g ∈ R([a, b]), then fg ∈ R([a, b]).

Corollary 5.24. If f : [a, b] −→ [c, d] is Riemann integrable and Φ : [c, d] −→ R is continuous,
then Φ ◦ f ∈ R([a, b]).

Corollary 5.25. If f ∈ R([a, b]), then |f | ∈ R([a, b]).

Theorem 5.26. Every monotone function f : [a, b] −→ R is Riemann integrable.

Theorem 5.27. Mean Value Theorem For Integrals. Let f, ϕ : [a, b] −→ R be contin-
uous functions and ϕ ≥ 0. Then there exists ξ ∈ [a, b] such that∫ b

a

f(x)ϕ(x)dx = f(ξ)

∫ b

a

ϕ(x)dx.

Theorem 5.28. Let (fn)n∈N be a sequence of Riemann integrable functions on [a, b]. If fn −→ f
uniformly on [a, b], then f is Riemann integrable and

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.
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5.2. Integration and differentiation

Definition 5.29. For f ∈ R([a, b]) we call the function F (x) =

∫ x

a

f(y) dy, x ∈ [a, b], the

indefinite integral of f on [a, b] .

Theorem 5.30. Fundamental Theorem of Calculus I. Let f ∈ R([a, b]) and F (x) =∫ x

a

f(y) dy. Then F (x) is continuous and F ′(x) = f(x) for all x ∈ (a, b) at which f is

continuous.

Remark 5.31. In calculus, the symbol
∫
f(y) dy is often referred to as the indefinite integral of

a function f which is continuous on its domain. In fact, in this context, the indefinite integral
represents the set of functions satisfying F ′(x) = f(x). As F ′(x) = G′(x) on connected sets
if and only if F (x) = G(x) + C for C ∈ R, one commonly writes

∫
f(y) dy = F (x) + C. For

example,
∫

sin(y) dy = cos(x) + C, or, abusing notation even more,
∫

sin(x) dx = cos(x) + C.

Theorem 5.32. Fundamental Theorem of Calculus II. If f ∈ R([a, b]) and F ∈

C([a, b]) is given with F ′(x) = f(x) for all x ∈ (a, b), then

∫ b

a

f(x) dx = F (b)− F (a).

Theorem 5.33. Integration by Parts. Suppose F,G : [a, b] −→ R are continuous and
differentiable on (a, b), f, g ∈ R([a, b]) with F ′(x) = f(x) and G′(x) = g(x) on (a, b). Then∫ b

a

F (x)g(x) dx = F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x) dx.

Theorem 5.34. Integration by Substitution. Let f ∈ R([a, b]) and assume g : [c, d] −→
[a, b] bijective and continuously differentiable with g′(x) > 0 for x ∈ [a, b], then∫ b

a

f(y) dy =

∫ d

c

f(g(x)) g′(x) dx.
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5.3. Improper Riemann integral

Example 5.35. Calculate the length of a circle using “improper” integrals.

Definition 5.36. Let f : [a, b) −→ R, b ∈ R ∪ {+∞} be Riemann integrable on [a, c] for any

a < c < b. If lim
c↗b

∫ c

a

f(x) dx exists6, then it is called improper Riemann integral and we extend

our use of notation and write ∫ b

a

f(x) dx = lim
c↗b

∫ c

a

f(x) dx.

Under similar conditions on f : (a, b] −→ R, a ∈ R∪{−∞}, we define the improper integral
by setting ∫ b

a

f(x) dx = lim
c↘a

∫ b

c

f(x) dx.

If f : (a, b) −→ R, b ∈ R ∪ {+∞} is Riemann integrable on [c1, c2] for any a < c1 < c2 < b,

and if lim
c2↗c

∫ c2

c

f(x) dx and lim
c1↘a

∫ c

c1

f(x) dx exist for some c ∈ (a, b), then we set

∫ b

a

f(x) dx = lim
c2↗b

∫ c2

c

f(x) dx+ lim
c1↘a

∫ c

c1

f(x) dx.

Remark 5.37. lim
R→∞

∫ −R
R

x dx exists, but, by definition,

∫ ∞
−∞

x dx does not exist as improper

integral.

Theorem 5.38. Integral Criterion for Sums. Let f : [1,∞) −→ R+ ∪ {0} be a mono-
tonic decreasing function.

The series
∞∑
n=1

f(n) converges if and only if the improper integral

∫ ∞
1

f(x) dx exists.

Proposition 5.39. Wallis’ Product.
π

2
=
∞∏
n=1

4n2

4n2 − 1
.

6We write lim
c↗b

for lim
c→b

c<b

and lim
c↘a

for lim
c→a
c>a

.
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5.4. Infinite dimensional vector spaces and orthonormal bases

Definition 5.40. A vector space over the field K = C or K = R is a set V with an addition
+ : V × V → V and a scalar multiplication · : K × V → V which satisfy:

i. (V,+) is a commutative group. The neutral element is denoted by 0 (not to be confused
with the scalar 0 ∈ K).

ii. For v, w ∈ V and r, s ∈ K, we have

• r · (v + w) = (r · v) + (r · w);

• (r + s) · v = (r · v) + (s · v);

• (rs) · v = r · (s · v);

• 1 · v = v.

As customary with multiplication in fields, the symbol “ · ” for scalar multiplication is
often omitted.

Definition 5.41. A norm on the vector space V overK = R orK = C is a function ‖·‖ : V → R
with

i. ‖v‖ > 0 if v 6= 0 and ‖0‖ = 0;

ii. ‖rv‖ = |r|‖v‖ for r ∈ K and v ∈ V ;

iii. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for v, w ∈ V .

A vector space with norm is called normed vector space .

Remark 5.42. A norm ‖ · ‖ on a vector space V over K = R or K = C induces the metric
d : V × V −→ R, (v, w) 7→ d(v, w) = ‖v − w‖ on V .

Definition 5.43. A normed vector space V over K = R or K = C which is a complete metric
space with respect to the metric d : V × V −→ R, (v, w) 7→ d(v, w) = ‖v−w‖ is called Banach
space.

Definition 5.44. An inner product (scalar product) on the vector space V over K = R or
K = C is a binary function 〈·, ·〉 : V × V → K which satisfies

i. 〈v, v〉 > 0 if v 6= 0;

ii. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for u, v, w ∈ V and 〈rv, w〉 = r〈v, w〉 for r ∈ K and v, w ∈ V .

iii. 〈u, v +w〉 = 〈u, v〉+ 〈u,w〉 for u, v, w ∈ V and 〈v, rw〉 = r〈v, w〉 for r ∈ K and v, w ∈ V .

iv. 〈v, w〉 = 〈w, v〉 for v, w ∈ V .

A vector space with inner product is called inner product space.
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Remark 5.45. An inner product 〈·, 〉̇ on a vector space V over K = R or K = C induces the
norm ‖ · ‖ : V → R, v 7→

√
〈v, v〉 and therefore a metric d : V × V −→ R, (v, w) 7→ d(v, w) =

‖v − w‖ =
√
〈v − w, v − w〉 on V .

Inner product and induced norm satisfy the Cauchy–Schwarz inequality |〈v, w〉| ≤ ‖v‖ ‖w‖
for v, w ∈ V . A special case of this inequality has been given as Theorem 3.7.

Definition 5.46. An inner product vector space V over K = R or K = C which is a complete
metric space with respect to the metric d : V × V −→ R, (v, w) 7→ d(v, w) = ‖v − w‖ =√
〈v − w, v − w〉 is called Hilbert space.

Definition 5.47. A set B ⊂ V is a basis of the vector space V over the field K = C or K = R
if any v ∈ V can be represented as a linear combination of the elements in B and if no subset
B′ $ B has this property.

If B is a basis of V consisting of N ∈ N elements, then we call N the dimension of V and
write dimV = N . If V has not a finite basis, then we call V infinite dimensional.

Definition 5.48. A family of vectors O in an inner product space is called orthogonal , if
〈v, w〉 = 0 for v, w ∈ O, v 6= w. If in addition 〈v, v〉 = 1 for v ∈ O, then we call O an
orthonormal system (ONS)

Remark 5.49. A family O of orthogonal vectors in any inner product space is linear independent,
as
∑N

n=1 anvn = 0, {vn} orthogonal, implies

0 = 〈
∑

anvn, vm〉 =
∑

an〈vn, vm〉 = am

for all m = 1, . . . N . Consequently, any family O of N orthogonal vectors in an N dimensional
vector space is a basis.

Example 5.50. Consider the space Kn of vectors with n entries in K = R or K = C. Then

• 〈(v1, v2, . . . , vn), (w1, w2, . . . , wn)〉 =
∑n

k=1 vkwk defines an inner product on Kn;

• ‖(v1, v2, . . . , vn)‖ = ‖(v1, v2, . . . , vn)‖2 =
√∑n

k=1 |vk|2 is the norm induced by 〈·, ·〉;

• d2((v1, v2, . . . , vn), (w1, w2, . . . , wn)) =
√∑n

k=1 |vk − wk|2 is the metric induced by ‖ · ‖2;

• (Kn, d2) is complete, Kn is therefore a Hilbert space;

• {e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0), . . . , en−1 = (0, 0, 0, . . . , 1, 0), en = (0, 0, 0, . . . , 0, 1)}
is a basis of Kn and an ONS in Kn;

• Kn has dimension n.

As Kn can be considered as functions mapping the finite index set {1, 2, . . . , n} into K, it
is natural to consider as vector space sets of functions mapping infinite sets S into K. The
following example discusses the case S = N.

Example 5.51. We consider the space of square summable sequences l2(N) = {(vk)k∈N :
∑∞

k=1 |vk|2 <
∞}.
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• 〈(v1, v2, v3, . . .), (w1, w2, w3, . . .)〉 =
∑∞

k=1 vkwk defines an inner product on l2(N);

• ‖(v1, v2, v3, . . .)‖ = ‖(v1, v2, v3, . . .)‖2 =
√∑∞

k=1 |vk|2 is the norm on l2(N) induced by
〈·, ·〉;

• d2((v1, v2, v3, . . .), (w1, w2, w3, . . .)) =
√∑∞

k=1 |vk − wk|2 is the metric induced by ‖ · ‖2;

• (l2(N), d2) is complete, l2(N) is therefore a Hilbert space;

• {e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), . . .} is an ONS in Kn;

• l2(N) is an infinite dimensional vector space.

Remark 5.52. In Example 5.50 we have for any v ∈ Kn,

v = (v1, . . . , vn)

= v1(1, 0, 0, . . . , 0, 0) + v2(0, 1, 0, . . . , 0) + . . .+ vn−1(0, 0, 0, . . . , 1, 0) + vn(0, 0, 0, . . . , 0, 1)

=
n∑
k=1

〈v, ek〉ek.

This is a consequence of the fact that {ek} form a basis and an ONS.

Actually, whenever {ϕn}n=1,...,K is an orthonormal system in CN , with K = N , then
then {ϕn}n=1,...,N is a so–called orthonormal basis of CN , and for any v ∈ CN , we have

v =
N∑
n=1

〈v, ϕn〉ϕn.

In the infinitely dimensional vector space l2(N) which is discussed in Example 5.51, the
infinite set {e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, . . .), . . .} is not a basis (in
the sense of linear algebra) of l2(N). For example, note that the sequence { 1

k
} ∈ l2(N) cannot be

written as a finite linear combination of vectors in {e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 =
(0, 0, 1, 0, . . .), . . .}. But we do have that

N∑
k=1

〈{1

k
}, ek〉ek =

N∑
k=1

1

k
ek = (1.

1

2
,
1

3
, . . . ,

1

N−1
,

1

N
, 0, 0, . . .) −→ (1,

1

2
,
1

3
,
1

4
,
1

5
, . . .) = {1

k
}.

with convergence in the d2 metric which is induced by the inner product on l2(N).

Theorem 5.53. If {φn}n∈N is an orthonormal system in the inner product space V , then for
any v ∈ V we have

‖f −
N∑
n=1

〈v, φn〉φn ‖2
2 = ‖v‖2 −

N∑
n=1

|〈v, φn〉|2.

Hence, for v ∈ V , we have v =
∞∑
n=1

〈v, φn〉φn in V (with convergence in the metric topology

induced by the inner product on V ) if and only if ‖f‖2 =
∞∑
n=1

|〈v, φn〉|2.
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Corollary 5.54. Bessel Inequality. If {φn}n∈N is an orthonormal system in the inner
product space V , then for any v ∈ V we have

‖v‖2 ≥
∞∑
n=1

|〈v, φn〉|2.

Definition 5.55. If {φn}n∈N is an orthonormal system in the inner product space V and if for

all v ∈ V we have v =
∞∑
n=1

〈v, φn〉φn in V , then we call {φn}n∈Z orthonormal basis of V .

Remark 5.56. The concept of othornomal bases in infinite dimensional inner product spaces
generalizes the concept of orthonromal bases in finite dimensional vector spaces. As not every
basis in finite dimensions is orthonormal, you may expect that there are also more general
concepts of bases in infinite dimensional spaces. The most common generalizations of bases in
finite dimensions are so–called unconditional bases, Riesz bases, and Schauder bases.

Let us now consider Riemann integrable functions mapping the infinite set [0, 1] into K with
K = R or K = C. To cover both cases, we need to first define what a complex valued Riemann
integrable function is.

Definition 5.57. Integrals of complex valued functions. If for f : [a, b] 7→ C, the

real valued functions Re(f), Im(f) satisfy Re(f), Im(f) ∈ R([a, b]), then we set
∫ b
a
f(x)dx =∫ b

a
Re(f(x)) dx+ i

∫ b
a
Im(f(x)) dx and say that f is Riemann integrable.

This extends the definition of real valued Riemann integrable functions and from now on,
the set R([a, b]) denotes the complex vector space of complex valued and Riemann integrable
functions.

Example 5.58. On the complex vector space R([0, 1]) we define an equivalence relation by f ∼ g

if
∫ 1

0
|f(x)− g(x)|2 dx = 0. The set of equivalence classes w.r.t. ∼ is denoted by R′([0, 1]). We

shall abuse notation by identifying the equivalence class [f ] with its representative f .

On the complex vector space R′([0, 1]) we define as in Example ??

• the inner product 〈f, g〉 =

∫ 1

0

f(x)g(x) dx,

• the corresponding norm ‖f‖2 =
√
〈f, f〉 =

√∫ 1

0

|f(x)|2 dx,

• and the corresponding metric d2(f, g) = ‖f − g‖2 =

√∫ 1

0

|f(x)− g(x)|2 dx.

Note that the metric space (R′([0, 1]), d2) is not complete. To see this, consider, for example, the

Cauchy sequence given by the functions fn(x) = x−
1
2 for x > 1/n and fn(x) = 0 for x ≤ 1/n.

Also, note that d2 fails to be a metric on R([0, 1] as d2(χ{1/2}, 0) = 0. In R′([0, 1] we have
χ{1/2} = 0 while in R([0, 1] we have χ{1/2} 6= 0.
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5.5. Fourier series

In this section, we will consider the infinite dimensional inner product space R′([0, 1]). We will
show that the Fourier system {e2πinx}n∈Z is an orthonormal basis of R′([0, 1]). Other than in
the previous section, we shall consider the integers Z as index set. Sums of the form

∑∞
k=−∞ . . .

stand for the limit lim
N
→∞

N∑
−N

. . ..

Remark 5.59. A family of functions {φn}n∈Z ⊂ R′([0, 1]) is orthogonal, if 〈φn, φm〉 =

∫ 1

0

φn(x)φm(x) dx =

0 for n 6= m. If in addition ‖φn‖2 =

√∫ 1

0

|φn(x)|2 dx for n ∈ Z, then {φn}n∈Z is an ONS.

Definition 5.60. Let en ∈ C∞(R) be given by en(x) = e2πinx, x ∈ R.

i. Let cn ∈ C for n ∈ Z. A function f : [0, 1] −→ C with f(x) =
N∑

n=−N

cne
2πinx is called

trigonometric polynomial.

The formal expression
∞∑

n=−∞

cnen =
∞∑

n=−∞

cne
2πinx is called trigonometric series, and

∞∑
n=−∞

cne
2πinx converges pointwise or uniformly to a function g if lim

N→∞

N∑
n=−N

cne
2πinx con-

verges pointwise or uniformly. Similarly, if X is a vector space of functions on [0, 1]

with {en}n∈Z ⊂ X and if dX is a metric on X, then
∞∑

n=−∞

cnen converges to g in X if

lim
N→∞

dX

(
N∑

n=−N

cnen , g

)
= 0.

ii. For f ∈ R′([0, 1]) and n ∈ Z we call the complex number f̂(n) =
∫ 1

0
f(x)e−2πinx dx the

n− th Fourier coefficient of f .

iii. The trigonometric series
∞∑

n=−∞

f̂(n)e2πinx is called Fourier series of f and we write f ∼

∞∑
n=−∞

f̂(n)e2πinx. For the partial sums of a Fourier series, we write S(f,N) =
N∑

n=−N

f̂(n)en.

Proposition 5.61. The family {en}n∈Z is an orthonormal system in R′([0, 1]).

