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Preface

This script contains all the theorems and definitions, but only a few examples covered in
Analysis [, II in the academic year 2007/2008.

Most proofs have been omitted from this script. With the exception of two or three theorems,
all statements have been proven in either the script, in class, or in the homeworks.



1. NUMBERS

1.1. Sets, relations and functions

DEFINITION 1.1. The cartesian product X; x Xo X ... x X,, of the n sets X1, X»,..., X, is the
set of all (ordered) n-tupels (z1,xs,...,x,) with x; € Xy, 29 € Xy, ..., 2, € X,,. That is,

Xy x Xox ... x Xy ={(xy,29,...,2,) 121 € X1, 29 € Xo, ..., z,, € X, }.

Note that Ax() =0 x A=, and Ax B=Bx Aifandonlyif A= Bor A=(or B=1{.

EXAMPLES 1.2.

i {1,2,3) x {7,12} = {(1,7),(2,7),(3,7), (1,12), (2, 12), (3,12)}
i {7,12} x {1,2,3} = {(7,1),(7,2),(7,3), (12,1), (12,2), (12, 3)}

DEFINITION 1.3. Any subset R of the cartesian product X x Y of two sets X and Y, that
is, R C X x Y, is called relation between X and Y. If X =Y we say that R C X x X is a
relation on X.

D(R) = Dg ={x € X : there exists y € Y with (z,y) € R} is called domain of R, and
R(R) =Rr ={y € Y : there exists x € X with (z,y) € R} is called range of R.

DEFINITION 1.4. Let X and Y be sets. A function (or mapping) f : X — Y is a rule that
associates to every element in z € X an element f(x) € Y. X is called domain of f and is
denoted by Dy.

For AC X and B C Y we set
f(A)={y €Y : thereexists x € A with f(z) =y}

and
f'(B)={x € X : thereexists y € B with f(z) = y}.

The range of f is given by Ry = f(X). The graph of f is the relation I'y = {(z,y) € X x Y :
f(z) =y} between X and Y.

The function f is injective (one—to—one) if f(x) = f(Z) implies x = T, and [ is surjective
(onto) if Ry =Y. If f is surjective and injective, we call f bijective.

REMARK 1.5. Note that the distinction between a function and its graph is done for psycho-
logical reasons only. A strictly axiomatic introduction of analysis is based on set theory and
functions are simply defined as certain subsets of X x Y.

PROPOSITION 1.6. A relation I' C X x Y is the graph of a function f : Dp — Y, if and only
if (z,y),(2,y) € I' implies y = y for all z € X and y,y € Y. In this case we have R; = Rr,
and Df = 'Drf.



THEOREM 1.7. Given a function f: X — Y andsets A; C X, i€ N,and B; C Y, i € N, we
have

i. A C A, implies f(A;) C f(As)
ii. B, C B, implies f~1(By) C f~4(B,)
fii. A; C fY(f(A)) and By D f(f~4(B)))
iv. f(Us Ai) = U, f(A) and f(NZ, Ai) € NE f(A)
If f is injective we have in addition A; = f~1(f(A;)) and f(°, A;) = N, f(A;) and if f is

surjective By = f(f~1(By)).

DEFINITION 1.8. A relation R on X is called

i. reflezive if for all x € X we have (z,z) € R,
ii. transitive if (z,7) € R and (7, %) € R implies (ZB,%) €R,
iii. symmetric if (x,x) € R implies (7, x) € R, and

iv. antisymmetric if (x,7) € R and (Z,z) € R implies z = 7.
DEFINITION 1.9. A reflexive, symmetric, and transitive relation R on X is called equivalence

relation. If R is an equivalence relation we shall write  ~ = if (z,Z) € R and call = and T
equivalent with respect to R.

] ={z € X : (x,7) € R} is called equivalence class of x, and any = € [z] is called
representative of [z].

The concept of a partition of a set helps to understand equivalence classes and their equiv-
alence relations.

DEFINITION 1.10. A family of sets {M; : i € I} is a partition of the set M # 0, if

L. 0#M,CMforiel,
ii. ¢ # j implies M; N M; = for i,j € I, and

i, e, Mi = M.

THEOREM 1.11. For a set M # () we have:

i. The distinct equivalence classes of an equivalence relation on M form a partition on M.

ii. A partition {M; : i € I} on M induces an equivalence relation on M via

a~0b ifandonlyif a,be M, for some iy € I.



ExaMPLE 1.12. Fix n € N and set X = Z. The relation

Ry, ={(k,m)€ZXZ: k—m=1-nforsomel € Z}

n

is an equivalence relation. The set of equivalence classes is the group Z, of n elements with
addition given by
[n] +[m] = [n +m].

To see this, you would have to check whether addition is well defined and you need to check all
group properties (which are discussed in detail below.)



1.2. Groups, fields, the integers and the rational numbers

DEFINITION 1.13. A group is a set G, together with a binary law of composition y: GxG —
G which satisfies the axioms G1, G2, and G3 given below. We shall write zy := u(zx,y).

(G1) Associativity: (zy)z = z(yz) for all z,y,z € G.

(G2) Identity: There exists an element e € G called identity such that xe = ex = x for all
red.

(G3) Inverses : To each element x € G exists an element y € G called inverse of x with
2y = yr = e. The inverse to z is denoted by z~!

A group is called abelian if p is commutative, that is, if we have

(C) zy =yx for all z,y € G.

ExAMPLES 1.14.

1. Let X = N x N and define

Rz ={((n,m),(n,m)) € (NxN)x (NxN): n+m=n+m}.