Corollary 5.62. (Riemann–Lebesgue Lemma) For f ∈ R′([0, 1]), we have |f̂(n)| −→ 0 as
|n| → ∞.
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Remark 5.63. The question arises whether for f in the infinitely dimensional vector space
R′([0, 1]) we have

f = lim
N→∞

N∑
n=−N

〈f, en〉 en = lim
N→∞

N∑
n=−N

f̂(n) en = lim
N→∞

S(f,N)

with convergence in (R′([0, 1]), d2).

Note that the ONS {e2n}n∈Z contains also infinitely many orthonormal elements, but

e1 6= 0 = lim
N→∞

N∑
n=−N

0 e2n = lim
N→∞

N∑
n=−N

〈e1, e2n〉 e2n.

We conclude that not every infinite ONS behaves as an ONB in a finite dimensional vector
space. The question remains whether the full family {en}n∈Z contains “sufficiently” many
elements to do the trick.

Further, if {en}n∈Z does the trick do we have automatically

f(x) = lim
N→∞

N∑
n=−N

f̂(n) e2πinx

for all x ∈ [0, 1], that is, do we have pointwise convergence?

Lemma 5.64. For x ∈ [0, 1], we have
∞∑
n=1

cos 2πnx

n2
= π2

(
(2x− 1)2

4
− 1

12

)
.

Lemma 5.65. Let f ∈ R′([0, 1]) be a real valued step function, that is, for some partition
P = {x0, x1, . . . , xR} of [0, 1], f is constant on the intervals [xr, xr+1), r = 0, . . . R − 1, then
f = lim

N→∞
S(f,N) with convergence in (R′([0, 1]), d2) .

Theorem 5.66. For any f ∈ R′([0, 1]) we have f = lim
N→∞

S(f,N) in (R′([0, 1]), d2), and, hence,

{en}n∈Z is an orthonormal basis in R′([0, 1]).

Proposition 5.67. If f ∈ C([0, 1]) with f̂(n) = 0 for all n ∈ Z, then f(x) = 0 for all x ∈ [0, 1].

Proposition 5.68. If f ∈ C([0, 1]) with
+∞∑

n=−∞

|f̂(n)| convergent, then S(f,N) −→ f uniformly

(and therefore pointwise).

Remark 5.69. Theorem 5.66 naturally applies to real valued function f ∈ R′([0, 1]), that is for
a Riemann integrable function f : [0, 1] −→ R, we have

f =
∞∑

k=−∞

f̂(k)ek =
∞∑

k=−∞

〈f, ek〉ek .

79



But this kind of expansion is not very intriguing as it involves expanding a real valued function
as a series of complex valued functions with complex coefficients, knowing that in the end, the
imaginary contribution will cancel out. Using the fact that f is real valued, we compute

f(x) = Ref(x) = Re
∞∑

k=−∞

f̂(k)ek(x)

=
∞∑

k=−∞

Re
(
(Ref̂(k) + iImf̂(k))(cos 2πkx+ i sin 2πkx)

)
=

∞∑
k=−∞

(
Ref̂(k) cos 2πkx− Imf̂(k) sin 2πkx

)
= Ref̂(0) +

∞∑
k=1

(
Ref̂(k) cos 2πkx− Imf̂(k) sin 2πkx

)
+
(
Ref̂(−k) cos(−2πkx)− Imf̂(k) sin(−2πxn)

)
= Ref̂(0) +

∞∑
k=1

(
Ref̂(k) + Ref̂(−k)

)
cos 2πkx−

(
Imf̂(k)− Imf̂(−k)

)
sin 2πkx.

Further, using again the fact that f is real valued, we obtain Ref̂(0) = Re
∫ 1

0
f(x) dx =∫ 1

0
f(x) dx = f̂(0),

Ref̂(−k) = Re〈f, cos(−2πkx) + i sin(−2πkx)〉 = 〈f, cos 2πkx〉 = Ref̂(k)

and

Imf̂(−k) = Im〈f, cos(−2πkx)+i sin(−2πkx)〉 = Im−i〈f,− sin 2πkx〉 = 〈f, sin 2πkx〉 = −Imf̂(k).

Consequently,

f(x) = f̂(0) +
∞∑
k=1

2Ref̂(k) cos 2πkx− 2Imf̂(k) sin 2πkx

= a0 +
∞∑
k=1

ak
√

2 cos 2πkx+ bk
√

2 sin 2πkx.

with real valued coefficients

a0 = 〈f, cos(2π · 0(·))〉 =

∫ 1

0

f(x) dx

ak =
√

2〈f, cos(2πk(·))〉 =

∫ 1

0

f(x)
√

2 cos(2πkx) dx, k ∈ N,

bk =
√

2〈f, sin(2πk(·))〉 =

∫ 1

0

f(x)
√

2 sin(2πkx) dx, k ∈ N.

In fact, it is easy to see that the real valued functions in {1,
√

2 cos 2πkx,
√

2 sin 2πkx} form
an ONS in the space R′([0, 1]) of complex valued functions. Further, it is easy to deduce from
the computations above that {1,

√
2 cos 2πkx,

√
2 sin 2πkx} is an ONB for R′([0, 1]) and that in

general a0 = f̂(0), and ak = 1√
2

(
f̂(k) + f̂(−k)

)
and bk = i√

2

(
f̂(k)− f̂(−k)

)
for k ∈ N.
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6. MULTIVARIABLE CALCULUS

6.1. Some facts from linear algebra

We shall assume familiarity with basic linear algebra, that is, with concepts such as finite dimen-
sional vector spaces, linear independence, basis, linear transformations, matrices, determinants
and norms. The real vector spaces which will be of interest are Euclidean space Rn equipped
with the Euclidean norm ‖x‖ = ‖x‖2 =

√
x2

1 + x2
2 + . . .+ x2

n, x = (x1, x2, . . . , xn) ∈ Rn and
metric d2(x, y) = ‖x − y‖2, x, y ∈ Rn, and spaces of linear operators mapping one finite
dimensional space into another one. {e1, e2, . . . , en} denotes the Euclidean basis of Rn.

If L : Rn −→ Rm is linear, we write L ∈ L(Rn,Rm) and we denote by [L] ∈ Rm×n the
matrix representing L with respect to the Euclidean bases of Rn and Rm.

Let’s bring analysis to the table.

Theorem 6.1. Any linear transformation L : Rn −→ W , W is a vector space with norm ‖·‖W ,
is uniformly continuous.

Proof. Obviously, L = 0, that is, the linear transformation mapping all of Rn to 0 ∈ W , is
uniformly continuous. For L 6= 0, fix ε > 0. Set M = max{‖L(e1)‖, ‖L(e2)‖, . . . , ‖L(en)‖} and
δ = ε

Mn
. Note that M > 0 since else L = 0.

Fix x, y ∈ Rn such that d2(x, y) = ‖x− y‖2 < δ and observe that

d(L(x), L(y)) = ‖L(x)− L(y)‖W = ‖L(x− y)‖W = ‖L(
n∑
k=1

(xk − yk)ek)‖W

= ‖
n∑
k=1

(xk − yk)L(ek)‖W ≤
n∑
k=1

|xk − yk| ‖L(ek)‖W

≤
n∑
k=1

‖x− y‖ ‖L(ek)‖W < nδM = ε

We can now use analysis to show

Theorem 6.2. Let W be a normed vector space of dimension m ∈ N. The set L(Rn,W ) =
{L : Rn 7→ W, L linear} is a vector space of dimension n · m with operator norm ‖L‖L =

sup
{
‖L(x)‖W
‖x‖ : x ∈ Rn \ {0}

}
.

Further, for all x ∈ Rn we have ‖L(x)‖W ≤ ‖L‖L‖x‖Rn.

Proof. To show that L(Rn,W ) is a linear space of dimension n · m is easy. Now we shall

show that
{
‖L(x)‖
‖x‖ : x ∈ Rn \ {0}

}
is bounded, and therefore ‖ · ‖ : L(Rn,W ) −→ R is well

defined. First, observe that S = {‖x‖ = 1} is closed in Rn since ‖ · ‖2 : Rn −→ R is contin-
uous, {1} ⊂ R is closed and S = (‖ · ‖2)−1({1}). Together with the fact that S ⊂ Rn is also

bounded we get that S is compact (Heine-Borel theorem). The set
{
‖L(x)‖
‖x‖ : x ∈ Rn \ {0}

}
=
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{‖L(x)‖ : x ∈ Rn, ‖x‖ = 1} is the image of a compact set under a continuous function ‖ · ‖ ◦ L
and therefore compact and hence, bounded. (We could have chosen a direct proof using the
same inequality presented in Theorem 1, but I enjoyed arguments from Analysis I.)

To show the norm properties is easy, I leave it to you.

6.2. Curves

Curves are functions mapping intervals in R into Rm, that is

f =


f1

f2
...
fm

 : I −→ Rm, t 7→


f1(t)
f2(t)

...
fm(t)

 .(3)

Curves are vector valued functions, or, equivalently, a curve is a vector of functions each de-
pending of one real variable. This makes them fairly easy objects to study on the basis of single
variable calculus: the derivative of a curve is given componentwise, that is, for f given in 3, we
set f ′ = (f ′1, f

′
2, . . . , f

′
m)T .

Definition 6.3. A continuous mapping γ : I −→ Rm, I ⊆ R is an interval, is called a curve in
Rm or a curve on I in Rm.

If γ is one-to-one, γ is called an arc, if I = [a, b] and γ(a) = γ(b), then γ is a closed curve.

Definition 6.4. For a partition P = {x0, . . . , xN} of [a, b] and a curve γ : [a, b] −→ Rm, we set

Λ(P, γ) =
N∑
n=1

‖γ(xn)− γ(xn−1)‖2.

The length of a curve on the interval I is Λ(γ) = sup{Λ(P, γ) : P partitions I}.
If Λ(γ) <∞, then we call γ rectifiable.

Definition 6.5. Two curves γ1 : I1 −→ Rm and γ2 : I2 −→ Rm are called equivalent if for some
bijective and continuous map β : I1 −→ I2 we have γ1 = γ2 ◦ β.

Definition 6.6. A curve is regular if γ ∈ C1(I) and if for all t ∈ I we have

‖γ′(t)‖2
2 =

(
dγ1

dt
(t)

)2

+ . . .+

(
dγm
dt

(t)

)2

> 0 .

where γ′(t) =

(
dγi
dt

(t)

)
i=1,...,m

=

(
dγ1

dt
(t), . . . ,

dγm
dt

(t)

)T
.

Remark 6.7. For a regular γ : I −→ Rm, τ(t) =
γ′(t)

‖γ′(t)‖2

is the unit vector of the tangent line

of γ at t and is independent of the parametrization γ. Also,
∥∥(dγi

dt
(t)
)
i

∥∥
2
is considered the speed

of γ at t.

Theorem 6.8. If γ ∈ C1[a, b], then γ is rectifiable and Λ(γ) =

∫ b

a

‖γ′(t)‖2 dt.
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6.3. Derivatives of multivariable functions

Definition 6.9. Let U ⊂ Rn be open. The function f : U −→ Rm is differentiable at a ∈ U
with derivative (Df)a ∈ L(Rn,Rm) if

f(x) = f(a) + (Df)a(x− a) +R(x), with lim
x→a

1

‖x− a‖
R(x) = 0.

The linear map (Df)a is called total derivative, or simply derivative, of f at a.

We shall see below, that the total derivative of a function at a point is unique, that is, we
can talk about the derivative of f at a and not about a derivative of f at a.

Be aware of the fact that for each a where f is differentiable, (Df)a is a linear map and
not a number as in the one dimensional case. Further if f : U −→ Rm is differentiable for all
a ∈ U , we obtain a function Df : U −→ L(Rn,Rm), x 7→ (Df)x. Later, we will extend the
definition given above by replacing Rm by any normed finite dimensional vector space. Since
L(Rn,Rm) is such a space, we will be able to pose the question whether Df is differentiable as
well, that is, exists a second derivative D2f?

Example 6.10. If A : Rn −→ Rm is a linear map, we have (DA)a = A for all a ∈ Rn.

Indeed, comparing A(x) = A(a)+A(x−a) with A(x) = A(a)+(DA)a(x−a)+R(x) implies
that (DA)a = A and R(x) = 0 ∈ Rm (where clearly limx→a

1
‖x−a‖R(x) = limx→a

0
‖x−a‖ = 0.

Theorem 6.11. If f : U −→ Rm, U ⊂ Rn open, is differentiable at a ∈ U , we can determine
the action of (Df)a according to the limit formula

(Df)a(x) = lim
t→0

1

t

(
f(a+ tx)− f(a)

)
for any x ∈ Rn.

Proof. With xt = a+ tx, we have

1

t

(
f(a+ tx)− f(a)

)
=

1

t

(
f(xt)− f(a)

)
=

1

t

(
(Df)a(xt − a) +R(xt)

)
=

1

t

(
(Df)a(tx) +R(xt)

)
=
t

t
(Df)a(x) +

1

t
R(xt)

)
= (Df)a(x) +

1

‖tx‖
R(xt) = (Df)a(x) +

1

‖xt − a‖
R(xt).

The result follows by the differentiability of f , that is, 1
‖xt−a‖R(xt)→ 0 since limt→∞ xt = a.

Definition 6.12. If f : U −→ Rm, U ⊂ Rn open, a ∈ U , and ‖x‖ = 1, then we call the limit,

if it exists, lim
t→0

1

t

(
f(a+ tx)− f(a)

)
directional derivative at a in the direction x.

Recall the simple observation that a vector valued function is a vector of scalar valued
functions, that is, any function f : U −→ Rm, U ⊂ Rn, can be represented by m real valued
functions f1, f2, . . . , fm via f(x) = (f1(x), f2(x), . . . , fm(x)), x ∈ U . Fixing n − 1 components
of x, we obtain a real valued function defined on an open subset of R. The derivative of this
function is a partial derivative.
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Definition 6.13. The (i j)th partial derivative of f = (f1, f2, . . . , fm) : U −→ Rm at a is the
limit, if it exists,

(Djfi)(a) =
∂fi
∂xj

(a) = lim
t→0

fi(a+ tej)− fi(a)

t
∈ R.

If all partial derivatives of f exist at a ∈ U , then we refer to the matrix of partials, that is,
to 

∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)

∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂fi
∂xn

(a)
...

...
...

∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)

 ,

as Jacobian matrix of f at a.

If m = 1, then we call the Jacobian matrix gradient and denote it by gradf(x) or ∇f(x).

Definition 6.14. For f : U −→ Rn, U ⊂ Rn, that is, m = n, then f is called a vector field and

Jf (x) = det

(
∂fi
∂xj

)
i,j=1,...n

(x) is called Jacobian determinant (or simply Jacobian).

The divergence of f is the function divf =
n∑
i=1

∂fi
∂xi

.

If m = n = 3, then we call the vector field rotf =

(
∂f3

∂x2

− ∂f2

∂x3

,
∂f1

∂x3

− ∂f3

∂x1

,
∂f2

∂x1

− ∂f1

∂x2

)
rotation of f .

Remark 6.15. If f : U −→ R, U ⊆ Rn open, is differentiable at a ∈ U and ‖x‖2 = 1, then

(Df)ax = ∇f(a) · x = 〈∇f(a)T , x〉 = cos θ‖∇f(a)‖2,

where θ is the angle between a and x. Hence, ∇f(a)T is the direction of steepest slope (ascent)
of f at a.

Theorem 6.16. If f : U −→ Rm, U ⊂ Rn open, is differentiable at a ∈ U , then it is continuous
at a.

Proof. We estimate for x, a ∈ U ,

0 ≤ ‖f(x)− f(a)‖ = ‖(Df)a(x− a) +R(x)‖ ≤ ‖(Df)a(x− a)‖+ ‖R(x)‖
≤ ‖(Df)a‖L‖x− a‖+ ‖R(x)‖,

where we used Theorem 6.2. Since ‖(Df)a‖L‖x − a‖ → 0 and ‖R(x)‖ → 0 as x → a, we can
apply the squeezing theorem to obtain ‖f(x) − f(a)‖ → 0 as x → a which is another way of
saying f(x)→ f(a) as x→ a.

Theorem 6.17. Existence of the total derivative of f : U −→ Rm, U ⊂ Rn open, implies the
existence of the partial derivatives, and we have

[(Df)a]ij =
∂fi
∂xj

(a)
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Proof. Theorem 6.11 ensures that

(Df)a(ej) = lim
t→0

1

t

(
f(a+ tej)− f(a)

)
,

with convergence in Rm. Since a sequence of vectors {vn} converges to v0 in Rm if and only if
each component [vn]i converges to respective [v0]i, i = 1, . . . ,m, we have

[(Df)a]ij = [(Df)a(ej)]i = lim
t→0

1

t

[
f(a+ tej)− f(a)

]
i

= lim
t→0

fi(a+ tej)− fi(a)

t
=
∂fi
∂xj

(a).

It is important to note that Theorem 6.17 does not feature an if and only if statement.
Indeed, it is possible that a function f has partial derivatives at a but that differentiability of
f at a is not given. (See homework problems.)

Nevertheless, in the following we will state central results which allows us to calculate
derivatives without having to use the definition of derivatives.

For example, the following rules will help us to calculate derivatives.