Ry is an equivalence relation. The set of equivalence classes Z := {[(n,m)]} equipped
with

o [(n,m)] +2z [(n,m)] = [(n +71,m +m)]

e [(n,m

)z [, m)] = [(n-7i+m-im,n-m+m-)
o —[(n,m)] =[(m,n)]

is a ring!, called the ring of integers . We can embed (map injectively) the naturals into
this ring of equivalence classes via

i:N—Z, n—n":=[n+11).
This mapping is nice, since it respects addition and multiplication on N, that is,
iln+mn)=1i(n)+zi(n), and i(n-n) =i(n) -z i(n)

Hence, using an appropriate equivalence relation on N x N, we have created a ring of
equivalence classes which can be identified with the set of integers.? In the following, we
will not make a distinction between a natural number n and its integer counterpart n*.
We shall use the common short hand notation z = n —m = [(n,m)] € Z. Note that
[(7,3)] = [(10,6)], since 7+ 6 = 3 + 10, that is, 7—3=10—6

1Since we shall not use any rings in this course, we omit a definition of rings. Please consult a textbook.
2We only assume a-priori knowledge of the naturals. Similar to the attitude of Leopold Kronecker, 1823-1891,
who supposedly said “God made the integers; all else is the work of man”.



ii. Let X =7Z x N and define
Ro={((z,m),(zZ,m)) € (ZxN)x (ZxN): z-m=72-m}.
Rg is an equivalence relation. The set of equivalence classes {[(z,m)]} equipped with

o [(z,m)]+o[EZm)]=[(zzm+Z-zm,m-zm)
o [(z,;m)] @ [(z,m)] = [(2 22, m-zm)]

is a field3, called the field of rational numbers. Again, we can embed the integers in a
natural way by setting
i:7—Q, zwz":=]|(z1)]

This embedding respects multiplication and addition, hence, we consider Z as a subring
of the ring (field) of equivalence classes we just defined. The field we defined is the field
of rational numbers. From now on, we shall use them the way we are used to. Certainly,

we shall write r = — = [(z,m)] € Q.
m

Starting from the natural numbers we have created the integers, from those we have created
the rationals. Since the embeddings are canonical, we shall ignore its formalism and simply
take

NCZSQ

DEFINITION 1.15. A field is a set F' on which two binary laws of composition, addition '+’
and multiplication -’ are defined with

(F1) (F,+) is an abelian group. We shall denote the identiy of (F',+) as 0.
(F2) (F\{0},-) is an abelian group. The identity of (F'\{0},-) is denoted by 1.

(F3) The distributive law holds, that is, (z +vy) -z = xz +yz for all z,y,z € F.

DEFINITION 1.16. A relation O on X is called order on X if O is reflexive, transitive, and
antisymmetric. The order O is called linear if for all x,7 € X either (z,z) € O or (z,z) € O.

All orders discussed in Examples 1.17 are those orders on N, Z, and Q which you are familiar
with. In our attempt of presenting a self-contained constructive approach to introduce the real
numbers, we include the formal definitions below.

Note that the order on N which we mention in Examples 1.17.i can be easily defined using
elementary set theory.

These definitions are not very enlightening and they will not play a crucial part throughout
the remainder of Analysis 1.

3Fields will be defined shortly



ExAMPLES 1.17.

i. The relation Oy = {(n,m) e Nx N: n <m} is a linear order on N.

ii. The relation Oz = {([(n,m)], (7, 7%)]) €ELZXZ: n+m<n+ m} extends the order
on N to the integers Z.

iii. The relation Og = {([(z,m)], (Z, m)]) cQxQ: z-Mm<z-
7 to the rational numbers Q.

m} extends the order on

In the following we shall simply write r < 7 if (r,7) € Og.

DEFINITION 1.18. A field F' is called ordered if

(O1) There exists an order <’ on F.
(O2) The order is linear, that is, for all z,y € F either z < y or . > y or z = y.

(03) 2 <y impliesx+ 2 <y+ 2z forall x,y,z € F and if z,y > 0 then z -y > 0.

DEFINITION 1.19. An ordered field F' is called archimedean if for all z,y € F, x,y > 0 exists
n € N with
N :=r+r+...+>Yy.

TV
n—times

THEOREM 1.20. The set of rational numbers Q together with the two binary operations
addition and multiplication defined in Examples 1.14.ii and the order given in Examples 1.17.iii
is an archimedean ordered field.



1.3. Real numbers

Given a right angled, isosceles triangle with two sides of length 1. What is the length [ of the
third side?

According to Phythagoras, we have 1> = 12+ 12 = 1 + 1 = 2. We shall write [ = v/2.

2
THEOREM 1.21. v/2 ¢ Q, that is, there exists no m € Z and n € N with <@> =2.
n

We conclude that there exist line segments with non rational length. Can we define a set
S O Q containing all “lengths”, and to which we can extend all arithmetic properties of Q7
Yes, we can!

DEFINITION 1.22. A Dedekind—cut A|B in Q is a pair of subsets A, B of Q with

i. AUB=Q,A#0and B#0, AnNB =0,
ii. for all @ € A and b € B we have a < b, that is, a < b and a # b, and

iii. A contains no largest element.

EXAMPLES 1.23. {¢€Q:q¢<2}|{¢€Q:¢q¢>2} and
{geQ:q<0orqg®* <2}{g€Q:q>0andg® > 2} are cuts, but
{geQ:¢<2}{qeQ:¢>2},{qeQ:¢*<2}|{qeQ:¢* > 2} and
{0€Q:q<2}|{qeQ:q >3} are not.

DEFINITION 1.24. Dedekind-cuts in Q are called real numbers, the set of all real numbers is
denoted by R.

REMARK 1.25. We can embed rational numbers in R via

p—p ={qeQ: ¢<pi{geQ: ¢>p}.

A cut of the form p* := {g € Q: ¢ <p}{g€ Q: g > p}, p € Qis called rational cut in
Q. The embeddings discussed so far are N — 7Z — @Q — R. Since — denotes injective maps
which respect algebraic properties, we shall omit the * notation and identify elements in the
domain with the corresponding elements in the range. That is, we shall write

NCZCQCR.

At this point of time, we have not defined any algebraic operations on R (the set of Dedekind
cuts in Q), but we will do this shortly.

DEFINITION 1.26. Let X be a linearly ordered set, S C X. M € X is an upper [resp. lower]
bound of S, if for each s € S we have s < M [resp. s > M]. If there exists an upper [resp.
lower] bound M € X, then we call S bounded above [resp. bounded below).

M, € X is called the least upper bound or supremum [resp. greatest lower bound or infimum)|
of S C X if for all upper [lower| bounds M € X we have My < M [resp. My > M]. The least
upper bound [resp. greatest lower bound] of the set S is denoted by sup S [resp. inf S].

9



DEFINITION 1.27. (LUP) An ordered set X has the least upper bound property if any nonempty
subset S of X which is bounded above has a least upper bound (in X).

DEFINITION 1.28. On R, that is, on the set of Dedekind cuts in QQ, we define:

i. A linear order '<’on R via A|B < C|D if ACC.
ii. For z = A|B, y = C|D € R we set
E:={eeQ: thereexistsa€ Aand ce C withe=a+c¢}, F:=Q\F
and define addition on R via
r+y=AB+C|D:= E|F.

Further we set —z = A7|B~, with A~ = {—b,b € B\ {smallest element of B (if it exists)} }
and B~ =Q\A".

(Note that —(—x) = z, that x4 (—x) = 0* for all z € R, that = > 0 if and only if —x <0,
and that ¢* + ¢ = (¢+ ¢)* and (—¢q)* = —¢* for all ¢, g € Q.)

ili. For x = A|B > 0%, y =C|D > 0* € R we set
G:={e€Q: e<O0orthereexistsa>0€ Aandc>0¢e C withe=a-c}, H:=Q\G

and define the product
r-y=A|B-C|D:=G|H.

Ifz>0andy<Osetx-y=—(z-(—y)),ifr<0andy>0set z-y=—((—x)-y), and
ifr<0andy <0setz-y=(—x)-(—y). Hence, we have (well) defined multiplication

RXxR—R, (z,y)—2x-y

(Note that ¢* - ¢* = (¢q)* for all ¢, € Q.)

THEOREM 1.29. The set of Dedekind cuts in QQ denoted by R together with the order, the two
binary operations addition and multiplication defined above is an archimedean ordered field
which satisfies the least upper bound property.

THEOREM 1.30. UNIQUENESS OF THE REAL NUMBER SYSTEM. R is unique in the following
sense: Let I’ be an archimedean ordered field which has the least upper bound property. Then
there exists a bijective mapping v : F' — R which preserves addition, multiplication and
order.

Proof. (Sketch) Let F' be an archimedean ordered field with the least upper bound property.
First note that 1p >p O since 1lp #p Op and if 1p <p Op we get —1p >p Op by (O3) and
lp = (—1p)(=1p) >F O by (03), a contradiction to (O1). Further, observe that N can be
embedded into F' via

TV
n—times
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By definition we have ng + mp = (n + m)pr. The injectivity of this mapping follows from an
inductive argument using ng + 1p >p n* + 0p. Let us also note that implies that the order
on N is preserved under 7, a very important fact as we shall see later. Further, all np > Op
have an inverse element with respect to addition in F' and we may extend ¢ injectively to Z by
setting n — —(—n)p for n < 0. We can show that np +mp = (n+m)p still holds, now for all
n,m € Z. Note that (F1) together with (O3) on F implies that —1p < 0, since else,we would
have —1p > Op and Op >r 1p.

Further, we can use the same strategy to extend ¢ to cover al rational numbers by setting

n n
1:Q — F, —H—F:np-mgl.
m mpg
(To detail this proof, we would have to show that i is well defined, that is, that the image of ¢
under ¢ does not depend on the particular representation of ¢ as fraction of integer and natural

number.)

Note that, again, we have 0 < ™ < % if and only if O <pg :z_i <F g—‘; due to (O3) since
else ngp -p mp > ng -p mp. Further qp +7p = (¢ +r)r and gr -p rp = (¢ -p ) holds for all
q,r € Q.

After having observed that any ordered field contains a copy of Q as an ordered subfield,
we can proceed to define the ”uniqueness” map u:

u:F—R, x—AB,={q€Q: qr<pz}{geQ: qr>Fpz}.

It remains to show that w is well defined (are these elements on the right really Dedekind cuts?),
it preserves addition, multiplication, and order, and that u is bijective. Note that we still have
not used the fact that the order on F' is archimedean and that F' has the least upper bound
property.

So let us first look whether the map is well defined. Clearly A, N B, = 0 and A, U B, = Q.
If 2 >p O0F we have 0 € A, and B, # () since the archimedean property implies the existence
of n € N such that

nF:\lF+F1F+F--‘+F1F/>I

TV
n—times

and therefore ny € B,. If x < 0p we get B, # () cheaply and we can use a similar argument
as above to show that A, # ().

Transitivity shows that for a € A, and b € B, we have ar < x < br and therefore a < b.

To show that A, has no largest element, we need to show the following fact, which we shall
repeatedly use not only in this proof.

Claim: Let F' be an archimedean ordered field which has the least upper bound property and
let x,y € F. If x <y, then exists ¢ € Q such that x < qr < v.

Proof of the claim: Fix x,y € F with x < y. Then y —x > 0 and therefore (y —z)~* > 0. Pick
mp > (y—x)"' > 0. Set u=sup{n € Z: ;= <z} Thenz < % <y, since% >y

would imply % >y >x > % and ;L—f; = % — ;)LTP; >y—x > m%w a contradiction.

The set A, has no largest element, since for any ¢z, (¢ € Q) in A, we can find ¢z, (7 € Q)
with © > qr > qr.

We have shown that A,|B, € R, let us now check surjectivity of u. Let A|B be any cut in
Q. Set Ap = {qr € F': q € A} and x4 p = sup Ar which exists due to the L.u.b. property of
F. It is easy to see that u(zap) = A.|B, = A|B.

11



Injectivity follows from the claim proven above (why?). The mapping u preserves multipli-
cation and addition since it does fulfill these properties on Q and due to the definition of R
and u. 0

That’s it for Dedekind cuts, we are done. From now on, we will think of real numbers as
elements on the real line, its elements are denoted with letters such as x,y,a,b,a, 3, .. ..

THEOREM 1.31. For every real number x > 0 and n € N exists exactly one real number y > 0
1
with y" = z. This y is called n—th root of x and is denoted by x» or /.

THEOREM 1.32. NESTED INTERVAL PROPERTY.
For n € N, let I, = [apn,b,) = {z € R:a, <z <b,} CR be closed intervals with I,, O I,,.; for
all n € N. Then (] I, # 0.

neN

DEFINITION 1.33. A sequence a in a set X is a function a: N — X n +— a(n). Note that by
convention we shall write a,, instead of a(n), and a is often denoted by (a,)nen or {an fnen. Do
not confuse the sequence a = (a,)nen = {a@n }neny With the set {a,, n € N} = R,.

DEFINITION 1.34. A set X is countable if there exists a surjective function (sequence) a:
N — X,n~ a(n).

THEOREM 1.35. If the sets A, C X, n € N, are countable, then J, . Ay is countable.
COROLLARY 1.36. Q is countable.

THEOREM 1.37. The set containing all sequences with values in {0,1,2,...,n}, n > 1, is not
countable.

THEOREM 1.38. R is not countable.

12



1.4. Complex numbers

We shall now define the complex number system.

DEFINITION 1.39. The cartesian product R x R together with the binary operations

+ : RxBR)x(RxR)— RxR, ((a,b),(c,d)) — (a+c,b+d)
RxR)x (RxR)— RxR, ((a,b),(c,d))— (ac—bd,ad+ bec)

form a field with additive neutral element (0,0) and multiplicative neutral element (1,0) which
is called the field of complex numbers.