Theorem 6.18. Let U ⊂ Rn and V ⊂ Rm be open.

i. If f : U −→ Rm is constant, we have (Df)a = 0 for all a ∈ U .

ii. If f : U −→ Rm is linear, we have (Df)a = f for all a ∈ U .

iii. If f, g : U −→ Rm are differentiable at a ∈ U , so is c f+d g, c, d ∈ R, with D(c f+d g)a =
c (Df)a + d (Dg)a.

iv. If f : U −→ V is differentiable at a ∈ U and if g : V −→ Rk is differentiable at f(a) ∈ V ,
then g ◦ f : U −→ Rk is differentiable with D(g ◦ f)a = D(g)f(a) ◦D(f)a.

Proof. i. Just observe that with Df = 0, we obtain R = 0, so

lim
x→a

1

‖x− a‖
R(x) = 0

holds trivially.

ii. Again, after “guessing” Df = f , we simply observe R = 0.

iii. Here, we make the educated guess D(c f + d g)a = c (Df)a + d (Dg)a and realize that
Rc f+d g = cRf + dRg.

iv. To prove this chain rule is the only involved case, it was discussed in class and can be
found in the literature.

Easy but very important is the following application of the chain rule.
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Theorem 6.19. A function

f : U −→ Rm, (x1, x1, . . . xn) 7→ (f1(x1, x1, . . . xn), f2(x1, x1, . . . xn), . . . , fm(x1, x1, . . . xn)),

U ⊂ Rn open is differentiable at x if and only if fi : U −→ R is differentiable for i = 1, . . . ,m,
and, moreover πi ◦ (Df)x = (Dfi)x.

Proof. Homework Problem.

Theorem 6.20. All partial derivatives of f : U −→ Rm, U ⊂ Rn open, exist and are continuous
on U if and only if f is differentiable on U and (Df) : U −→ L(Rn,Rm) is continuous.

Proof. If f is differentiable on U , then the partial derivatives exist on U . Now, if f has a
continuous derivative (Df) at a ∈ U , then for i = 1, . . . ,m and j = 1, . . . , n, we have

0 ≤
∣∣ ∂fi
∂xj

(x)− ∂fi
∂xj

(a)
∣∣ = |[(Df)xej]i − [(Df)aej]i| = |[((Df)x − (Df)a)ej]i|

≤ ‖((Df)x − (Df)a)ej‖ ≤ ‖(Df)x − (Df)a‖L ‖ej‖ = ‖(Df)x − (Df)a‖L

where continuity of (Df) at a implies that ‖(Df)x − (Df)a‖L goes to zero as x → a. Hence,
∂fi
∂xj

(x)→ ∂fi
∂xj

(a) as x→ a.

Now, the challenging part. We assume that all partials of f exist on U and are continuous
on U . With Jf denoting the Jacobian of f , we will show that for a ∈ U ,

R(x) = f(x)− f(a)− Jf (x− a) satisfies
R(x)

‖x− a‖
→ 0 as x→ a.(4)

We conclude that the total derivative exists at each a ∈ U and equals the Jacobian matrix.
Clearly, the continuous dependence of the partials on a implies the continuous dependence of
the Jacobian and therefore, of the total derivative.

To show (4), that is, total differentiability of f with derivative the Jacobian, we fix ε > 0.
Continuity of the partials allows us to choose δ > 0 so that∣∣ ∂fi

∂xj
(x)− ∂fi

∂xj
(a)
∣∣ < ε/

√
mn whenever ‖x− a‖ < δ.

By possibly reducing δ, we can also assume that Bδ(a) ⊆ U .

Now, we fix x with ‖x − a‖ < δ. Choose coefficients vj with x = a +
∑n

j=1 vjej and set

xk = a+
∑k

j=1 vjej for k = 1, . . . , n and x0 = a.

For i, j fixed, define g(t) = fi(xj−1 + tvj), t ∈ [0, 1], which is well defined since the line
segments xj−1 + tvj are contained in U . We shall now apply the Mean Value Theorem, Theo-
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rem 4.11, to conclude

fi(xj)− fi(xj−1) = g(1)− g(0) = g′(tij) = lim
s→∞

fi(xj−1 + (tij + s)vjej)− fi(xj−1 + tijvjej)

s

= vj lim
s→∞

fi(xj−1 + tijvjej + svjej)− fi(xj−1 + tijvjej)

svj

= vj lim
s̃→∞

fi(xj−1 + tijvjej + s̃ej)− fi(xj−1 + tijvjej)

s̃

= vj lim
s̃→∞

fi(xj−1 + tijvj + s̃)− fi(xj−1 + tijvj)

s̃
=
∂fi
∂xj

(xj−1 + tijvj)vj.(5)

We set xij = xj−1 + tijvj ∈ Bδ(a) and compute

|[R(x)]i| =
∣∣[f(x)− f(a)− Jf (x− a)]i

∣∣ =
∣∣ n∑
j=1

fi(xj)− fi(xj−1)−
n∑
j=1

∂fi
∂xj

(a)(x− a)j
∣∣

=
∣∣ n∑
j=1

∂fi
∂xj

(xij)vj −
n∑
j=1

∂fi
∂xj

(a)vj
∣∣

=
∣∣〈( ∂fi

∂x1

(xi1)− ∂fi
∂x1

(a)), . . . ,
∂fi
∂xn

(xin)− ∂fi
∂xn

(a)
)T
, (v1, . . . , vn)T

〉∣∣
≤
∥∥∥( ∂fi
∂x1

(xi1)− ∂fi
∂x1

(a)), . . . ,
∂fi
∂xn

(xin)− ∂fi
∂xn

(a)
)T∥∥∥ · ‖(v1, . . . , vn)T‖

≤
√
n

ε√
mn
‖x− a‖ =

ε√
m
‖x− a‖.

Consequently,

‖R(x)‖ =

√√√√ m∑
i=1

|[R(x)]i|2 ≤

√√√√ m∑
i=1

ε2

m
‖x− a‖2 = ε‖x− a‖.

We conclude that for every ε > 0, there exists δ > 0 with ‖x− a‖ < δ implies

‖R(x)‖
‖x− a‖

< ε,

so (4) follows.

We shall not prove nor use the following beautiful rule, which generalizes the product rule
in the 1-D case.

Theorem 6.21. Leibniz Rule. Let β : Rk × Rl 7→ Rm be bilinear, that is, for all fixed
b ∈ Rk, the function β

(
b, ·
)

: Rl −→ Rm is linear and for all fixed c ∈ Rl, the function
β
(
·, c
)

: Rk −→ Rm is linear. Let U be open in Rn and let f : U −→ Rk and if g : U −→ Rl be
both differentiable at a ∈ U . Then

β
(
f, g
)

: Rn −→ Rm, x 7→ β
(
f(x), g(x)

)
is differentiable at a with derivative defined by(

Dβ(f, g)
)
a
(x) = β

(
(Df)a(x), g(a)

)
+ β

(
f(a), (Dg)a(x)

)
.
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Theorem 6.22. Multivariate Mean Value Theorem. If f : U −→ Rm, U ⊂ Rn open,
is differentiable on U and the line segment

[a, x1] = {a+ t(x1 − a) : t ∈ [0, 1]} ⊂ Rn

is contained in U , then

‖f(x1)− f(a)‖ ≤ sup{‖(Df)x‖L : x ∈ U} ‖x1 − a‖.

Note that other than in the 1-D case we do not obtain an equality, neither of function values,
nor of respective norms!

Proof. Let g(t) = 〈f(x1) − f(a), f
(
a + t(x1 − a)

)
〉, t ∈ [0, 1]. We shall apply the Mean Value

Theorem for scalar valued functions on R as in (5). We obtain the existence of t0 such that
g(1)− g(0) = g′(t0), hence,

‖f(x1)− f(a)‖2 = 〈f(x1)− f(a), f(x1)− f(a)〉 = 〈f(x1)− f(a), f(x1)〉 − 〈f(x1)− f(a), f(a)〉
= g(1)− g(0) = g′(t0) = 〈f(x1)− f(a), (Df)a+t0(x1−a)(x1 − a)〉
≤ ‖f(x1)− f(a)‖ ‖(Df)a+t0(x1−a)(x1 − a)‖
≤ ‖f(x1)− f(a)‖ ‖(Df)a+t0(x1−a)‖op ‖x1 − a‖.

The result follows.

Definition 6.23. If

F : [a, b] −→ Rm×n = Matm×n(R), t 7→

 F11(t) · · · F1n(t)
...

...
Fm1(t) · · · Fmn(t)


satisfies Fij ∈ R[a, b] for i = 1, . . . , n and j = 1, . . .m, then we say F is Riemann integrable,
F ∈ R[a, b] with integral

∫ b

a

F (t) dt =


∫ b
a
F11(t) dt · · ·

∫ b
a
F1n(t) dt

...
...∫ b

a
Fm1(t) dt · · ·

∫ b
a
Fmn(t) dt

 ∈ Rm×n.

Further, if F : [a, b] −→ L(Rn,Rm) is continuous, then

∫ b

a

F (t) dt denotes the linear opera-

tor given by [∫ b

a

F (t) dt

]
=

∫ b

a

[F (t)] dt

Theorem 6.24. C1 – Mean Value Theorem. If f : U −→ Rm, U ⊆ Rn open, satisfies
f ∈ C1(U), and if [a, b] ⊆ U , then

f(b)− f(a) = T (b− a) where T =

∫ 1

0

(Df)a+t(b−a) dt .

Conversely, if there is a family of linear maps Ta,b ∈ L(Rn,Rm) such that f(b) − f(a) =
Ta,b(b−a) for all a, b with [a, b] ⊆ U and if Ta,b depends continuously on a and b, then f ∈ C1(U)
and (Df)a = Ta,a.

88



Proof. We shall only proof the first part. Once again, we use the auxiliary function g(t) =
fi(a + t(b − a)). Clearly, the function is continuously differentiable, hence, the fundamental
theorem of calculus is applicable, and, by applying the chainrule, we have

fi(b)− fi(a) = g(1)− g(0) =

∫ 1

0

g′(t) dt =

∫ 1

0

(Dfi)a+t(b−a)(b− a) dt.

Stacking up gives us

f(b)− f(a) =

∫ 1

0

(Df)a+t(b−a)(b− a) dt.

Theorem 6.25. Assume that f : [a, b] × (c, d) −→ R is continuous and ∂f
∂y

exists and is

continuous on [a, b]× (c, d). Then F (y) =
∫ b
a
f(x, y) dx is C1(c, d), and

F ′(y) =

∫ b

a

∂f

∂y
(x, y) dx, y ∈ (c, d) .

Proof. Fix y0 ∈ (c, d) and β > 0 with y0 ∈ [c + β, d − β]. The function ∂f
∂y

is continuos on the

compact set [a, b]× [c+ β, d− β], hence, ∂f
∂y

is uniformly continuous.

For ε > 0 fixed, we can find δ with∣∣∣∂f
∂y

(x, y)− ∂f

∂y
(x̃, ỹ)

∣∣∣ < ε

b− a
, if ‖(x, y)− (x̃, ỹ)‖ < δ.

For h 6= 0 with |h| < δ, we compute∣∣∣F (y0 + h)− F (y0)

h
−
∫ b

a

∂f

∂y
(x, y0) dx

∣∣∣ =
∣∣∣1
h

∫ b

a

f(x, y0 + h)− f(x, y0) dx−
∫ b

a

∂f

∂y
(x, y0) dx

∣∣∣
=
∣∣∣1
h

∫ b

a

∫ 1

0

∂f

∂y
(x, y0 + th)h dt dx−

∫ b

a

∫ 1

0

∂f

∂y
(x, y0) dt dx

∣∣∣
=
∣∣∣ ∫ b

a

∫ 1

0

∂f

∂y
(x, y0 + th)− ∂f

∂y
(x, y0) dt dx

∣∣∣
≤
∫ b

a

∫ 1

0

∣∣∣∂f
∂y

(x, y0 + th)− ∂f

∂y
(x, y0)

∣∣∣ dt dx
<

∫ b

a

∫ 1

0

ε

b− a
dt dx = ε,

where we used that ‖(x, y0 + th) − (x, y0)‖ = |th| < δ by assumption on h and t ∈ [0, 1]. It is
easily checked that F ′ is continuous.
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6.4. Higher derivatives

Definition 6.26. Let U ⊆ Rn be open and f : U −→ W , where W is a finite-dimensional
normed vector space. Then f is differentiable at a with derivative (Df)a ∈ L(Rn,W ), if

f(x) = f(a) + (Df)a(x− a) +R(x) with lim
x→a

1

‖x− a‖
R(x) = 0.

Definition 6.27. Let U ⊆ Rn be open and f : U −→ Rm. If (Df)x is defined for all x in a
neighborhood of a ∈ U , and if Df is differentiable at a ∈ U , then we call (D2f)a = (D(Df))a
second derivative of f at a. Note that (D2f)a ∈ L(Rn,L(Rn,Rm)) =: L2(Rn,Rm). In addition,
we can consider (D2f)a as bilinear form, that is, we can write (D2f)a : Rn × Rn −→ Rm.

If (D2f)x is defined for all x in a neighborhood of a ∈ U , and if D2f is differentiable at
a ∈ U , then we call (D3f)a = (D(D2f))a third derivative of f at a. Note that (D3f)a ∈
L(Rn,L(Rn,L(Rn,Rm))) =: L3(Rn,Rm).

. . .

If (Drf)x is defined for all x in a neighborhood of a ∈ U , and if Drf is differentiable at
a ∈ U , then we call (Dr+1f)a = (D(Drf))a the r + 1-st derivative of f at a.

The function f is of class Cr(U,Rm) if the r-th derivative of f exists at each a ∈ U ⊂ Rn

and if Drf : Rn −→ Lr(Rn,Rm) is continuous. The function f is smooth if f ∈ Cr(U,Rm) for
all r ∈ N.

If m = 1, then we simply write Cr(U) for Cr(U,R), r ∈ N ∪ {∞}.

Definition 6.28. Let U, V ⊆ Rn be open and 1 ≤ r ≤ ∞. A bijective function f : U −→ V is
called Cr–diffeomorphism if f ∈ Cr(U,Rn) and f−1 ∈ Cr(V,Rn).

Theorem 6.29. Let f : U −→ Rm, U ⊆ Rn open. If (D2f)a exists for a ∈ U , then

(D2f)a(u, v) = (D2f)a(v, u).

Proof. Clearly, it suffices to assume that m = 1. Now, for a, u, v ∈ Rn fixed, we shall show the
interesting fact that

(D2f)a(u, v) = lim
t→0

f(a+ tu+ tv)− f(a+ tu)− f(a+ tv) + f(a)

t2
.(6)

The right hand side in (6) is symmetric in u and v, hence, the left hand side is too, therefore
proving the result.

To show (6), we define again an auxiliary function, namely

g(s) = f(a+ tu+ stv)− f(a+ stv),

90



so g(0) = f(a+ tu)− f(a) and g(1) = f(a+ tu+ tv)− f(a+ tv). By the one dimensional Mean
Value Theorem, there exists θt ∈ [0, 1] with the property

1

t2
(
f(a+ tu+ tv)− f(a+ tv)− f(a+ tu) + f(a)

)
=

1

t2
(
g(1)− g(0)

)
=

1

t2
g′(θt)

=
1

t2
(
(Df)a+tu+θttv(tv)− (Df)a+θttv(tv)

)
=

t

t2
(
(Df)a+tu+θttv(v)− (Df)a+θttv(v)

)
=

1

t

(
(Df)a(v) + (D2f)a(tu+ θttv)(v) +Rf (a+ tu+ θttv)

− (Df)a(v)− (D2f)a(θttv)(v)
)
−Rf (a+ θttv)

)
=

1

t

(
(D2f)a(tu+ θttv)(v)− (D2f)a(θttv)(v)

+Rf (a+ tu+ θttv)−Rf (a+ θttv)
)

=
t

t

(
(D2f)a(u+ θtv)(v)− (D2f)a(θtv)(v)

)
+

1

t

(
Rf (a+ tu+ θttv)−Rf (a+ θttv)

)
= (D2f)a(u)(v) + (D2f)a(θtv)(v)− (D2f)a(θtv)(v)

+
1

t

(
Rf (a+ tu+ θttv)−Rf (a+ θttv)

)
= (D2f)a(u)(v) +

1

t

(
Rf (a+ tu+ θttv)−Rf (a+ θttv)

)
.

where we used that differentiability of Df : U → L(Rn,R) at a implies that

(Df)y(·) = (Df)a(·) + (D2f)a(y − x)(·) +Rf (y)(·),

with Rf (y)(·)/‖y− x‖ → 0 in operator norm (or any other norm) as y → x. The result follows
by observing that, for example

0 ≤
∣∣∣Rf (a+ tu+ θttv)

t

∣∣∣ =
|Rf (a+ tu+ θttv)|

|t|
‖tu+ θttv‖
‖tu+ θttv‖

=
|Rf (a+ tu+ θttv)|
‖tu+ θttv‖

‖u+ θtv‖ → 0

as t→ 0, since θt ∈ (0, 1) implies ‖u+ θtv‖ is bounded.