THEOREM 1.40. The map G : R — C, a — (a,0) is an embedding of the real numbers into
the complex numbers, that is, G is injective and we have for all a,b € R

Gla+0b) =G(a)+ G() and G(ab) = G(a)- G(b).
Hence, we can consider R as a subfield of C.
PROPOSITION 1.41. For ¢ := (0,1), we have > = (—1,0), and for a,b € R we have G(a) +

G(b) -i = (a,b). From now on we shall consider R as a subfield of C and drop the embedding
G in our description of complex numbers. Hence, we shall write a + bi = (a,b) € C.

DEFINITION 1.42. For z = a+ bi € C with a,b € R we shall call a=Re(z) € R the real part of
z and b=Im(z) € R the imaginary part of z. The conjugate of z is Z = a — bi and the absolute

value of z is |z| = Va? + b2.

PROPOSITION 1.43. For all z=a +bi, w =c+ di € C with a,b,c,d € R we have

Re(z +w) = Re(z)+ Re(w)
Im(z +w) = Re(z)+ Im(w)
z+w = Z+w
ZWw = ZW
2| +|w| > |z 4wl
2wl = |zw]
z+Z = 2Re(z)
z—% = 2ilm(z)
2Z = |z2]?
. 1 _
R
[Re(2)] < 4|
[Im(z)] < 2|

REMARK 1.44. A more geometrical treatise of complex numbers is contained in the homework.

13



2. CONVERGENCE OF SEQUENCES IN METRIC SPACES
AND NUMERIC SERIES

The goal of this section is to discuss real and complex valued sequences and series. Many results
concerning real and complex sequences hold in a more general setup, that is, in metric spaces.
In order to avoid the repetition of arguments, we shall phrase some results in the metric space
setup, nevertheless, at this point of time it might be best to think of only two metric spaces,
that is, the spaces of real and complex numbers. In these special cases, the distance between
two numbers z and y is |z — y|.

2.1. Sequences in metric spaces

DEFINITION 2.1. A set X together with a binary function d : X x X — R is a metric space
with metric d if d satisfies
i. d(z,7) >0if x # 7 and d(x,z) =0 for all z € X,
ii. d(z,z) =d(z,z) for all z,7 € X,
ii. d(z,7) < d(z,7) + d(T,7) for all 2,7,7 € X.
The function d is called metric or distance function on the set X and we shall denote a metric
space by (X, d) or simply by X if it is well understood which metric d on X is being considered.

EXAMPLES 2.2.

i. The set of real numbers R with metric dy(z, y) = |x—y| is a metric space. If no other metric
is explicitly mentioned, we shall always consider R to be equipped with the euclidean
metric ds.

ii. The set of complex numbers C with metric dy(, y) = |[z—y| = \/(Re(z — y))2 + (Im(z — y))?
is a metric space. If no other metric is explicitly mentioned, we shall always consider C
to be equipped with the dy metric.

iii. Given any set X, we can define a metric on X via

£ r—
do(x,y):{o nE=Y for z,y € X.

1 else

This metric is called discrete metric on X.

DEFINITION 2.3. A sequence (,)nen in R is said to converge to xo € R if for all £ > 0 exists
N € N such that

|z, —x9| < e for all naturals n > N.

. . . n—oo .
If (z,)nen converges to xg in R we write lim z,, = zg, or x,, —— g, or simply z,, — .
S 0 0> 0> 0

n—o0

The element xy € R is called limit of (z,,)nen in R.

DEFINITION 2.4. A sequence (Z,),en in a metric space (X, d) is said to converge to xo € X if
for all € > 0 (that is, ¢ € R with € > Og) exists N € N such that

14



d(xp,x9) < e for all naturals n > N.

If (x,) converges to xg in (X,d) we write lim x, = zg, or &, ——» x, or simply x, — .
The element xy € X is called limit of (z,) in (X, d).

EXAMPLES 2.5.

i. The sequence (1),en in (R, ds) converges to 0 € R.
)

ii. The sequence (% nen in (R, dy) does not converge to any zy € R, since for any zy € R we

have dy(zo, z,) < % for at most one index n € N.

PROPOSITION 2.6. A sequence (z,), in C converges in (C,dy) (or simply in C) if and only if
Re(z,) “5Re(z) in R

and
Im(z,) “——>Im(z) in R.

That is, sequences converge in C if and only if both, real and imaginary part converge in R.
Therefore, a real valued sequence converges in R if and only if it converges in C.

THEOREM 2.7. The limit of a converging sequence in a metric space (X, d) is unique, that is,
if 2, —> o € X and z, —=> T, € X, then xy = Zo.

DEFINITION 2.8. A subset S in a metric space (X, d) is called bounded if there exists g € X
and M € R* such that d(zg,z) < M for all z € S.

A sequence (z,,) is bounded in (X, d) if its range {x, : n € N} is a bounded set in (X, d).
THEOREM 2.9. Every converging sequence (z,) in a metric space (X, d) is bounded.

DEFINITION 2.10. A sequence (z,) in R is

i. monotonically increasing if x,, < x,,1 for all n € N
ii. strictly monotonically increasing if x, < x,4, for all n € N,

iii. monotonically decreasing if x, > x,,1 for all n € N, and

iv. strictly monotonically decreasing if x,, > x, 1 for all n € N.

A sequence is called monotone if it is either monotonically increasing or decreasing.
THEOREM 2.11. Monotonic sequences converge in R if and only if they are bounded.

THEOREM 2.12. ALGEBRAIC LiMIT THEOREM. If a,, —— a¢ and b, —— by in C. Then
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i. (an + bn) m Qo —|— b07

.o n—oo
ii. a,b, —— agpby, and

coe n—oo .
iii. i—>%1fa0,an7é0forn€N

an

THEOREM 2.13. ORDER LiMiT THEOREM. If a,, —— a¢ and b, —— b, in C with a,, < b,
for all n € N, then ag < by.

EXAMPLES 2.14.

1
i. For p > 0 we have lim — =0.

n—oo M,

ii. For p > 0 we have lim {/p = 1.

n—oo
i, lm ¢/n=1.
n—oo

[0}

iv. For p > 0 and a € R we have lim n—zO

v. If x € C with |z| < 1, then lim z" = 0.

n—oo

DEFINITION 2.15. Let (z,,) be a sequence in (X,d) and let n; < ngy < ng < ... be a strictly
increasing sequence of natural numbers. Then (z,, )ren is called subsequence of (x,,).