Definition 6.30. For f = (f1, . . . , fm) : U −→ Rm, U ⊆ Rn open, we refer to
∂2fk
∂xi∂xj

(a) ∈ R,

i, j = 1, . . . n, k = 1, . . . ,m as second partials of f at a ∈ U .

For m = 1, that is, f : U −→ R, we refer to the matrix Hessf(a) = [ ∂2fk
∂xi∂xj

(a)]i,j ∈ Rn×n as

Hessian matrix of f at a.

We obtain the following corollaries to Theorem 6.29

Corollary 6.31. Let f = (f1, . . . , fm) : U −→ Rm, U ⊆ Rn open. If (D2f)a exists, then for
k = 1, . . . , n, (D2fk)a exists, the Hessians Hessfk(a), k = 1, . . . ,m exist and

(D2fk)a(ei, ej) =
∂2fk
∂xi∂xj

(a), i, j = 1, . . . , n.
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Also, if all second partials of f exist on U and if they are all continuous at a, then Df is
differentiable at a.

Proof. This is mainly a vocabulary test. The result follows from the results on the first deriva-
tive of a function, which is a matrix valued function.

Corollary 6.32. For f : U −→ Rm, U ⊆ Rn open, such that (D2f)a exists for a ∈ U , then

∂2fk
∂xi∂xj

(a) =
∂2fk
∂xj∂xi

(a), for i, j = 1, . . . , n and k = 1, . . . ,m,

in short, the Hessians of differentiable functions are symmetric.
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6.5. Taylor’s theorem and applications

Definition 6.33. Let U ⊆ Rn and f : U −→ R. Then f(a) is called a maximum or global
maximum attained at a [resp. minimum] if f(a) ≥ f(x) [resp. f(a) ≤ f(x)] for all x ∈ U . In
either case, f(a) is called extremum of f on U .

If f(a) ≥ f(x) [resp. f(a) ≤ f(x)] for all x ∈ Bε(a) for some ε > 0, then f has a local
maximum [resp. local minimum] f(a) at a. Also, f(a) is called local extremum of f .

Theorem 6.34. Let U ⊆ Rn open, f : U −→ R with ∂f
∂xi

exists for i = 1, . . . , n. If f(a) is a
local maximum or a local minimum of f , then ∇f(a) = 0.

Proof. This is a simple application of single variable calculus. For i = 1, . . . , n, define the
function gi(t) = f(a + tei). Since f has a local maximum (or minimum) at a, gi has one at 0.
Hence, 0 = g′(0) = (Df)a(ei) = ∂f

∂xi
(a).

Definition 6.35. Let A ∈ Rm×n be symmetric.

i. A is called positive definite if 〈Aξ, ξ〉 > 0 for all ξ ∈ Rn \ {0}.

ii. A is called negative definite if 〈Aξ, ξ〉 < 0 for all ξ ∈ Rn \ {0}.

iii. A is called positive semidefinite if 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ Rn \ {0}.

iv. A is called negative semidefinite if 〈Aξ, ξ〉 ≤ 0 for all ξ ∈ Rn \ {0}.

v. A is called indefinite if 〈Aξ, ξ〉 > 0 and 〈Aη, η〉 < 0 for some ξ, η ∈ Rn.

Remark 6.36. Since A is symmetric, there exists an orthonormal basis {ui} of Rn of eigenvectors,
so Aui = λiui for some λi ∈ R. For ξ =

∑n
i=1 ciui, we have

〈Aξ, ξ〉 = 〈A
n∑
i=1

ciui,
n∑
j=1

cjuj〉 =
n∑
i=1

n∑
j=1

cicj〈λiui, uj〉 =
n∑
i=1

n∑
j=1

cicjλi〈ui, uj〉 =
n∑
i=1

|ci|2λi,

so A is positive definite if all eigenvalues are positive, negative definite if all eigenvalues are
negative and indefinite if some eigenvalues are positive and some are negative.

Lemma 6.37. The matrix A =

 a11 · · · a1n
...

...
an1 · · · ann

 ∈ Rn×n is positive definite if and only if

det

 a11 · · · a1k
...

...
ak1 · · · akk

 > 0 for k = 1, . . . , n.

Theorem 6.38. Multivariate Taylor’s Theorem I. Let U be an open subset of Rn and
f : U −→ R with f ∈ Cm(E). Fix a ∈ E, and suppose [a, x] ⊆ U . Then

f(x) =
∑ (Ds1

1 ...D
sn
n f)(a)

s1!...sn!
(x1 − a1)s1 ...(xn − an)sn + r(x) Dk =

∂

∂xk
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where the summation extends over all ordered n-tuples (s1, ..., sn) such that each si is a non-
negative integer, and si + ...+ sn ≤ m− 1, and the remainder r satisfies

lim
x→0

r(x)

‖x‖m−1
= 0.

We shall only use and prove the following version of Taylor’s theorem.

Theorem 6.39. Multivariate Taylor’s Theorem II. For f : U −→ Rm, U ⊆ Rn open,
f ∈ C2(U), we have

f(x) = f(a) + (Df)a(x−a) +
1

2
(Df)a(x−a, x−a) +R(x) with lim

x→a

1

‖x− a‖2
R(x) = 0.(7)

Proof. Clearly, the punchline of (7) is that the remainder satisfies 1
‖x−a‖2R(x) = 0. To check

this, it suffices to consider x close to a, so we first pick ε > 0 with B2ε(a) ⊆ U . For x ∈ Bε(a),
define the auxiliary function g(t) = f(a + t(x − a)), t ∈ (−2, 2). g is the composition of the
twice continuously differentiable function f and the smooth function t 7→ a+ t(x− a). Hence,
g is C2(−2, 2) and by Theorem 4.23 exists θ ∈ (0, 1) with

g(1) = g(0) + g′(0)(1− 0) +
1

2
g′′(θ)(1− 0)2.

Now, g(0) = f(a). By the chain rule, we have

g′(t) =
d

dt
f(a+ t(x− a)) = (Df)a+t(x−a) ◦ (x− a) = (Df)a+t(x−a)(x− a)

= ∇f(a+ t(x− a)) (x− a) =
n∑
j=1

(xj − aj)
∂

∂xj
f(a+ t(x− a))

and g′(0) = (Df)a(x− a) = (Df)a(x− a). Further,

g′′(t) =
d

dt
(Df)a+t(x−a)(x− a) =

n∑
j=1

(xj − aj)
d

dt

∂

∂xj
f(a+ t(x− a))

=
n∑
j=1

(xj − aj)(D
∂

∂xj
f)a+t(x−a)) ◦ (x− a)

=
n∑
j=1

(xj − aj)(∇
∂

∂xj
f)(a+ t(x− a))) (x− a)

=
n∑
j=1

(xj − aj)
n∑
i=1

(xi − ai)
∂

∂xi∂xj
f(a+ t(x− a)))

= 〈Hfa+t(x−a)(x− a), (x− a)〉,

94



where Hfy =
(

∂
∂xi∂xj

f(y)
)
i,j

is the Hessian matrix of f at y, which is (D2f)y expressed as

matrix with respect to the Euclidean orthonormal basis. We have

f(x) = g(1) = g(0) + g′(0) +
1

2
g′′(θ)

= f(a) + (Df)a(x− a) +
1

2
(D2f)a+θ(x−a)(x− a, x− a)

= f(a) + (Df)a(x− a) +
1

2
(D2f)a(x− a, x− a)

+
(1

2
(D2f)a+θ(x−a)(x− a, x− a)− 1

2
(D2f)a(x− a, x− a)

)
= f(a) + (Df)a(x− a) +

1

2
(D2f)a(x− a, x− a) + ϕ(x)

where

1

‖x− a‖2
|ϕ(x)| = 1

2‖x− a‖2
|〈
(
Hfa+θ(x−a) −Hfa

)
x− a, x− a〉|

≤ 1

2‖x− a‖2
‖(Hfa+θ(x−a) −Hfa

)
x− a‖ ‖x− a‖

≤ 1

2‖x− a‖2
‖Hfa+θ(x−a) −Hfa‖op(2)‖x− a‖ ‖x− a‖

≤ 1

2
‖Hfa+θ(x−a) −Hfa‖op(2),

where continuity of the second derivative implies that the right hand side goes to zero as x→ a,
and so does 1

‖x−a‖2ϕ(x).

Theorem 6.40. Let f : U −→ R, U ⊆ Rn open, f ∈ C2(U) be given with (Df)a = ∇f(a) = 0
for some a ∈ U .

i. If [(D2f)a] is positive definite, then f has a local minimum at a, in fact, for some ε > 0
we have f(x) > f(a) for all x ∈ Bε(a).

ii. If [(D2f)a] is negative definite, then f has a local maximum at a, and in fact, for some
ε > 0 we have f(x) < f(a) for all x ∈ Bε(a).

iii. If [(D2f)a] is indefinite, then f has neither a local minimum or maximum at a. (In this
case, we speak of a saddle point or pass of f at a.)

Proof. The proof of this result relies on Theorem 6.39.

The function F : ξ 7→ 〈[(D2f)a]ξ, ξ〉 is continuous and assumes its minima on the compact
set S = {ξ ∈ Rn, ‖ξ‖ = 1}, that is, there exists ξ0 with β = min{F (ξ), ξ ∈ S} = F (ξ0). Since
[(D2f)a] is positive definite, we have β > 0. Moreover, note that for all ξ ∈ Rn \ {0}, we have

F (ξ) = 〈[(D2f)a]ξ, ξ〉 = 〈[(D2f)a]
ξ

‖ξ‖
,
ξ

‖ξ‖
〉‖ξ‖2 ≥ β‖ξ‖2.
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Since ϕ(x)/‖x−a‖2 → 0 as x→ a, there exists δ > 0 with |ϕ(x)|/‖x−a‖2 < β
2

if ‖x−a‖ < δ.

For x ∈ Bδ(a) we compute

f(x) = f(a) + (Df)a(x− a) +
1

2
(D2f)a(x− a, x− a) + ϕ(x)

= f(a) +
1

2
F (x− a) + ϕ(x)

> f(a) +
1

2
β‖x− a‖2 − β

2
‖x− a‖2 = f(a),

so f(a) is a local maximum.

Note that the Hessian of f is negative definite if and only if the Hessian of −f is positive
definite, so the second part of the theorem follows from the first part.

Finally, we assume that there exits ξ0 > 0 with F (ξ0) > 0 and ξ1 with F (ξ1) < 0. By
normalizing the ξi, we can assume ‖ξ0‖ = 1 = ‖ξ1‖. We have for t with Bt(a) ⊆ U and
|ϕ(a+tξ0)|
‖a+tξ0−a‖2 <

1
2
F (ξ0) that

f(a+ tξ0) = f(a) +
1

2
(D2f)a(tξ0, tξ0) + ϕ(a+ tξ0)

= f(a) +
t2

2
F (ξ0)− ‖a+ tξ0 − a‖2 1

2
F (ξ0)

> f(a).

The same argument delivers f(a + tξ1) < f(a) for t sufficiently small. Hence, we neither have
a local minima, nor a local maxima.
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6.6. Implicit functions and the inverse function theorem

Definition 6.41. Let U ⊆ Rn×Rm = Rn+m be open and f : U −→ Rm. For (a, b) ∈ Rn×Rm

and f(a, b) = c ∈ Rm we shall try to solve the system of not necessarily linear equations

f(x, y)=


f1(x1, . . . , xn, y1, . . . , ym)
f2(x1, . . . , xn, y1, . . . , ym)

...
fm(x1, . . . , xn, y1, . . . , ym)

=


z1

z2
...
zm

=c for (x, y) ∈ Bε(a, b), ε > 0.(8)

Similar to the linear case, we expect that if we fix x, then exists exactly one y solving the
equation. In fact, in many cases there is g : Bε(a) −→ Rm such that (8) holds if and only if

y = g(x) for some x ∈ Bε(a),

that is, all solutions to (8) in Bε(a, b) are given by f(x, g(x)) = c, x ∈ Bε(a).

Then g is the implicit function defined by (8).

Theorem 6.42. Implicit Function Theorem. Let U ⊆ Rn × Rm be open and f : U −→
Rm be given with f ∈ Cr(U), 1 ≤ r ≤ ∞. If f(a, b) = c ∈ Rm and B = ∂f

∂y
(a, b) =(

∂fi
∂yj

(a, b)
)
i,j=1,...m

is invertible, then exists V ⊆ Rn and W ⊆ Rm open with V × W ⊆ U

and g : V −→ W , g ∈ Cr(V ) with

{(x, y) ∈ V ×W : f(x, y) = c} = {(x, g(x)), x ∈ V } = Γg.

Proof. Since translating F and adding a constant to F does not impact the differential prop-
erties of F , we can assume without loss of generality that (a, b) = (0, 0) ∈ Rn ×Rm and c = 0.
Note that in the proof, we make use of three norms, the standard Euclidean norm on Rm

or Rn is denoted by ‖ · ‖, the operator norm for linear maps on Euclidean space is given by
‖L‖op(2) = sup{‖Lx‖, ‖x‖ = 1}, and we use the supremums norm on continuous functions
mapping a compact set K ⊆ Rn to Rm, namely ‖ψ‖∞ = sup{‖ψ(x)‖, x ∈ K}.

By assumption, B = ∂F
∂y

(0, 0) is invertible, so we can define

G(x, y) = y −B−1F (x, y).

Note that G(x, y) = y if and only if F (x, y) = 0, and we indeed made the transition from F to
G in order to apply the Banach Fixed Point Theorem to show that for each x close to 0 there
exists a unique y with G(x, y) = y. Then we shall call y = g(x).

To this end, note first that a simple application of rules for derivatives, we have for (x, y) ∈
U ,

∂G

∂y
(x, y) = Idm×m −B−1∂F

∂y
(x, y) ∈ L(Rn×Rm,Rm),
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and, in particular, ∂G
∂y

(0, 0) = Id − B−1B = 0. By assumption, ∂F
∂y

(x, y) is continuous, hence,
∂G
∂y

(x, y) is continuous, and we can find r, s with∥∥∥∂G
∂y

(x, y)
∥∥∥
op(2)
≤ 1

2
, x ∈ Bs(0), y ∈ Br(0), Bs(0)×Br(0) ⊆ U ⊆ Rn × Rm.(9)

The Mean Value Theorem, Theorem 6.22, implies immediately

‖G(x, y)−G(x, z)‖ ≤ 1

2
‖y − z‖, y, z ∈ Br(0).(10)

To apply the Banach Fixed Point Theorem, Theorem 4.41, we need to ensure that G(x, ·) :
A −→ A for some closed set A in the complete metric space Rn. To this end, observe that by
continuity of G there exists 0 < t < s with

‖G(x, 0)‖ ≤ r

2
, x ∈ Bt(0).

With z = 0 ∈ Br(0) in (10), we conclude

‖G(x, y)‖ ≤ 1

2
‖y − 0‖+ ‖G(x, 0)‖ ≤ r

2
+
r

2
= r, y ∈ Br(0),(11)

so indeed, for each x ∈ Bt(0), the function G(x, ·) is a contraction on the closed subset A =
Br(0) of the complete metric space Rm.

The Banach Fixed Point theorem therefore guarantees for x ∈ Bt(0) a unique y ∈ Br(0)
with G(x, y) = y, so F (x, y) = 0. This defines a function g : Bt(0) −→ Br(0). Note that for the
unique solution at x = 0 is already known, namely, y = 0, so g(0) = 0, and g passes through
the origin.

To see that the function g defined above is continuous, we shall apply the Banach Fixed Point
Theorem now to function G defined on a closed subset A of the complete metric space of contin-
uous functions C(Bt(0),Rm) which is equipped with norm ‖ψ‖∞ = sup{‖ψ(x)‖2, x ∈ Bt(0)}.
(This is well defined since compactness of Bt(0) implies that all functions in C(Bt(0),Rm) are
bounded.)

We set A = {ψ ∈ C(Bt(0),Rm) with ‖ψ‖∞ ≤ r} and define

G : A −→ A, ψ(·) 7→ G(·, ψ(·)),

so Gψ is defined by (Gψ)(x) = G(x, ψ(x)). It is crucial to observe that A is closed and G is well
defined, that is Gψ ∈ A for ψ ∈ A. The latter follows from G being continuous and (11), that
is, ‖ψ‖∞ ≤ r implies ‖Gψ‖∞ ≤ r. Now, G is indeed a contraction on A since.

‖Gψ − Gφ‖∞ = sup
x∈Bt(0)

‖G(x, ψ(x))−G(x, φ(x))‖ ≤ sup
x∈Bt(0)

1

2
‖ψ(x)− φ(x)‖ =

1

2
‖ψ − φ‖∞.

The Banach Fixed Point Theorem now implies the existence of a unique function φ ∈ A ⊆
C(Bt(0),Rm) with G(x, φ(x)) = (Gφ)(x) = φ(x). Since for each x ∈ Bt(0) there exists exactly
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one y with G(x, y) = y by our first application of the Banach Fixed Point Theorem, we must
have φ(x) = y = g(x), so g is continuous on Bt(0).

In the next step, we shall show that there exists 0 < ε < t so that g is differentiable on
Bε(0), that is, for u ∈ Bε(0), there exists a linear operator (Dg)u ∈ L(Rn,Rm) with

g(x) = g(u) + (Dg)u(x− u) +Rg(x),
Rg(x)

‖x− u‖
→ 0 as x→ u.

To start things off, we compute the one and only candidate for (Dg)u. We have P (x) =
F (x, g(x)) = 0 for x ∈ Bt(0), so P is constant. If g is differentiable at u, then the differentiability
of F together with the chain rule implies the equality of linear maps

0 = (DP )u = (DF )(u,g(u)) ◦
[

Idn×n
(Dg)u

]
=
[∂F
∂x

(u, g(u)),
∂F

∂y
(u, g(u))

]
◦
[

Idn×n
(Dg)u

]
=
∂F

∂x
(u, g(u)) +

∂F

∂y
(u, g(u)) ◦ (Dg)u.

Note that F being C1 implies that all partials depend continuously on (x, y), and hence,
∂F
∂y

(u, g(u)) depends continuously on u. Invertibility of ∂F
∂y

(u, g(u)) is characterized by its de-

terminant being non-zero. Since the determinant depends continuously on ∂F
∂y

(u, g(u)), we have

that there exists 0 < ε < t with ∂F
∂y

(u, g(u)) is invertible for u ∈ Bε(0).

For u ∈ Bε(0), we must have by the computation above

(Dg)u = −
(
∂F

∂y
(u, g(u))

)−1

◦ ∂F
∂x

(u, g(u)).(12)

The proof that g is differentiable at u with (Dg)u satisfying (12) under the assumption that
∂F
∂y

(u, g(u)) is invertible does not depend on u and we shall assume for convenience that u = 0.

Set A = ∂F
∂x

(0, 0) and B = ∂F
∂y

(0, 0). The differentiability of F implies that

F (x, y) = F (0, 0) + (DF )(0,0)

(
(x, y)− (0, 0)

)
+RF (x, y)

= Ax+By +RF (x, y),
RF (x, y)

‖(x, y)‖
→ 0 as (x, y)→ (0, 0).

Inserting for y the function g(x), this gives

0 = F (x, g(x)) = Ax+Bg(x) +RF (x, g(x)),

and resorting as before, we have

g(x) = −B−1Ax+B−1RF (x, g(x)).

For differentiability of g at 0, it remains to show Rg(x) = B−1RF (x, g(x)) satisfies Rg(x)

‖x‖ → 0
as x→ 0.

99



To this end, we shall first show that there exists K > 0 such that ‖g(x)‖ ≤ K‖x‖ for x
small. We set α = ‖B−1A‖op(2) and β = ‖B−1‖op(2). Choose 0 < µ < t, r so that ‖RF (x, y)‖ ≤
1

2β
(‖x‖ + ‖y‖) whenever ‖(x, y)‖ < µ. By continuity of g, we can pick 0 < δ ≤ µ so that

‖g(x)‖ < µ whenever ‖x‖ < δ. Now, we compute

‖g(x)‖ ≤ ‖ −B−1A‖op(2)‖x‖+ ‖B−1‖op(2)‖RF (x, g(x))‖ ≤ α‖x‖+
1

2
(‖x‖+ ‖g(x)‖)

which, by subtracting 1
2
‖g(x)‖ on both sides, implies

‖g(x)‖ ≤ (2α + 1)‖x‖ = K‖x‖

for x ∈ Bδ(0).

For Rg(x),

0 ≤ ‖Rg(x)‖
‖x‖

=
‖B−1RF (x, g(x))‖

‖x‖
≤ β

‖RF (x, g(x))‖
1

K+1
‖x‖+ K

K+1
‖x‖

≤ β
‖RF (x, g(x))‖

1
K+1
‖x‖+ 1

K+1
‖g(x)‖

≤ (K + 1)β
‖RF (x, g(x))‖
‖(x, g(x))‖

→ 0 as x→ 0,

where we used g(x)→ 0 as x→ 0 and hence ‖(x, g(x))‖ → 0 as x→ 0.

Recall, we first showed the existence of g on Bs(0), then continuity of g on Bt(0), t ≤ s,
and finally, differentiability of g on Bε(0). It still remains to observe that the derivative Dg
is continuous on Bε(0), so g ∈ C1(Bε(0)). But this follows directly from the continuity of(
∂F
∂y

(u, g(u))
)−1

and ∂F
∂x

(u, g(u)) by means of (12). (Here, we use also that if B(u) is a family

of invertible matrices depending continuously on u, then (B(u))−1 depends also continuously
on u. For example, this follows from Cramer’s rule.)

Similarly, if f ∈ Cr(U), r ≥ 0, then ∂F
∂y

(u, g(u)) and ∂F
∂x

(u, g(u)) is Cr−1(Bε(0). Arguing

with Cramer’s rule as above, we obtain that
(
∂F
∂y

(u, g(u))
)−1

is Cr−1(Bε(0)), so the right hand

side of (12) is in Cr−1(Bε(0)), that implies for the left hand side Dg ∈ Cr−1(Bε(0)) and by
definition g ∈ Cr(Bε(0)).

Note that in the proof we constructed V = Bε(a) and W = Br(f(a)). In many applications,
we seek the largest possible set V as domain for the implicit function (and a large W where we
have unique solutions of F (x, y) = c.

Corollary 6.43. Let U ⊆ Rn × Rm be open and f : U −→ Rm be given with f ∈ C1(U). Let
(a, b) ∈ U and B = ∂f

∂y
(a, b) be invertible and let and g : Bε −→ Rm, g ∈ C1(Bε(a)), be the

function implicitly defined by f(x, y) = f(a, b). Then

∂g

∂x
(x) = −

(
∂f

∂y
(x, g(x))

)−1
∂f

∂x
(x, g(x)) for x ∈ Bε(a) .

100



Proof. See proof of the Implicit Function Theorem.

Remark 6.44. Note that in the one dimensional case, for a surjective and differentiable function
f : (a, b) −→ (c, d) with f ′ continuous and f ′(x) 6= 0 for all x ∈ (a, b), we “get for free” that f
is

• injective since f is strictly increasing or decreasing. So f−1 is well defined on (c, d);

• homeomorph, that is, bijective, continuous, and with continuous inverse f−1 on (c, d);

• diffeomorph, that is, bijective with f and f−1 differentiable on (a, b) respectively (c, d).
In addition, (f−1)′ is continuous as f ′ is;

and we have (f−1)′(y) =
1

f ′(f−1(y))
for y ∈ (c, d).

This result does not extend to higher dimensions, for example, consider f : R → R2,
x 7→ (cos(x), sin(x)).

Theorem 6.45. Inverse Function Theorem. Let W ⊆ Rn be open and f : W −→ Rn

be given with f ∈ Cr(W ), 1 ≤ r ≤ ∞. If (Df)β ∈ L(Rn,Rn), β ∈ W is an isomorphism,

then exists an open neighborhood W̃ of β and an an open neighborhood Ṽ of f(β) such that

f : W̃ −→ Ṽ is a Cr–diffeomorphism with

∂f−1

∂x
= −

(
∂f

∂y

)−1

(13)

on Ṽ .

Proof. Not surprisingly, we give a proof based on the Implicit Function Theorem. To this end,
we define the auxiliary function

F : U = Rn ×W −→ Rn, F (x, y) = x− f(y),

and observe that with a = f(β), we have F (a, β) = 0. Moreover, f ∈ Cr(W ) implies F ∈
Cr(Rn ×W ) and, using the notation from the implicit function theorem, we have ∂F

∂y
(a, β) =

−(Df)β which is invertible by hypothesis. Using the Implicit Function Theorem, we learn of
the existence of V ′,W ′ ⊆ Rn open and g ∈ Cr(V ′) with

0 = F (x, g(x)) = x− f(g(x)),

where for x ∈ V ′, y = g(x) is the unique point in W ′ solving 0 = F (x, y) = x − f(y), that is,
f(y) = x. So g : V ′ −→ W ′, but note that g is not necessarily onto.

Since f is continuous and V ′ open with f(β) ∈ V ′, there exists an open set W̃ ⊆ W ′ with

β ∈ W̃ and f(W̃ ) ⊆ V ′. Now, Ṽ = f(W̃ ) = g−1(W̃ ) is open and the result is proven.
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A common problem in optimization is to maximize a real valued objective function based
on one or multiple constraints. That is, we may be confronted with the problem

Maximize h(x) with x ∈ K ⊆ Rn subject to f(x) = c.(14)

The following result validates the Lagrange multiplier method which you may encountered
in calculus. As is generally the case in maximization problems, the result gives a necessary
condition on a ∈ K to be a local maximum for the problem (14), namely,

h(a) > h(x) for x ∈ Bε(a) ∩K with f(x) = c.

In practice, we shall first find all x that satisfy the hypothesis of the following result, and then
analyze them individually to see which x of the candidates solves (14).

Note that the result requires that both, objective and constrain function are continuously
differentiable.

Theorem 6.46. Lagrange Multipliers. Let f, h ∈ C1(U), U ⊆ Rn open, be given with
h(a) > h(x) for all x ∈ Bε(a) ∩ {x : f(x) = 0}, ε > 0. If ∇f(a) = (Df)a 6= 0, then we can
conclude that ∇f(a) = λ∇g(a) for some λ ∈ R. Such λ is called Lagrange Multiplier.

Proof. W.l.o.g., assume that ∂f
∂xn
6= 0 and consider U ⊆ Rn−1 × R (else, permute the xi). In

preparation to applying the Implicit Function Theorem, we rename y = xn, x′ = (x1, . . . , xn−1),
b = an, and a′ = (a1, . . . , an−1), and observe that by hypothesis the linear map on R given by

B =
∂f

∂y
(a′, b) =

∂f

∂xn
(a)

is invertible. Hence, the implicit function theorem provides a neighborhood Bε(a
′) and a func-

tion g : Bε(a′) → R with

0 = F (x1, . . . , xn−1) = f(x1, . . . , xn−1, g(x1, . . . , xn−1)) = 0, (x1, . . . , xn−1) ∈ Bε(a
′).

After defining the function ϕ : Bε(a
′)→ Rm by

ϕ(x1, . . . , xn−1) = (x1, . . . , xn−1, g(x1, . . . , xn−1)),

we first observe that

[(Dϕ)x′ ] =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

∂ϕ
∂x1

(x′) ∂ϕ
∂x2

(x′) ∂ϕ
∂x3

(x′) . . . ∂ϕ
∂xn−2

(x′) ∂ϕ
∂xn−1

(x′)


∈ Rn×(n−1)
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As F is constant, we can compute in a neighborhood of a′,

0 = ∇F (x′) = [(DF )x′ ] = [(D(f ◦ ϕ))x′ ] = [(Df)ϕ(x′) ◦ (Dϕ)x′ ] = [(Df)ϕ(x′)] · [(Dϕ)x′ ]

=

(
∂f

∂x1

(x′, g(x′)), . . . ,
∂f

∂xn
(x′, g(x′))

)


1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

∂ϕ
∂x1

(x′) ∂ϕ
∂x2

(x′) ∂ϕ
∂x3

(x′) . . . ∂ϕ
∂xn−2

(x′) ∂ϕ
∂xn−1

(x′)


=

(
∂f

∂x1

(x′, g(x′)) +
∂f

∂xn
(x′, g(x′))

∂ϕ

∂x1

(x′), . . . ,
∂f

∂xn−1

(x′, g(x′)) +
∂f

∂xn
(x′, g(x′))

∂ϕ

∂xn−1

(x′)

)
,

and

∂f
∂xi

(a′, g(a′))
∂f
∂xn

(a′, g(a′))
= − ∂ϕ

∂xi
(a′), i = 1, . . . , n− 1.(15)

Note that since h has at a′ a local extremum subject to f(a) = 0, we obtain that

0 = ∇H(a′) = [(Dh)ϕ(a′)] · [(Dϕ)a′ ]

=

(
∂h

∂x1

(a′, g(a′)) +
∂h

∂xn
(a′, g(a′))

∂ϕ

∂x1

(a′), . . . ,
∂h

∂xn−1

(x′, g(x′)) +
∂h

∂xn
(a′, g(a′))

∂ϕ

∂xn−1

(a′)

)
.

and
∂h
∂xi

(a′, g(a′))
∂h
∂xn

(a′, g(a′))
= − ∂ϕ

∂xi
(a′), i = 1, . . . , n− 1.

Inserting (15) gives

∂h

∂xi
(a′, g(a′)) =

∂f
∂xi

(a′, g(a′))
∂f
∂xn

(a′, g(a′))

∂h

∂xn
(a′, g(a′)) i = 1, . . . , n− 1.

and the result follows with

λ =
∂h
∂xn

(a)
∂f
∂xn

(a)
.
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7. INTEGRATION ON RD

We shall focus on the case d = 2, that is, we shall discuss integrals

∫
A

f(x) dx where A ⊆ R2

and f : A −→ R. This way we avoid some notational difficulties. Generalizations to higher
dimensions are straightforward.

7.1. Essentials

Definition 7.1. Consider a rectangle (interval) [a, b] × [c, d] ⊂ R2, −∞ < a < b < ∞ and
−∞ < c < d < ∞ and partitions P = {a = x0, x1, . . . , xm−1, xm = b} and Q = {c =
y0, y1, . . . , yn−1, yn = d} of [a, b] and [c, d] respectively. Then

G = {Rij = [xi−1, xi]× [yj−1, yj], i = 1, . . . ,m, j = 1, . . . , n}

is a grid of rectangles in R. For a sample set

S = {(sij, tij) ∈ Rij, i = 1, . . . ,m, j = 1, . . . , n}

and f : R −→ R we define the Riemann sum

R(f,G, S) =
m∑
i=1

n∑
j=1

f(sij, tij)|Rij|,

where |Rij| = (xi − xi−1)(yj − yj−1) is the area of the rectangle Rij, i = 1, . . . ,m, j = 1, . . . , n.

Note that in higher dimensions, we shall call a set [a1, b1]× [a2, b2]× . . .×, [an, bn] generalized
rectangles or simply intervals.

Definition 7.2. A function f : R −→ R is Riemann integrable if for some number I ∈ R
such that for all ε > 0 exists a δ > 0 such that |I − R(f,G, S)| < ε whenever mesh(G) =
max
Rij∈G

diamRij < δ.

The number I is called Riemann integral of f on R and is denoted by I =

∫
f =∫

R

f(x, y) d(x, y), or as
∫
R
f(x) dx where x is considered to be a variable in R2.

The space of all Riemann integrable functions on R is denoted by R(R) = {f : R −→
R, f is Riemann integrable }.

Definition 7.3. The lower and upper sums of a bounded function f with respect to the grid
G are

L(f,G) =
m∑
i=1

n∑
j=1

mij|Rij| and U(f,G) =
m∑
i=1

n∑
j=1

Mij|Rij|,

where mij = inf f(Rij) and Mij = sup f(Rij) , i = 1, . . . ,m, j = 1, . . . , n.

The lower integral of f is

∫
f = sup{L(f,G), G grid in R}, and the upper integral of f is∫

f = inf{U(f,G), G grid in R}
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Theorem 7.4. Let R be a rectangle in R2.

i. If f : R −→ R is Riemann integrable, then f is bounded.

ii. R(R) is a vector space.

iii. A constant function f : R −→ R, (x, y) 7→ k, k ∈ R, is Riemann integrable and∫
R
f(x, y)d(x, y) = k|R|.

iv. For f, g ∈ R(R) with f ≤ g we have
∫
f ≤

∫
g.

v. For f : R −→ R bounded, we have

∫
f ≤

∫
f .

vi. A bounded function f : R −→ R is Riemann integrable if and only if

∫
f =

∫
f .

Proof. The proofs are identical to the respective proofs in the one dimensional setting.

Definition 7.5. A set Z ⊂ R2 is a zeroset if for all ε > 0 there exists a countable family of
open rectangles {Sk}k∈N such that Z ⊆

⋃∞
k=1 Sk and

∑∞
k=1 |Sk| < ε.

Theorem 7.6. Multivariable Riemann–Lebesgue theorem. A bounded function f :
R −→ R is Riemann integrable if and only if the set of discontinuities of f is a zeroset.

Proof. The proof is analogous to the proof in the one dimensional setting.

Now, the first result that is multivariate in nature.

Theorem 7.7. Fubini’s theorem. Let f : R = [a, b]× [c, d] −→ R be Riemann integrable.

i. The functions

F : [c, d] −→ R, F (y) =

∫ b

a

f(x, y) dx and F : [c, d] −→ R, F (y) =

∫ b

a

f(x, y) dx

are Riemann integrable on [c, d] and we have∫ d

c

∫ b

a

f(x, y) dx dy =

∫ d

c

F (y) dy =

∫
R

f =

∫ d

c

F (y) dy =

∫ d

c

∫ b

a

f(x, y) dx dy

ii. There exists a zeroset Y ⊆ [c, d] such that the y-section fy(·) = f(·, y) is Riemann inte-
grable on [a, b] for all y ∈ [c, d] \ Y . We set

f̃(x, y) =

{
f(x, y), if y /∈ Y
F (y), if y ∈ Y
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and obtain ∫
R

f =

∫
R

f̃ =

∫ d

c

∫ b

a

f̃(x, y) dx dy.