ExAMPLE 2.16. Given the sequence 1, %,%, }1, %,..., we have %, }l,%,... is a subsequence of
1111 11111 151111 .
1,5, 5. but 1,5,5,3,7,5-.. and 3,1,7,3,5,5... are not. In general, (z,, )ren With

Tn, = Tgy is a subsequence of (x,,).

THEOREM 2.17. Every subsequence (s,, )i of a convergent sequence (s,), in (X, d) converges
to the same limit as (s;,),.

1 1 1

) 1 > e
24 1
241 + 241
2

1

2 T ., converges to V2 —1inR.
245 24

ExAMPLE 2.18. The sequence

THEOREM 2.19. BOLZANO-WEIERSTRASS THEOREM. Every bounded sequence (s,), in R
has a converging subsequence.

16



2.2. The extended real number system, limsup and lim inf

DEFINITION 2.20. The extended real number system is the linear ordered set R* = R U
{+00, —0c0} with —00 <g+ & <g+ y <g+ +00 for all z <g y in R.

Note that the field structure on R cannot be extended (in a meaningful way) to R*. Nev-
ertheless, it is customary to set

r+ (+o00) = +oo forz eR,
r+(—00)=x—(+00) = —o0o forzeR, and
LT — 0 forzeR
+o0 —00
If x > 0 we set x - (+00) = 400, - (—00) = —o0, if x < 0 then z - (+00) = —o0 and

x - (—00) = +o0.

Further, if for all M € R* there exists N € N such that
T, > M for all naturals n > N,

then we write lim x, = oo, or z, —— 00, or simply x,, — oo. Correspondingly, if for all

n—oo

M € RT there exists N € N such that
r, < —M  for all naturals n > N,

. . n—oo
then we write lim z, = —o0, or z,, —— —o0, or x,, — —Q.

n—oo

PROPOSITION 2.21. The linearly ordered set R* has the least upper bound property. Since in
addition every subset of R* is bounded above by oo, each non—empty subset of R* has a least
upper bound.

PROPOSITION 2.22. Let (z,,) be a sequence of real numbers. Then

E2,) = {xo € R* : there exists a subsequence (z,, ) of (z,) with x,, koo, o} CR*
is not empty.
DEFINITION 2.23. Let (z,) be a sequence of real numbers. Set

E,) = {xo € R* : there exists a subsequence (z,, ) of (z,) with x,, koo, o} CR*

and define
limsupx, = supFEy,) =lubkE,,) R and
liminfx, = infEy,,)=—lub(-Eg,)) R

Any x¢ € E,,) "R is called limit point of the real valued sequence ().
EXAMPLES 2.24.

17



i. Choose (z,) such that {z,,n € N} = Q. Then limsup z,, = +oo and liminf z,, = —o0.

n—oo n—oo

ii. Let z,, = (—1)" (1 + %) for n € N. Then limsup x,, = +1 and liminf 2, = —1.

n—oo n—oo

LEMMA 2.25. Let (x,) be a sequence in R and s € R*. If s > limsup,,_,. =, then exists
N € N such that z,, < s for all n > N. If s < liminf,_ . x,, then exists N € N such that
z, > sforalln > N.

Proof. Fix (z,) and s € R* with s > limsup,,_,, ,. We shall show that there exists N € N
such that z,, < s for all n > N. The second assertion follows verbatim.

If s = o0, then s, < s = o0 for all n > 1.

We have s > limsup,,_,, ©, > —0o0, and, hence, we can turn our attention to the remaining
case s € R. Suppose that for any N € N there exists an index ny € N such that z,, > s.
In this case, we can pick n; such that z,, > s, then ny > n; with z,, > s, and, inductively
N1 > N, k € N.

Since (z,,) is a subsequence of (x,) and, therefore, any subsequence of (z,,) is also a
subsequence of (v,), we have E, ), C E,),. Pick y € E, ), # 0 and observe that an
application of the order limit theorem to subsequences of (z,, ), implies y > s since xz,,, > s for
all & € N. The fact that y € E(,,), implies limsup,, ., z, >y > s > limsup,,_,, =,, which is
nonsense. Contradiction! O

THEOREM 2.26. Let (z,,) be a sequence in R. Then for oy € R* we have lim x, = ¢ if and
n—oo
only if liminf z,, = limsup z,, = xy.
n—00 n—o00

Proof. Let us first assume lim x,, = 29 € R*. Then E(, ), = {xo} and therefore liminf z,, =
lim sup x,, = xo.

n—oo

Let us now assume liminf z,, = limsup z,, = x¢ with o € R. Fix € > 0 and use Lemma 2.25
n—00 n—0o00

to obtain N € N such

ro — € < liminfz, —

n—oo

< x, §limsupxn+§<x0+e for all n > N.

n—oo

N

Since € > 0 was chosen arbitrarily, we have that (x,) converges and lim z,, = .
n—oo

Let us assume liminfz, = limsupz, = 4+o0o. Lemma 2.25 implies that for all M < oo

n—oo n—o0
exists N € N with z, > M for n > N. This gives lim x, = oo.
n—oo
The case liminfx, = limsupx, = —oo can be treated in the same way as the case
n—oo n—oo
liminf z,, = limsup z,, = 4o00. [

n—0oo n—oo

18



2.3. Cauchy sequences and complete metric spaces

DEFINITION 2.27. A sequence (z,,) in a metric space (X,d) is called Cauchy sequence if for
all € > 0 there exists N € N such that d(z,,z,,) < € for all n,m > N.

PROPOSITION 2.28. Any converging sequence in a metric space is a Cauchy sequence.
PROPOSITION 2.29. Any Cauchy sequence in a metric space is bounded.

DEFINITION 2.30. A metric space (X,d) is called complete if all Cauchy sequences in X
converge in X.

REMARK 2.31. Not every metric space is complete. For example, consider the punctured
real line R \ {0} with d(z,y) = |z — y|. The sequence a, = + is Cauchy in R\ {0} with
d(x,y) = |x — y| since for fixed € > 0 we can pick N > % and get

1 1

< < =<
max{n,m} ~ N ‘

1 1 m-—n

d(xp, Tm) = |0 — 2| =

n m mn

for all n,m > N. Nevertheless, (a,) does not converge in R \ {0}, since if it would converge to
say o € R\ {0}, then it is easy to see that for any € > 0 there would exist some N, such that

la—0] <|a—x,| +1]0 —z,| <e+e=2e

Hence | — 0] < 2¢ for all € > 0 and therefore |« — 0] = 0 and o = 0, a contradiction to
aeR\{0}.