Since f̃(x, y) = f(x, y) on R \ Z where Z is a zeroset, it is customary not to distinguish

between f and f̃ . Hence, we shall simply write∫ d

c

∫ b

a

f(x, y) dx dy =

∫
R

f =

∫ b

a

∫ d

c

f(x, y) dy dx.

Proof. i. Let us first fix partitions P = {a = x0, x1, . . . , xm−1, xm = b} and Q = {c =
y0, y1, . . . , yn−1, yn = d} of [a, b] and [c, d] respectively, as well as the corresponding grid G =
{Rij = [xi−1, xi]× [yj−1, yj], i = 1, . . . ,m, j = 1, . . . , n} in R.

Observe that for ỹ ∈ [yj−1, yj] fixed and mij = inf f(Rij) we have∑
i

mij(xi − xi−1) =
∑
i

inf
{
f(x, y), x ∈ [xi−1, xi], y ∈ [yj−1, xj]

}
(xi − xi−1)

≤
∑
i

inf
{
f(x, ỹ), x ∈ [xi−1, xi]

}
(xi − xi−1)

= L(fỹ, P )

≤
∫ b

a

f(x, ỹ) dx = F (ỹ).

As this holds for each ỹ ∈ [yj−1, yj], we have also∑
i

mij(xi − xi−1) ≤ inf{F (ỹ), ỹ ∈ [yj−1, yj]} = mj(F ),

and

L(f,G) =
∑
ij

mij(xi − xi−1)(yj − yj−1) ≤
∑
j

mj(F ) (yj − yj−1) = L(F ,Q).

Similarly, we can show U(F ,Q) ≤ U(f,G) and summarize

L(f,G) ≤ L(F ,Q) ≤ U(F ,Q) ≤ U(F ,Q) ≤ U(f,G),

and, taking infimum and supremum and using integrability of f ,∫
f = inf

G
L(f,G) ≤ inf

G
L(F ,Q) = inf

Q
L(F ,Q) ≤ inf

Q
U(F ,Q)

≤ sup
Q
U(F ,Q) ≤ sup

Q
U(F ,Q) = sup

G
U(F ,Q) ≤ sup

G
U(f,G) =

∫
f.

We conclude equality between all terms, in particular,∫ d

c

F (y) dy = inf
Q
L(F ,Q) = sup

Q
U(F ,Q) =

∫ d

c

F (y) dy =

∫
f,
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so F is integrable with
∫ d
c
F (y) dy =

∫
f . Similarly, we obtain that F is integrable with∫ d

c
F (y) dy =

∫
f .

ii. Clearly, F ≥ F , and by i., we have

0 =

∫
f −

∫
f =

∫ d

c

F (y)− F (y) dy.

So F − F is a non-negative function that integrates to zero, it is not hard to see that the
function then needs to be constant zero outside a zerozet Y . That is,∫ b

a

f(x, y) dx = F (y) = F (y) =

∫ b

a

f(x, y) dx, y ∈ [c, d] \ Y.

But equality of upper and lower integral implies Riemann integrability, so the y-section fy(·) =
f(·, y) is integrable for every y ∈ [c, d] \ Y .

The conclusions on f̃ we leave for a homework problem.
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7.2. Jordan content

Integration is one mean to measure the size (area, volume) of a set in Rn, for example,
∫ 1

0
x dx

measures the size of an isoceles right triangle. The ultimate goal would be to assign a size to
all sets in Rn. Certainly, thats not hard: lets just say all sets have size 0. Nevertheless, once
you require the ”measure” to follow some rudimentary ideas, we face problems.

Theorem 7.8. For n = 1, 2, . . . , there exists no function µ : P(Rn) −→ [0,∞] ⊆ R∗ such that

i. size adds up: µ(
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei) if all Ei ⊆ Rn, i = 1, . . . ,∞, are disjoint,

ii. size is translation invariant: µ(E + a) = µ(E) for all E ⊆ Rn, a ∈ Rn, where E + a =
{e+ a, e ∈ E}, and

iii. size is nontrivial, that is, normalized by µ([0, 1]× . . .× [0, 1]) = 1.

To circumvent these problems without losing any of the three key properties listed above,
one chooses to work only with some “nice” subsets of Rn. The biggest breakthrough in “measure
theory” was the classification of a large class of sets, so called Lebesgue measurable sets L (
P(Rn), for which a measure, that is, the Lebesgue measure, can be defined to satisfy the three
properties listed above. Here, we shall be even more restrictive and only discuss those sets
which have a so–called Jordan content, that is, Jordan domains.

Definition 7.9. A bounded subset in D ⊆ Rn is said to be a Jordan domain if its boundary
∂D is a zeroset.

Lemma 7.10. Let D be a Jordan domain and f : D −→ R be bounded and continuous. Let R a

rectangle containing D. Then f̃ : R −→ R with f̃(x) =

{
f(x), for x ∈ D,
0, for x ∈ R \D. is Riemann

integrable, that is, f̃ ∈ R(R).

Definition 7.11. Let D be a Jordan domain and R a rectangle containing D. For a continuous

function f : D −→ R we set f̃(x) =

{
f(x), for x ∈ D,
0, for x /∈ D, , x ∈ R and define the Riemann

integral of f on D as

∫
D

f =

∫
R

f̃ .

(Note that

∫
D

f is well defined, that is, does not depend on the choice of R.)

Definition 7.12. Let D be a Jordan domain. The Jordan content (or volume) volD of D is

given by vol D =

∫
D

1.

Remark 7.13. Note that for a bounded set D, we have that D is a Jordan domain if and only
if ∂D is a zeroset which holds if and only if for all ε > 0 there exists a finite family of open
rectangles {Sk}k=1,...,N such that Z ⊆

⋃N
k=1 Sk and

∑N
k=1 |Sk| < ε, which holds if and only if

∂D is a Jordan zeroset , that is, ∂D is a Jordan domain with vol ∂D = 0.

These equivalences hold since ∂D is bounded and closed, and, hence, compact. Certainly,
there are sets which are zerosets, but not Jordan zerosets, that is, consider [0, 1] ∩Q ⊂ R.

108



Remark 7.14. If D is a Jordan domain, then for any rectangle R ⊇ D, we have∫
R

χ(x) dx = vol D =

∫
R

χ(x) dx .

This fact is often used to define Jordan content via the equality of inner Jordan content (left
hand side) and outer Jordan content (right hand side).

7.3. Change of variables

In this section we shall prove change of variable formulas in great generality.

Proposition 7.15. Let S be a Jordan domain and T ∈ R2×2 be invertible. Then T (S) is a
Jordan domain and vol(T (S)) = | detT | vol(S).

Proof. A linear algebra result states that every T ∈ R2×2 can be written as product of matrices

of the form

(
1 0
0 α

)
,

(
0 1
1 0

)
, and

(
1 β
0 1

)
where α, β 6= 0. For each matrix E of this form, it

is easily computed that for any rectangle R we have vol(E(R)) = | detE| vol(R).

We shall now show that vol(E(S)) = | detE| vol(S) whenever S is a Jordan domain. To
this end, fix S and then ε > 0. Using integrability of χS, there exists a grid G with U(χS, G)−
L(χS, G) ≤ ε, hence,

vol(S)− ε =

∫
χS − ε =

∫
χS − ε ≤ L(χS, G) =

∑
R⊂S

vol(R)

≤
∑

R∩S 6=∅

vol(R) = U(χS, G) ≤ vol(S) + ε.

Clearly, ∑
R⊂S

χR◦ ≤ χS ≤
∑

R∩S 6=∅

χR

and, after deforming with E, ∑
R⊂S

χE(R)◦ ≤ χE(S) ≤
∑

R∩S 6=∅

χE(R).

Integrating and using monotonicity of the integral leads to

| det(E)|(vol(S)− ε) ≤ | det(E)|
∑
R⊂S

vol(R)

=
∑
R⊂S

vol(E(R)) =
∑
R⊂S

∫
χE(R)◦ =

∑
R⊂S

∫
χE(R)◦

≤
∫
χE(S) ≤

∫
χE(S) ≤

∑
R∩S 6=∅

vol(E(R))

= | det(E)|
∑

R∩S 6=∅

vol(R) ≤ | det(E)|(vol(S) + ε).
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Since ε can be chosen arbitrarily small, we conclude

| det(E)| vol(S) =

∫
χE(S) =

∫
χE(S) ≤ | det(E)| vol(S),

which implies integrability of χE(S) and vol(E(S)) = | detE| vol(S).

For generic T ∈ R2×2, we write T = E1E2 . . . En and observe that

vol(T (S)) = vol(E1E2 . . . En(S)) = | detE1| vol(E2 . . . En(S))

= . . . = | detE1|| detE2| . . . | detEn| vol(S)| detE| vol(S)

= | detE1E2 . . . En| vol(S) = | detT | vol(S).

Lemma 7.16. Let ψ : U −→ R2, U ⊆ R2 open, be a C1 function with 0 ∈ U and ψ(0) = 0. If
‖(Dψ)u − I‖op(p) ≤ ε for all u ∈ U , then for all r such that Bp

r (0) = {x : ‖x‖p < r} ⊆ U we
have ψ(Bp

r (0)) ⊆ Bp
r(1+ε)(0).

Proof. By the C1 Mean Value Theorem, we have

‖ψ(u)‖p = ‖ψ(u)− ψ(0)‖p =
∥∥∥( ∫ 1

0

(Dψ)tudt
)
(u− 0)

∥∥∥
p

=
∥∥∥(( ∫ 1

0

(Dψ)tu − Idt
)
u
)

+ u
∥∥∥
p

≤
∥∥∥(( ∫ 1

0

(Dψ)tu − Idt
)∥∥∥

op(p)
‖u‖p + ‖u‖p

≤
(( ∫ 1

0

∥∥(Dψ)tu − I
∥∥
op(p)

dt
)∥∥∥‖u‖+ ‖u‖ ≤ (1 + ε)‖u‖p.

Lemma 7.17. If h : R2 −→ R2 is Lipschitz, that is, for some L ≥ 0, ‖h(x)−h(y)‖ ≤ L‖x−y‖
for all x, y ∈ R2, then vol(h(Z)) = 0 whenever vol(Z) = 0.

Proof. The proof is straight forward. Fix ε and choose a cover of open rectangles Rk with∑
vol(Rk) ≤ ε/(2L2). Then observe that the Lipschitz condition allows one to cover h(Sk)

with a rectangle S̃k with vol(S̃k) ≤ 2L2 vol(Sk). The result follows.

Theorem 7.18. Change of variables. Let U,W ⊆ R2 open and ϕ : U −→ W be a C1

diffeomorphism. For f : W −→ R Riemann integrable on a rectangle R in U we have∫
R

f ◦ ϕ | detDϕ| =
∫
ϕ(R)

f.

Proof. Note that ϕ(R) is a bounded (in fact, a compact) set, so there exists some R̃ with

ϕ(R) ⊆ R̃ and the right hand side above is defined to be
∫
ϕ(R)

f =
∫
R̃
χϕ(R) f . With D denoting

the set of discontinuities of f , observe that the set of discontinuities of χϕ(R) f is the union of
D and the boundary set ∂ϕ(R). We have ∂ϕ(R) = ϕ(∂R) since ϕ is an homeomorphism. The
C1 Mean Value Theorem implies that ϕ is Lipschitz, hence, ϕ(∂R) is a zero set. We conclude

that χϕ(R) f is Riemann integrable on R̃ and the RHS is well defined.
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Since Dϕ is continuous, so is | detDϕ|. The set of discontinuities of f ◦ ϕ | detDϕ| in R is
therefore ϕ−1D, which is a zero set since ϕ−1 is Lipschitz on R and D is a zeroset. So the LHS
is well defined as well.

It remains to show that LHS=RHS. To this end, fix ε > 0. Let G = {Rij} be a grid on R of
mesh r > 0. (We will determine the value of r depending on ε later.) With zij being the center
of Rij, we consider the Taylor approximation Tij of ϕ at zij, that is,

Tij = ϕ(zij) + (Dϕ)zij(z − zij).
Note that Sij = T−1

ij ◦ ϕ satisfies Sijzij = zij and (DSij)zij = I. If we choose r small enough,
then for all Rij we have

SijRij ⊆ (1 + ε)Rij,

and, applying the same argument to S̃ij = ϕ−1 ◦ Tij we get further (with r possibly made even
smaller) that

S̃ij(1 + ε)−1Rij ⊆ Rij.

Together, this gives
Tij(1 + ε)−1Rij ⊆ ϕ(Rij) ⊆ Tij(1 + ε)−1Rij,

and
| detTij|(1 + ε)−1 vol(Rij) vol(Rij) ≤ volϕ(Rij) ≤ | detTij|(1 + ε)−1 vol(Rij).

Setting Jij = | detTij| = | det(Dϕ)zij | we obtain the area estimate

Jij vol(Rij)

(1 + ε)2
≤ volϕ(Rij) ≤ Jij vol(Rij)(1 + ε)2

and
1

(1 + ε)2
≤ volϕ(Rij)

Jij vol(Rij)
≤ (1 + ε)2.

A simple computation then shows that

|volϕ(Rij)− Jij vol(Rij)| ≤ 16εJij vol(Rij).

Finally, with mij and Mij denoting the infinum and supremum of f ◦ ϕ on Rij, we have∑
mij vol(ϕ(Rij)) =

∫ ∑
mijχϕ(Rij)◦ ≤

∫
ϕ(R)

f ≤
∫ ∑

Mijχϕ(Rij) =
∑

Mij vol(ϕ(Rij))

and∑
mijJij vol(Rij)− 16εJij vol(Rij)mij ≤

∫
ϕ(R)

f ≤
∑

MijJij vol(Rij) + 16εJij vol(Rij)Mij.

Clearly, we have also∑
mijJij vol(Rij) ≤

∫
R

f ◦ ϕ | detDϕ| ≤
∑

MijJij vol(Rij)

and the difference of the left and the right term can be made arbitrarily small. Moreover, we
have ∑

16εJij vol(Rij)mij,
∑

16εJij vol(Rij)Mij ≤ 16εJ vol(R)M,

where J = max{| det(Dϕ)z|, z ∈ R} and M = max{|f(z)|, z ∈ R}, the latter is independent
of the grid and can be made arbitrarily small by choosing ε small.
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7.4. Multivariate improper integrals

Definition 7.19. A sequence {Ck}k∈N of Jordan domains is exhaustive if Ck ⊆ Ck+1 for all
k ∈ N and vol(Br(0) \ Ck)→ 0 as k →∞ for all r > 0.

Definition 7.20. The not necessarily bounded set M has Jordan content K ∈ [0,∞] if for
some exhaustive sequence {Ck}, the sets Ck ∩ M , k = 1, 2, 3, . . ., are Jordan domains with
vol(Ck ∩M)→ K as k →∞.

Definition 7.21. We say that f is improper (absolutely) Riemann integrable on M ⊆ Rn and
write f ∈ R(M), if there is an exhaustive sequence {Ck} and L ∈ R+ such that

∫
Ck∩M

|f(x)| dx <

∞. Then lim
k→∞

∫
Ck∩M

f(x) dx converges in R and we call∫
M

f = lim
k→∞

∫
Ck∩M

f(x) dx .

improper Riemann integral of f on M .

Certainly, one must show that all this is well defined and does not depend on the choice of
the {Ck}. We leave the prove of this to the conscientious (and hopefully conscious but possibly
contentious) reader.

Example 7.22.

∫
R2

e−(x2+y2)d(x, y) = π and therefore

∫ ∞
−∞

e−x
2

dx =
√
π.
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7.5. The Gamma function

Definition 7.23. The Gamma function Γ : R+ −→ R+ is given by Γ(x) =

∫ ∞
0

tx−1e−t dt.

Definition 7.24. A function f : (a, b) −→ R is convex if for all x, y ∈ (a, b) with x < y and all
0 < λ < 1 we have

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y).

Lemma 7.25. Hölder’s inequality Let f, g : R −→ C be bounded with f, g ∈ R(R) and
p, q > 1 with 1

p
+ 1

q
= 1. Then

∣∣∣∣∫ ∞
−∞

f(x)g(x) dx

∣∣∣∣ ≤ (∫ ∞
−∞
|f(x)|p dx

) 1
p
(∫ ∞
−∞
|g(x)|q dx

) 1
q

For p = q = 2 this is a special case of the Cauchy–Schwarz inequality .

Theorem 7.26. The Gamma function satisfies

i. the functional equation f(x+ 1) = xf(x) for x ∈ (0,∞),

ii. f(n+ 1) = n!, and

iii. f is convex.

Moreover, the Gamma function is the only positive function satisfying i, ii, iii , that is, if f is
any function satisfying i, ii, ii, then f(x) = Γ(x) for all x ∈ (0,∞).

Definition 7.27. The Beta function B : R+ × R+ −→ R+ is given by

B(x, y) =

∫ ∞
0

tx−1(1− t)y−1 dt.