PROPOSITION 2.32. Let (X,d) be a metric space and (x,) be a Cauchy sequence with a

converging subsequence, that is there exists (x,, ) with x,, —— 2. Then z,, — .

THEOREM 2.33. R and C are complete.
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2.4. Real and complex series

o0
DEFINITION 2.34. Let (a,) be a sequence in C. We call the expression Z a, infinite series

n=1
N 00
in C. Further, Sy = a1 +as+ ... +ay = Zan is called the N-th partial sum of Z Gy
n=1 n=1
If the sequence (Sy)yen of partial sums converges, we set Z a, = ]}im Sy,. (Be aware of

n=1

o0
the abuse of notation: Z a, denotes a series as well as the limit of its partial sums (in case of

n=1
convergence).
N aN+1_1 > 1
EXAMPLE 2.35. Let a € C with |a| < 1. Then Sy = ;a” =71 and ;an =12
D S = 1 R
EFINITION 2.36. ete_zme .
n=0
REMARK 2.37. e is well defined:
N
1 1 1 1 1 1
S P— — pr— 1 1 —_— _— e — e — s — s — .. R
N ;n! gty gt TR
S YIS L VL S
2 4 8 7 92N-1
= /1\" 1
< 1 — =1 =3
(26 )=

Hence (S,,) is bounded. Since (Sy) is also monotone, the sequence of partial sums converges
o

and therefore the series Z — converges.
n!

n=0

n—oo

1 n
THEOREM 2.38. lim (1 + —) =e

n
THEOREM 2.39. e is irrational.

oo
THEOREM 2.40. CAUCHY CRITERION. The complex series Z a, converges in C if and only

n=1

if for all € > 0 there exists N € N such that

m
> an
n=k

< e forall k,m > N.
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oo

PROPOSITION 2.41. If Z a, converges in C then a,, —— 0.

n=1

THEOREM 2.42. DOMINATED CONVERGENCE THEOREM (DCT). Let (a,) be a sequence in
C.

i. If there exists a real valued, non—negative sequence (b,,) with Z b, converges and |a,| <

n=1

b, for all n > Ny,n € N then Z a, converges.

n=1

ii. If a, > b, >0 for n > Ny,n € N and if Z b, diverges, then Z a, diverges.

n=1 n=1

COROLLARY 2.43. Let (a,) be a sequence in C. If Z |a,| converges, so does Z .

n=1 n=1

DEFINITION 2.44. A complex valued series Z a, with Z la,,| converges, is called absolutely

n=1 n=1
convergent.

o0 oo o0
If Z a, converges, but Z |a,| does not converge, the we call Z a, conditionally conver-

n=1 n=1 n=1

gent.

DEFINITION 2.45. Let (c¢,) be a sequence of complex numbers and let 7 : N — N be bijective.

o e.)
Then we call the series Z Cr(n) & rearrangement of the series Z Cp-
n=1 n=1

THEOREM 2.46.

[e.e] o0
i If ch converges absolutely, then any rearrangement Zcﬁ(n) converges absolutely to

n=1 - - n=1
the same limit, that is Z Cr(n) = Z ¢, for any bijective 7 : N — N.
n=1 n=1

ii. If (¢,), is real and if ch converges conditionally, then for any x € R exists bijective

n=1

7, : N — N such that Zcﬂz(n) =Zx.

n=1
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> 1
Exa 2.47. Tak = —1)"—= ) ider:
XAMPLE 7. Take S Z( ) - =# 0. Consider

n=1
1 1 1 1 1 1 1 1
S = -1l+-—c-4+-—--t+=-——-F-——... <=
2 3+4 5+6 7+8 2
n 15 B 1 +1 1+ +1
27 2 4 6
3 1 1 1 1 1
25 +0 3+2 5+0 7+4+
3 1 1 1 1 1 1 1
but =S 14+ - - — =9
R A A R S R A
. - 1 iy
since S # 0. Hence, Z(—l)"— converges conditionally.
n
n=1

The following criterion is helpful to prove convergence of series which do not converge
absolutely.

THEOREM 2.48. LEIBNIZ CRITERION FOR ALTERNATING SERIES. Let (a,) be a decreasing

o0
sequence of positive real numbers with a,, — 0. Then Z(—l)”an converges.

n=1

THEOREM 2.49. CAucHY CONDENSATION THEOREM. Suppose a; > ay > ... > 0. Then

o0 oo
E a, converges if and only if E 2% aqr converges.
n=1 k=1

=1
ProOPOSITION 2.50. For p € R we have E — converges if and only if p > 1.
n
n=1

THEOREM 2.51. RooT TEST. Given a complex series > a,, set a = limsup {/|a,|.

i. If @ < 1, then > a, converges absolutely.
ii. If & > 1, then ) a, diverges.
iii. If &« =1, then ) a, might converge or diverge.
Proof. Here, we shall only show iii.
1 1
We have i ([—=—"—==1but > 1d t :
e have 1£nﬂs;ip \/; i, ut > -~ does not converge
. ! 1
On the other hand, hinj:ip 2= 1 and Z 3 does converge. 0]
THEOREM 2.52. RATIO TEST. Let Z a, be a series of complex numbers.
n=1
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o
a
i. If limsup || < 1, then Z a, converges absolutely.
n—oo a/n TL=1
oo
ii. If there exists N € N with |*2| > 1 for all n > N, then Z a, diverges.
n=1
EXAMPLES 2.53.
a n =1
i. Let a, = % Then lim sup ntl — lim sup = 1, but the series Z— does not
n—oo Qn, n—oo T 1 n=1 n
converge.
ii. Let b, = &. Then li b1 _ n” 1 dild
ii. Le = —5. Then lim su =limsup ———= =1 an — does converge.
" n? nﬂoop n nﬂoop (TL + 1)2 1 n? &

(o]
DEFINITION 2.54. The series Z c, 2" is called a power series with coefficients ¢, € C, n € N.
=0

For o = limsup,,_, .. v/|ca| € [0, 00] C R* we call

L if o€ (0,00);
R,y =400 ifa=0;

0 fa=o

o
the radius of convergence of the power series E 2"

n=0

THEOREM 2.55. The series chz" converges if |z| < Ry,) and diverges if |z| > R(.,), and

n=0
o0
Z cp2" may or may not converge for z € C with [z| = R(.,).
n=0
o
REMARK 2.56. It is easy to see that a series of the form Z cn(z — 29)" converges if |z — zg| <
n=0

R, and diverges if |z — 29| > R(.,), a fact which is relevant when discussing Taylor series of
a function f at a point zp € R. (See Section 4.)
We conclude this section with a brief discussion of the exponential function exp(z) = Z
n=0
z € C. To derive the functional equation exp(z+w) = exp(z) exp(w) we use theorem discussing
the product of two series. This theorem is based on a diagonal summation of the product:

ZTL

n!’

(CLQ +a;+ag+ .. ) . (bo + bl + bg + .. ) = CLQb() + a0b1 + aobg + aobg +
+ Glbo + a1b1 + a1b2 + a163 +
+ a2b0 + CLle + CLQbQ + CLng +
+ a3b0 + a3b1 + a3b2 + CL3b3 +
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THEOREM 2.57. PRODUCT OF SERIES. Let (a,) and (b,) be complex sequences with
Yoo gan = A converges absolutely, and >~ b, = B. For ¢, = >} _jarbnp—k, n € Ny we have
Yo gen=A-B.

COROLLARY 2.58. For z,w € C we have exp(z + w) = exp(z) exp(w).

COROLLARY 2.59. For x € R we have exp(z) = €”.

Motivated by this corollary, we shall write e* for exp(z) for any z € C.
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3. TOPOLOGY AND CONTINUITY

3.1. Continuous functions

DEFINITION 3.1. A function f : R — R is continuous at xg € R if for all € > 0 exists § > 0
s.t. [f(x) — fzo)| < eif |z —xo| < 0.

ExXAMPLE 3.2. The function

r4+2,  ifr<-—1:
f:R—R, 2+ < 22 if —1<z<2;
—r 47, if2<ux.

is continuous at any point zo in R\ {2} and discontinuous at xy = 2.

REMARK 3.3. Continuous functions have some remarkable properties. Most prominently, the
intermediate value theorem and the maximum value theorem for real valued functions defined
on R state that given a continuous function f : [a,b] — R then exists ¢,d € R, such that

f([a,b]) = [c,d]. (See Corollary 3.61.)

This theorem can be generalized to metric spaces: If X is a compact and connected metric
space, and [ : X — Y is continuous, then f(X) is compact and connected. In case of Y = R
we get immediately f(X) = [c,d] for some ¢,d € R since closed intervals are the only subsets
of R which are both, compact and connected. Well, we need some new vocabulary.

DEFINITION 3.4. Let (X,dx) and (Y,dy) be metric spaces. A function f : X — Y is
continuous at rg € X, if for alle € R > 0 exists § > 0s.t. dy(f(z), f(xg)) < e if dx(xo, ) < 9.

DEFINITION 3.5. Let (X, dx) be a metric space, g € X, and r € RT. The open [respectively
closed] ball in X of center zy and radius r is the set

B.(zg) = {re X :dx(zo,z)<r}CX
[resp. BEo* = {r € X :dx(zo,2) <71}

We shall also refer to the open ball B,.(zq) as r-neighborhood of x.

THEOREM 3.6. Let (X, dx) and (Y, dy) be metric spaces, and let f: X — Y, and 2o € X. f
is continuous at zg if and only if for all € > 0 exists 6 > 0 s.t. f(Bs(zo)) C B:(f(x0)).

THEOREM 3.7. CAUCHY—-SCHWARZ INEQUALITY.
Let ai,...,an,b1,...,b, € C. Then

n

Z aib_i

=1

2 n n
<D _lal* ) 1P
i=1 =1

ExaMPLES 3.8. Examples of metrics dy, di, ds, ds, on R™. Describe respective balls.
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THEOREM 3.9. If f: (R",d,;,) — (R™,dj,) is continuous at z, € R" for some iy, jo € {1, 2, 00},
then f: (R",d;) — (R™,d;) for any i,j € {1,2, 00}.

REMARK 3.10. Obviously, continuity does depend on the metric of choice. Nevertheless,
different metrics (not all) lead to the same concept of continuity. We shall now extract the
essence of continuous functions between metric spaces which will lead to a whole new class of
spaces, namely topological spaces.

DEFINITION 3.11. Let (X, d) be a metric space. U C X is called (metric-) open if for each
xg € U exists € > 0s.t. Bo(xg) CU. Aset AC X is called (metric-) closed if its complement
A° is (metric-) open.

We should check consistency of our vocabulary. We did define open balls before defining
open sets.

THEOREM 3.12. Let (X, d) be a metric space, then open balls are (metric-) open.

PROPOSITION 3.13. U is open in (R", dy,) if and only if U is open in (R", d;) if and only if U
is open in (R, dy).

THEOREM 3.14. f : (X,dx) — (Y,dy) is continuous on X if and only if f~!(U) is open in
(X,dx) for all U open in (Y,dy).

THEOREM 3.15. Let {U;,7 € I} be a family of (metric-) open sets in (X, d). Then
i. U;NU; is open in (X, d) for any i, j € 1,

ii. U U; is open in (X, d), and

iel

iii. 0, X are open.

Let us now provide a very important and useful result for the understanding of open sets
in subspaces of metric spaces. This result will be used extensively when discussing connected
subsets of metric spaces.

THEOREM 3.16. INHERITANCE PRINCIPLE. Let (X, dx) be a metric space and A C X. Then
(A,da) becomes a metric space when setting d4 = dx|axa, that is, da(a,b) = dx(a,b) for
a,b € A. Further, the following hold:

i. BC Aisopenin (A,dy) if and only there exists B open in (X, dx) such that B = AN B.
ii. B C Aisclosed in (A4, dy) if and only there exists B closed in (X, dx) such that B = ANB.

iii. B C Ais clopen (closed and open) in (A, d4) if there exists B clopen in (X, dx) such
that B= AN B.
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3.2. Topological spaces

Theorem 3.15 provides all properties of metric spaces needed to extend the concept of continuous
maps on metric spaces to maps between more general spaces. We shall use these properties to
define topological spaces.

DEFINITION 3.17. Let X be any set and let T be a collection of subsets of X with

i. UUGTifSQT
Ue 8

ii. ﬂ U e Tif 8§ CT with 8 is a finite set
Ue 8

iii. X,0eT

Then we call T a topology on the topological space X, the members U of T are called (topology-)
open .