Lemma 7.28. B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Proposition 7.29. Stirling’s formula. lim
x→∞

Γ(x+ 1)(
x
e

)x√
2πx

= 1, and, in particular,

lim
n→∞

n!(
n
e

)n√
2πn

= 1
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8. ORDINARY DIFFERENTIAL EQUATIONS

This chapter follows closely Chapter II of the book Analysis 2 authored by Otto Forster.

Definition 8.1. Let G ⊆ R × R and f : G −→ R, (x, y) 7→ f(x, y) be a continuous function.
The formal expression

y′ = f(x, y)(16)

is called first order differential equations.

A solution to (16) is a function ϕ : I −→ R, I being an interval, such that the graph Γϕ of
ϕ satisfies Γϕ ⊆ G and

ϕ′(x) = f(x, ϕ(x)) for all x ∈ I.

Remark 8.2. The set of solutions to a first order differential equation is commonly visualized
through a slope field. To obtain the slope field (direction field) of y′ = f(x, y), f : G → R, a
set of points {(xi, yj)} ⊂ G — normally placed on a regular grid — is chosen and at each point
(xi, yj) a small line parallel to the vector (1, f(xi, yj) ) is drawn. This line indicates that any
solution ϕ passing through (xi, yj) has the slope ϕ′(xi) = y′(xi) = f(xi, yj) = f(xi, yj)/1 at xi.

Definition 8.3. Let G ⊂ R×Rn and f : G −→ Rn, (x, y) 7→ f(x, y), be a continuous function.
The formal expression

y′ = f(x, y)(17)

is called a system of n first order differential equations.

A solution to (17) is a function ϕ : I −→ Rn, I being an interval, such that the graph
Γϕ ⊆ G and

ϕ′(x) =


ϕ′1(x)
ϕ′2(x)

...
ϕ′n(x)

 =


f1

(
x, ϕ1(x), ϕ2(x), . . . ϕn(x)

)
f2

(
x, ϕ1(x), ϕ2(x), . . . ϕn(x)

)
...

fn
(
x, ϕ1(x), ϕ2(x), . . . ϕn(x)

)
 = f(x, ϕ(x)) for all x ∈ I.

Definition 8.4. Let I, J be open intervals and f : I → R, g : J → R continuous with g(y) 6= 0
for y ∈ J . Then we refer to the differential equation y′ = f(x)g(y) as separable differential
equation.

Theorem 8.5. Let I, J be open intervals and f : I → R, g : J → R continuous with g(y) 6= 0
for y ∈ J and let (x0, y0) ∈ I × J . Further, assume g(I) ⊆ J .

Then exists a unique solution ϕ : I → R of the separable differential equation y′ = f(x)g(y)
satisfying ϕ(x0) = y0. Moreover, the solution ϕ satisfies the equation G(ϕ(x)) = F (x), x ∈ I,
with

F (x) =

∫ x

x0

f(t) dt, and G(x) =

∫ y

y0

dt

g(t)
.
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Definition 8.6. Let I be an interval and a, b : I → R continuous. Then we refer to the
differential equation y′ = a(x)y + b(x) as linear differential equation. If b(x) = 0, then the
linear differential equation is called homogeneous, else, it is called inhomogeneous.

Theorem 8.7. Let I be an interval and a, b : I → R continuous.

i. The homogeneous linear differential equation y′ = a(x)y has a unique solution ϕc : I → R
satisfying ϕc(x0) = c, x0 ∈ I, namely

ϕc(x) = c exp
( ∫ x

x0

a(t) dt
)
.

ii. The inhomogeneous linear differential equation y′ = a(x)y + b(x) has a unique solution
ψ : I → R satisfying ψ(x0) = c, x0 ∈ I, namely

ϕ(x) = ϕ1(x)
(
c+

∫ x

x0

b(t)

ϕ1(t)
dt
)
.

Definition 8.8. Let J be an interval and f : J → R continuous. For G = {(x, y) ∈ R\{0}×R :
y
x
∈ J}, we refer to

y′ = f(
y

x
), (x, y) ∈ G

as homogeneous differential equation.

Theorem 8.9. Let J be an interval, f : J → R, G = {(x, y) ∈ R\{0}×R : y
x
∈ J}, (x0, y0) ∈ G

and ϕ, ψ : I → R with ψ(x) = ϕ(x)
x

for x ∈ I. Then, ϕ solves y′ = f( y
x
), ϕ(x0) = y0 if and only

if ψ solves z′ = 1
x
(f(z)− z), ψ(x0) = y0

x0
.

Definition 8.10. Let G ⊂ R×Rn and f : G −→ R, (x, y) 7→ f(x, y) be a continuous function.
The formal expression

y(n) = f(x, y, y′, y′′, . . . , y(n−1))(18)

is called n-th order differential equations.

A solution to (18) is a function ϕ : I −→ R, I being an interval, such that the graph set

Γ
(n−1)
ϕ = {(x, ϕ(x), ϕ′(x), ϕ′′(x), . . . , ϕ(n−1)(x)) : x ∈ I} satisfies Γ

(n−1)
ϕ ⊆ G and

ϕ(n)(x) = f(x, ϕ(x), ϕ′(x), ϕ′′(x), . . . , ϕ(n−1)(x)) for all x ∈ I.

Remark 8.11. Note that any n-th order differential equation can be solved by reducing it first to
a system of first order differential equations. In fact, given the n-th order differential equation

y(n) = f(x, y, y′, y′′, . . . , y(n−1)),(19)

we define F : G → R, G ⊆ R × Rn, and the respective system of first order linear equations
z′ = F (x, z) by

z′ =



z′0
z′1
z′2
...

z′n−2

z′n−1


=



z1

z2

z3
...

zn−1

f(x, z0, z1, . . . , zn−1)


=



F1

(
x, z0, z1, . . . zn−1

)
F2

(
x, z0, z1, . . . zn−1

)
F3

(
x, z0, z1, . . . zn−1

)
...

Fn−1

(
x, z0, z1, . . . zn−1

)
Fn
(
x, z0, z1, . . . zn−1

)


= F (x, z).
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It is easily seen that any solution ϕ of z′ = F (x, z) on an interval I satisfies

ϕ′1(x) = ϕ2(x), ϕ′2(x) = ϕ3(x), . . . , ϕ′n−1(x) = ϕn(x), ϕ′n(x) = f(x, ϕ(x))

and, cutting out the middle men,

ϕ
(n)
1 = f(x, ϕ(x)) = f(x, ϕ1(x), ϕ2(x), . . . , ϕn(x)) = f(x, ϕ1(x), ϕ′1(x), . . . , ϕ(n−1)(x)),

that is, ϕ1 is a solution of y = f(x, y, y′, . . . , y(n−1)) on the interval I.

Definition 8.12. Let G ⊂ R×Rn. A function f : G −→ Rk satisfies a Lipschitz condition (in
y) with Lipschitz constant L ≥ 0 if

‖f(x, y)− f(x, ỹ)‖ ≤ L‖y − ỹ‖ for all x ∈ R, y, ỹ ∈ Rn.

The function f satisfies a local Lipschitz condition in G if for all (x0, y0) ∈ G there exists
an ε > 0 such that f |G∩Bε(x0,y0) satisfies a Lipschitz condition.

Note that in case of systems of first order linear differential equations we have k = n, while
in case of a single n-th order differential equation we have k = 1.

Proposition 8.13. Let G ⊂ R × Rn be open and f : G −→ Rn is continuously differentiable.
Then f satisfies a local Lipschitz condition on G.

Proof. Fix (x0, y0) in G. Since G open, exists r > 0 such that K = Br(x0)×Br(y0) ⊆ G where
Br(x0) = {x : ‖x − x0‖ ≤ r} ⊆ R and Br(y0) = {y : ‖y − y0‖ ≤ r} ⊆ Rn. As K is compact
and Df is continuous, there exists L such that ‖Df(x,y)‖L ≤ L for all (x, y) ∈ K. The Mean
Value Theorem, Theorem 6.22, then implies that for (x, y), (x, ỹ) ∈ K, we have

‖f(x, y)−f(x, ỹ)‖ ≤ sup{‖(Df)(x,y)‖L : (x, y) ∈ [(x, y), (x, ỹ)]} ≤ L‖(x, y)−(x, ỹ)‖ = L‖y− ỹ‖.

Lemma 8.14. Let G ⊂ R×Rn be open and f : G −→ Rn be continuous. A continuous function
ϕ : I → Rn solves y′ = f(x, y) with ϕ(x0) = y0 on G if and only if ϕ solves the integral equation

ϕ(x) = y0 +

∫ x

x0

f(t, ϕ(t)) dt, x ∈ I.(20)

Proof. If ϕ : I → Rn solves (20), then continuity of the map t 7→ f(t, ϕ(t)) allows us to
differentiate both sides of (20) and we obtain

ϕ′(x) =
d

dx
ϕ(x) =

d

dx
y0 +

∫ x

x0

f(t, ϕ(t)) dt = f(x, ϕ(x)), x ∈ I.

On the other hand, if ϕ′(x) = f(x, ϕ(x)) for x ∈ I and ϕ(x0) = y0, then integration gives∫ x

x0

f(t, ϕ(t)) dt =

∫ x

x0

ϕ′(t) dt = ϕ(x)− ϕ(x0) = ϕ(x)− y0,

so (20) is satisfied.
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Theorem 8.15. Uniqueness Theorem. Let G ⊂ R×Rn and let f : G −→ Rn be continuous
and satisfy a local Lipschitz condition. If ϕ, ψ : I −→ Rn, I being an interval, are two solutions
to the system of differential equations y′ = f(x, y) with ϕ(x0) = ψ(x0) for some x0 ∈ I, then
ϕ(x) = ψ(x) for all x ∈ I.

Proof. Using the local Lipschitz condition of f , we can find δ > 0 and L > 0 with

‖f(x, y)− f(x, ỹ)‖ ≤ L‖y − ỹ‖ for all (x, y) ∈ Bδ(x0, y0) ∩G.

Choosing 0 < ε ≤ δ with ‖ϕ(x)− ϕ(x0)‖, ‖ψ(x)− ψ(x0)‖ < ε for ‖x− x0‖ < δ, we obtain

‖f(x, ϕ(x))− f(x, ψ(x))‖ ≤ L‖ϕ(x)− ψ(x)‖ for all x ∈ Bδ(x0) ∩ I.

Now, set γ = min{ 1
2L
, δ} and

M = sup
x∈Bγ(x0)∩I

‖ϕ(x)− ψ(x)‖ ≤ ‖ϕ(x0)‖+ 2ε <∞.

It follows

‖ϕ(x)− ψ(x)‖ =
∥∥∥∫ x

x0

f(t, ϕ(t))− f(t, ψ(t)) dt
∥∥∥ ≤ ∫ x

x0

‖f(t, ϕ(t))− f(t, ψ(t))‖ dt

≤ L

∫ x

x0

‖ϕ(t)− ψ(t)‖ dt ≤ L
1

2L
M =

M

2
, x ∈ Bγ(x0) ∩ I,

which implies M ≤ M
2

, that is, M = 0.

Next, set x1 = sup{x : x > x0 and ψ(t) = ϕ(t) on [x0, x]}. If there exists x̃ > x1 in I,
then we can obtain the local argument above to contradict the construction of x1. We use the
same kind of argument, namely, x2 = inf{x : x > x0 and ψ(t) = ϕ(t) on [x, x0]} to show that
ϕ(x) = ψ(x) on all of I.

Example 8.16. Note that the differential equation y′ = y2/3, y(0) = 0, has multiple solutions,
for example, y = 0 and y(x) = 1

27
x3. Moreover, we can define

y =

{
0 for x ∈ [−a, a];
1
27

(x− a)3, else .

Theorem 8.17. Picard–Lindelöf Existence Theorem. Let G ⊆ R × Rn be open and
f : G −→ Rn be continuous and satisfy a local Lipschitz condition. Then exists for any point
(x0, y0) ∈ G an ε > 0 and a solution ϕ : [x0 − ε, x0 + ε] −→ Rn to the differential equation
y′ = f(x, y) which satisfies ϕ(a) = ε.

Proof. We will apply the Banach Fixed Point Theorem, Theorem 4.41 to the operator

T : ϕ 7→ Tϕ, Tϕ(x) = y0 +

∫ x

x0

f(t, ϕ(t)) dt.
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To do this, we need to choose a complete metric space A, show that T maps A to A, and, that
T is a contraction on A.

For ε chosen later, recall that C([x0 − ε, x0 + ε],Rn) is a Banach space with norm ‖ϕ‖∞ =
max{‖ϕ(x)‖}. The set

Ar,ε = {ϕ ∈ C([x0 − ε, x0 + ε],Rn), ‖ϕ− y0‖∞ ≤ r}

is a closed subset of C([x0 − ε, x0 + ε],Rn), therefore, a complete metric space.

We choose δ, r > 0 with the property that Bδ(x0)×Br(y0) ⊆ G and f is Lipschitz on
Bδ(x0)×Br(y0) with Lipschitz constant L. Let M satisfy

‖f(x, y)‖ ≤M, (x, y) ∈ the compact set Bδ(x0)×Br(y0).

For ε = min{δ, r
M
, 1

2L
} and ϕ ∈ Ar,ε we compute

‖Tϕ(x)− y0‖ =
∥∥∥∫ x

x0

f(t, ϕ(t)) dt
∥∥∥ ≤ ∫ x

x0

‖f(t, ϕ(t))‖ dt

≤ |x− x0|M ≤ r, x ∈ [x0 − ε, x0 + ε],

and Tϕ ∈ Ar,ε. Hence, T is well defined on Ar,ε.

To see that T is a contraction on Ar,ε, we compute similarly

‖Tϕ(x)− Tψ(x)‖ =
∥∥∥∫ x

x0

f(t, ϕ(t))− f(t, ψ(t)) dt
∥∥∥ ≤ ∫ x

x0

‖f(t, ϕ(t))− f(t, ψ(t))‖ dt

≤
∫ x

x0

L‖ϕ(t))ψ(t)‖ dt ≤ |x− x0|L‖ϕ− ψ(t)‖∞ ≤
1

2
‖ϕ− ψ(t)‖∞.

We now combine Theorem 8.15 and Theorem 8.17 with Remark 8.11 to obtain

Theorem 8.18. Let G ⊆ R× Rn be open and let f : G→ R be continuous and satisfy a local
Lipschitz condition.

i. If ϕ, ψ : I 7→ R are two solutions to the differential equation y(n) = f(x, y, y′, y′′, . . . , y(n−1))
with

ϕ(a) = ψ(a), ϕ′(a) = ψ′(a), ϕ′′(a) = ψ′′(a), ϕ(n−1)(a) = ψ(n−1)(a)

for some a ∈ I, then ϕ(x) = ψ(x) for all x ∈ I.

ii. For any given (a, c0, . . . , c(n−1)) ∈ G exists ε > 0 and ϕ : [a − ε, a + ε] → R, such that
ϕ(n)(x) = f(x, ϕ(x), ϕ′(x), ϕ′′(x), . . . , ϕ(n−1)(x)) for all x ∈ [a− ε, a+ ε] and

ϕ(a) = c0, ϕ
′(a) = c1, ϕ

′′(a) = c2, . . . , ϕ
(n−1)(a) = c(n−1).
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Definition 8.19. Let I be an interval and

A =

 a11 . . . a1n
...

...
an1 . . . ann

 : I → Rn×n

be a continuous mapping into Rn×n equipped with the operator norm with respect to the ‖ · ‖2

norm on Rn (or, equivalently, any other norm on Rn×n). Further, let

b =

 b1
...
bn

 : I → Rn

be a continuous mapping into Rn equipped with the ‖ · ‖2 norm. (Note that A, respectively
b, is continuous in the sense described above if and only if all aij are continuous real valued
functions, respectively if all bi are continuous real valued functions.)

i. The system of differential equations y′ = A(x)y is called homogeneous system of linear
equations.

ii. The system of differential equations y′ = A(x)y + b(x), b 6= 0, is called inhomogeneous
system of linear equations.

Theorem 8.20. Let I be an interval and A : I → Rn×n and b : I → Rn be continuous. Then
exists to each x0 ∈ I and c ∈ Rn exactly one solution ϕ : I → Rn to the differential equation
y′ = A(x)y + b(x) which satisfies ϕ(x0) = y0.

Proof. Note that uniqueness follows from the Uniqueness Theorem, Theorem 8.15, once we
establish the simple fact that f(x, y) = A(x)y satisfies a local Lipschitz condition. Existence
in a neighborhood of x0 then follows from the Existence Theorem, Theorem 8.17. The real
“news” of this theorem is that we obtain existence on all of I.

Let J ⊆ I be compact. We shall show that f(x, y) = A(x)y+b(x) satisfies a global Lipschitz
condition in y on J . To this end, note that continuity of A(x) implies that there exists LJ with
‖A(x)‖op(2) ≤ LJ for all x ∈ J .7 We now compute

‖f(x, y)− f(x, ỹ)‖ = ‖A(x)y − A(x)ỹ‖ ≤ ‖A(x)‖op(2)‖y − ỹ‖ ≤ LJ‖y − ỹ‖

Motivated by the use of Theorem 4.41 in the proof of Theorem 8.17, we define a sequence
of functions on I as follows. The function ϕ0(x) = y0 is constant, then

ϕk+1(x) = y0 +

∫ x

x0

f(t, ϕk(t)) dt = y0 +

∫ x

x0

A(t)ϕk(t) + b(t) dt.

7Recall that the operator norm ‖ · ‖op(2) is defined by ‖A‖op(2) supy∈Rn\{0}
‖Ay‖2

‖y‖2
. Consequently ‖Ay‖2 ≤

‖A‖op(2)‖y‖2, a fact that is used in this proof. Note that in this section ‖ · ‖ = ‖ · ‖2.
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We shall show that for J compact with x0 ∈ J , the sequence ϕk|J is an uniformly convergent
sequence of functions on J . Indeed, note that A, b, ϕ0 is continuous on J , we obtain that ϕ1 is
differentiable on J , and hence continuous. Hence, KJ = supx∈J ‖ϕ1(x)− ϕ0(x)‖ <∞.

Claim. ‖ϕk+1(x)− ϕk(x)‖ ≤ KJL
k
J |x− x0|k

k!
, x ∈ J.

The base case holds by definition of KJ . For the induction step, we compute

‖ϕk+1(x)− ϕk(x)‖ =
∥∥∫ x

x0

A(t)
(
ϕk(t)− ϕk−1(t)

)
dt
∥∥ ≤ ∫ x

x0

‖A(t)‖op(2)

∥∥ϕk(t)− ϕk−1(t)
∥∥ dt

≤
∫ x

x0

LJ
KJL

k−1
J |t− x0|k−1

(k − 1)!
dt =

∣∣∣ ∫ x

x0

LJ
KJL

k−1
J (t− x0)k−1

(k − 1)!
dt
∣∣∣

=
KJL

k
J |x− x0|k

k!
.

The claim implies that the the series ϕk converges uniformly on J . Indeed, since C(J,Rn)
with norm ‖ · ‖∞ is a complete metric space, it suffices to show that (ϕk) is a Cauchy sequence.
To this end, set M = supx∈J |x− x0|. Now, for ε > 0 fixed, choose N such that

∞∑
`=N

KJ(LJM)k

k!
< ε.

This is possible since
∑∞

`=0
KJ (LJM)k

k!
is a convergent series, in fact,

∑∞
`=N

KJ (LJM)k

k!
= KJe

LJM .

For m > n > N , we compute

‖ϕm − ϕn‖∞ = sup
x∈J
‖ϕm(x)− ϕn(x)‖ ≤ sup

x∈J
‖
m−1∑
`=n

ϕ`+1(x)− ϕ`(x)‖

≤
m−1∑
`=n

sup
x∈J
‖ϕ`+1(x)− ϕ`(x)‖ ≤

m−1∑
`=n

sup
x∈J

KJL
k
J |x− x0|k

k!

≤
m−1∑
`=n

KJ(LJM)k

k!
≤

∞∑
`=n

KJ(LJM)k

k!
< ε.

We conclude that (ϕk) converges uniformly on J to some function ψ

Now, uniform convergence on the compact set J allows us to take limits on both sides of

ϕk+1(x) = y0 +

∫ x

x0

A(t)ϕk(t) + b(t) dt

to obtain

ψ(x) = y0 +

∫ x

x0

A(t)ψ(t) + b(t) dt,

differentiating both sides shows that ψ solves our ODE on J . Since J was chosen arbitrarily,
we obtain the envisioned result.
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Theorem 8.21. Let I be an interval and A : I → Rn×n be continuous. The set LH = {ϕ : I 7→
Rn : ϕ′(x) = A(x)ϕ(x), x ∈ I} is an n-dimensional vector space over R.

For ϕ1, ϕ2, . . . , ϕk ∈ LH , the following are equivalent

i. ϕ1, ϕ2, . . . , ϕk are linearly independent functions;

ii. ϕ1(x0), ϕ2(x0), . . . , ϕk(x0) are linearly independent vectors for some x0 ∈ I.

iii. ϕ1(x), ϕ2(x), . . . , ϕk(x) are linearly independent vectors for each x ∈ I.

Proof. First, it is easily checked that LH is a vector space. For example, if ϕ′(x) = A(x)ϕ(x)
and ψ′(x) = A(x)ψ(x) on I, then for α, β ∈ R, we have

(αϕ+ βψ)′(x) = αϕ′(x) + βψ′(x) = αA(x)ϕ(x) + βA(x)ψ(x) = A(x)(αϕ(x) + βψ(x)).

For the equivalence, note that trivially iii. =⇒ ii. =⇒ i. For i. =⇒ iii, assume that
ϕ1, ϕ2, . . . , ϕk are linearly independent functions but ϕ1(x0), ϕ2(x0), . . . , ϕk(x0) are NOT lin-
early independent for some x0. Then exist coefficients α1, . . . , αk with

∑k
i=1 αiϕi(x0) = 0.

Now,
∑k

i=1 αiϕi solves the ODE y′ = A(x)y with ϕ(x0) = 0, and so does the constant function

ψ(x) = 0. By uniqueness, we have the function equality
∑k

i=1 αiϕi = ψ = 0 and the ϕi are
linearly dependent.

It remains to show that LH is an n-dimensional vector space. To this end, fix x0 ∈ I and
use the existence result to obtain solutions ϕj of y′ = A(x)y with ϕ(x0) = ej, where ej denotes
the j-th element of the Euclidean basis of Rn. Now, ii above is satisfied, and, hence, i, so we
found n linearly independent solutions ϕj in LH , implying that the dimension of LH is greater
than or equal to n.

If the dimension of LH would be strictly greater n, then we could consider n + 1 linearly
independent solutions ψ1, . . . , ψn+1. Evaluating at some point x0 ∈ I, we obtain using i =⇒ ii
exactly n+ 1 linearly independent vectors ψ1(x0), . . . , ψn+1(x0) in Rn, a contradiction.

Definition 8.22. A basis of LH given in Theorem 8.21 is called fundamental system of solutions
to the system of differential equation y′ = A(x)y.

Remark 8.23. Let ϕ1 = (ϕ11, ϕ21, . . . , ϕn1)T , ϕ2 = (ϕ12, ϕ22, . . . , ϕn2)T , . . ., ϕn = (ϕ1n, ϕ2n, . . . , ϕnn)T

be a fundamental system of solutions of y′ = A(x)y. We set

Φ =


ϕ11 ϕ12 . . . ϕ1n

ϕ21 ϕ22 . . . ϕ2n
...

...
...

ϕn1 ϕn2 . . . ϕnn


and observe that any solution ϕ to y′ = A(x)y can be written as ϕ = Φc for appropriate d ∈ Rn.
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Considering the initial value problem y′ = A(x)y, ϕ(x0) = c ∈ Rn, we note that for the
solution ϕ, c = ϕ(x0) = Φ(x0)d. According to Theorem 8.21, we have that for any x0 ∈ I, the
matrix

Φ(x0) =


ϕ11(x0) ϕ12(x0) . . . ϕ1n(x0)
ϕ21(x0) ϕ22(x0) . . . ϕ2n(x0)

...
...

...
ϕn1(x0) ϕn2(x0) . . . ϕnn(x0)


is invertible, hence, we have d = Φ(x0)−1c.

Theorem 8.24. Let I be an interval and A : I → Rn×n, b : I → Rn be continuous. Let
LH = {ϕ : I 7→ Rn : ϕ′(x) = A(x)ϕ(x), x ∈ I} and LI = {ψ : I 7→ Rn : ψ′(x) = A(x)ψ(x) +
b(x), x ∈ I}. For any ψ0 ∈ LI , we have LI = ψ0 + LH .

Proof. If ψ ∈ LI , then ϕ = ψ − ψ0 ∈ LH since

ϕ′(x) = ψ′(x)−ψ′0(x) = A(x)ψ(x)+b(x)−A(x)ψ0(x)−b(x) = A(x)(ψ(x)−ψ0(x)) = A(x)ϕ(x),

so ψ ∈ ψ0 + LH . Similarlly, ϕ ∈ LH implies ϕ+ ψ0 ∈ LI .

Theorem 8.25. Let I be an interval and A : I → Rn×n, b : I → Rn be continuous. Let ϕ1 =
(ϕ11, ϕ21, . . . , ϕn1)T , ϕ2 = (ϕ12, ϕ22, . . . , ϕn2)T , . . ., ϕn = (ϕ1n, ϕ2n, . . . , ϕnn)T be a fundamental
system of solutions of y′ = A(x)y. For

Φ =


ϕ11 ϕ12 . . . ϕ1n

ϕ21 ϕ22 . . . ϕ2n
...

...
...

ϕn1 ϕn2 . . . ϕnn

 ,

a solution ψ : I → Rn to y′ = A(x)y + b(x) is given by ψ(x) = Φ(x)u(x) with

u(x) =

∫ x

x0

Φ(t)−1b(t) dt+ C.

Proof. We have ψ(x) = Φ(x)u(x) = Φ(x)
( ∫ x

x0
Φ(t)−1b(t) dt+ C

)
. Differentiating gives

ψ′(x) =
d

dx
Φ(x)u(x) = Φ′(x)u(x) + Φ(x)u′(x)

= A(x)Φ(x)u(x) + Φ(x)Φ(x)−1b(x) = A(x)Ψ(x) + b(x).

Example 8.26. Solve y′1 = −y2, y′2 = y1 + x.
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C1 – mean value theorem, 88
Cr–diffeomorphism, 90

Cr, 90
Riemann integral, 68

abelian group, 7
absolute value of a complex number, 17
absolutely convergent series, 30
addition in a field, 8
Algebraic Limit Theorem, 21
antisymmetric relation, 5
arc, 82
archimedean property, 9
argument of a complex number, 17
associativity, 7

Banach Fixed Point Theorem, 66
Banach space, 74
basis of a vector space, 75
Bessel Inequality, 77
Beta function, 113
bijective, 4
Bolzano–Weierstrass Theorem, 24
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bounded above, 11
bounded below, 11
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bounded sets in metric spaces, 21

Cantor set, 55
Cartesian product, 4
Cauchy Condensation Theorem, 32
Cauchy criterion, 29
Cauchy sequences, 27
Cauchy–Schwarz Inequality, 113
Cauchy-Schwarz Inequality, 38, 75
Chain Rule, 59
Change of variable formula , 110
closed ball, 38
closed sets, 42, 43
closure of a set, 47
cluster points of a set, 47
common refinement, 69
commutative group, 7

compact set, 47
complete metric spaces, 27
complex numbers, 17
conditionally convergent series, 30
conjugate of a complex number, 17
connected set, 53
continuous functions on R, 37
continuous functions on metric spaces, 38
continuous functions on topological spaces, 44
contraction, 66
convergence in the extended real number sys-

tem, 24
convergence in topological spaces, 45
converging sequences in metric spaces, 20
converging sequences in the reals, 19
convex function, 113
cosine function, 66
countable sets, 14
covering compact set, 47
covering of a set, 47
curve, 82

Darboux integral, 69
Darboux’s Theorem., 61
decreasing function, 61
decreasing sequences, 21
Dedekind–cut, 10
dense subset, 47
derivative, multivariable, 83
differentiable functions, 58
differential equations, 114
differentiation of integrands, 89
direction field, 114
directional derivative, 83
discrete metric, 19
discrete topology, 43
distance function, 19
distributive law, 9
divergence of a vector field, 84
domain of a function, 4
domain of a relation, 4
Dominated Convergence Theorem, 30

e, 28
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embedding, 4
equivalence class, 5
equivalence relation, 5
equivalent curves, 82
equivalent elements, 5
euclidean metric, 19
exhaustive, 112
exponential function, 65
extended real number system, 24
extremum, 93

field, 8
finite cover, 47
first order differential equation, 114
fixed point, 66
Fourier coefficient, 78
function, 4
functional limits, 58
fundamental system of solutions, 121
Fundamental Theorem of Calculus I, 72
Fundamental Theorem of Calculus II, 72

Gamma function, 113
Generalized Mean Value Theorem, 61
global maximum, 93
global minimum, 93
gradient, 84
graph of a function, 4
greatest lower bound, 11
grid of rectangles, 104
group, 7

Hölder’s inequality, 113
Heine–Borel Theorem, 50
Hessian matrix, 91
higher derivatives, 63, 90
Hilbert space, 75
homeomorph topological spaces, 45
homeomorphism, 44
homogeneous differential equation, 115
homogeneous linear differential equation, 115
homogeneous system of linear equations, 119

identity element, 7
imaginary part of a complex number, 17
implicit function, 97

Implicit Function Theorem, 97
improper Riemann integral, 112
improper Riemann integral, 73
increasing function, 61
increasing sequences, 21
indefinite, 93
indefinite integral, 72
indiscrete topology, 43
infimum, 11
infinite limits, 24, 62
infinite series, 28
Inheritance Principle, 43
inhomogeneous linear differential equation, 115
inhomogeneous system of linear equations, 119
injective, 4
inner Jordan content, 109
inner product, 74
inner product space, 74
integers, 7
Integral Criterion for Sums, 73
integrals of complex valued functions, 77
Integration by Parts, 72
Integration by Substitution, 72
Interior Extremum Theorem, 60
interior of a set, 47
intervals, 55
inverse element, 7
Inverse Function Theorem, 101

Jacobian determinant, 84
Jacobian matrix, 84
Jordan content, 108, 112
Jordan domain, 108
Jordan zeroset, 108

L’Hospital’s Rule., 62
Lagrange Multiplier, 102
least upper bound, 11
least upper bound property, 11
Lebesgue number, 49
Leibniz Criterion for Alternating Series, 32
Leibniz Rule, 87
length of a curve, 82
limit inferior (liminf), 25
limit point of a real valued sequence, 25
limit superior (limsup), 25
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limits at infinity, 62
linear differential equation, 115
linear Order, 6
Lipschitz condition, 116
Lipschitz constant, 116
local minimum, 93
local Lipschitz condition, 116
local maximum, 93
logarithm, 62
logarithm naturales, 65
logarithm to base a, 65
lower bound, 11
lower integral, 69, 104
lower sum, 69

mapping, 4
Mean Value Theorem, 60
Mean Value Theorem for Integrals, 71
Mean Value Theorem, multivariate, 88
mesh of a partition, 68
metric, 19
metric space, 19
metric space of bounded functions, 56
metric space of continuous functions, 57
monotone function, 61
monotone sequences, 21
multiplication in a field, 8

n–th derivative, 63
n–th root, 14
n-th order differential equation, 115
n-tupel, 4
natural logarithm, 65
negative definite, 93
negative semidefinite, 93
neighborhood, 38
neighborhood of ±∞, 62
nested interval property, 14
Newton’s Method, 67
norm, 74
normed vector space, 74

one–to–one, 4
onto, 4
open ball, 38
open cover, 47

open sets, 42, 43
Order Limit Theorem, 22, 26
order relation, 6
ordered field, 9
ordinary differential equations, 114
orthogonal family, 75
orthonormal system (ONS), 75
oscillation, 71
othonormal basis (ONB), 77
outer Jordan content, 109

partial derivative, 84
partial sums, 28
partition of a set, 6
partition of an interval, 68
Picard–Lindelöf Existence Theorem, 117
pointwise convergence of sequences of functions,

56
positive definite, 93
positive semidefinite, 93
power series, 34
product of series, 35
Product Rule, 59

Quotient Rule, 59

radius of convergence, 34, 64
range of a function, 4
range of a relation, 4
Ratio Test, 33
rational numbers, 8
real numbers, 10
real part of a complex number, 17
rearrangement of a series, 30
rectifiable curve, 82
refinement, 69
Refinement Principle, 69
reflexive relation, 5
regular curve, 82
relation, 4
representative of an equivalence class, 5
Riemann Lebesgue theorem, 105
Riemann Integrability Criterion, 70
Riemann integral, 88, 104
Riemann sum, 68, 104
Riemann–Lebesgue Theorem, 71
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Rolle’s Theorem, 60
Root Test, 33
rotation of a vector field, 84

saddle point, 95
sampling set, 68
scalar multiplication, 74
scalar product, 74
second partials, 91
separable differential equation, 114
separation of a metric space, 53
sequences, 14
sequentially compact set, 48
series, 28
sine function, 66
slope field, 114
smooth function, 90
smooth functions, 63
Squeezing Theorem, 22
Stirling’s formula, 113
strictly decreasing function, 61
strictly decreasing sequences, 21
strictly increasing function, 61
strictly increasing sequences, 21
strictly monotone function, 61
subcoverings, 47
subsequence of a sequence, 23
Sum Rule, 59
supremum, 11
surjective, 4
symmetric relation, 5

Taylor polynomial, 63
Taylor series, 64
Taylor’s Theorem, 63, 94
topological space, 43
topology on X, 43
total derivative, 83
totally bounded, 51
totally disconnected sets, 55
transitive relation, 5
trigonometric polynomial, 78
trigonometric series, 78
trivial topology, 43

uniform continuity, 53

uniform convergence of sequences of functions,
56

uniqueness of the real number system, 12
upper bound, 11
upper integral, 69, 104
upper sum, 69

vector field, 84
vector space, 74
volume, 108

Wallis’ Product, 73
width of a partition, 68

zero set, 71
zeroset in R2, 105
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