ExAMPLE 3.18.

i. Any set X becomes a topological space when choosing the trivial topology T = {0, X }.
This topology is also called indiscrete topology.

ii. Any set X becomes a topological space when choosing as topology the powerset of X,
that is, 7 = P(X). This topology is also called discrete topology .

iii. The metric open sets in a metric space (X, d) form a topology on X (see Theorem 3.15).
This topology is induced by the metric d and we denote it by T;.

iv. Note that for any set X and discrete metric dy on X, (iz) and (4i) lead to the same
topology, that is, Ty, = P(X). This is easy to see since in (X, dy) (dy denotes the discrete
metric) we have that By(z) = {z} for any z € X. Hence, all singletons (sets with only
one element) are open and any S € P(X) is open since it can be written as union of open
sets, for example, S = U{x}

z€eSs

REMARK 3.19. Recall that, using those properties of (metric-) open sets in a metric space
(X, d) that the concept of continuity is based on, we introduced a new family of spaces which
is custom made to study continuous maps.

Many properties of metric induced topologies now serve as defining properties when dealing
with general topological spaces. E.g., given a topological space (X, T) and a subset A in X, we
can equip A with the so called relative topology T4 = {ANU : U € T} to obtain a topological
space (A, T4). (Compare to the inheritance principle, Theorem 3.16.)

By virtue of Theorem 3.14 we can extend the concept of continuous maps to general topo-
logical spaces:

DEFINITION 3.20. Let (X,7), (Y,J) be topological spaces. A function f: X — Y is called
continuous if f~H(V) e T forall V e F.
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THEOREM 3.21. Let (X,7), (V,F), and (Z,8) be topological spaces and f : X — Y and
g:Y — Z be continuous. Then go f: X — Z, z+ go f(x) = g(f(x)) is continuous.

Proof. For U € 8§ we have g *(U) € F since g is continuous and (go f)~1(U) = f~1(¢7*(U)) €
T since f is continuous. Hence g o f continuous U

In the mathematical discipline topology, one studies whether two topological spaces X and
Y have “identical topologies”, that is, whether there exists a continuous, bijective map which
maps open sets to open sets (that is, f~! (which exists and is defined on all of Y since f is
bijective) is continuous as well).

DEFINITION 3.22. If f : X — Y is bijective and continuous, and if the function f~!: Y — X
is continuous as well then we call f a homeomorphism.

DEFINITION 3.23. The topological spaces (X, T) and (Y, F) are called homeomorph if there
exists a homeomorphism f: X — Y.

DEFINITION 3.24. A sequence (z,) in the topological space (X, T) converges to zo in (X,7),
if for all U € T with g € U there exists Ny € Ns.t. z, € U if n > Nj.

Our back is covered:

THEOREM 3.25. A sequence (z,,) converges to xy in the metric space (X, d) if and only if =,
converges to xy in the topological space (X, Ty).

EXAMPLE 3.26. The function
[:00,2r) — Rp={2€C:|z| =1} CC, x> cos(x)+ isin(z)

is continuous, 1-1, surjective, and continuous, but f~! is not continuous at 1 = cos(0) + i sin(0).
Hence, f is not a homeomorphism. (We shall define cos and sin in Section 4.3. At this point
of time, we only assume High—School knowledge of trigonometric functions.)

To see this, observe that lim cos(2r — 1) +isin(2r — 1) = 1, but its image under f! is the

sequence (f~(cos(2m — ) + isin(2mr — %)))n = (27 — %)n which does not converge in [0, 27)

In fact, we shall see later that [0,27) and Ry = {z € C : |2| = 1} are not homeomorphic,
that is, there exist no homeomorphism f : [0,27) — {z € C: |z| = 1}.

ExAMPLE 3.27. In the following table we shall consider sequences in R where R is equipped
with different topologies.

T, = P(R) T ={0,R} T
rp, =1, VneN lim z, =1 lim x, =z for any x € R lim z, =1
Yn = %, Yn e N | (y,) drz;ego not converge nfr;o Yy, =y for any y € R nl?rilo Ynp =0
zn =n, VYn € N | (z,) does not converge nl?rflo 2, =z for any z € R | (z,) d%zgo not converge
u, = (1+ )" | (u,) does not converge Elzr)r;:un = u for any u € R ,}1_{20(1 + )" =e

The ambivalence in column T = {(), R} is only possible since the topology is not induced by
a metric on R. (We have shown earlier that a sequence in a metric space can only converge to
one point.)
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DEFINITION 3.28. A subset A of a topological space (X, T) is called closed if A = X\ A €T,
that is if AY, the complement of A, is open.

THEOREM 3.29. Let (X, d) be a metric space, then A is closed in (X, T,) if and only if given
any sequence (z,) in A with z,, — 2o € X then automatically zy € A.

REMARK 3.30. The characterization of closed sets in metric spaces in Theorem 3.29 does not
hold in general topological space.

Continuity at a point zp € X can be described in numerous ways.

THEOREM 3.31. Let (X,dx),(Y,dy) be metric spaces, g € X, and f : X — Y. The
following are equivalent:

i. The function f is continuous at xg, that is, for all ¢ > 0 exists some § > 0 such that

d(xg,x) < ¢ implies d(f(xg), f(z)) < €.
ii. For all € > 0 exists some 6 > 0 such that f(Bs(zo)) C B:(f(x0))-

iii. For all sequences (x,) in X with lim x, = xy we have lim f(x,) = f(xo).

n—oo

iv. For all open sets U in Y with zq € U exists V open in X with f(V) C U.

THEOREM 3.32. Let (X,dx), (Y,dy) be metric spaces and f : X — Y. The following are
equivalent:

i. The function f is continuous on X, that is for all zp € X and for all € > 0 exists some

d > 0 such that d(zo,z) < 0 implies d(f(zo), f(z)) < €.
ii. For all zyp € X and for all € > 0 exists some § > 0 such that f(Bs(zo)) C B(f(x0)).

iii. For all zp € X and for all sequences (z,) in X with lim z,, = z¢ we have lim f(z,) =

f(xo)-
iv. For all open sets U in Y we have f~!(U) is open in X.
v. For all closed sets A in Y we have f~!(A) is closed in X.

DEFINITION 3.33. Let (X, T) be a topological space and let A C X.

i. The interior A° of A is given by A° = U U.
UCA
UeT

ii. The closure A of A is given by A = ﬂ C.

CDA
Cclosed

iii. The boundary dA of A is given by 94 = AN AC.
iv. A’ denotes the set of all cluster points, that is

A" ={zy € X s.t. there exists a sequence (z,) in A with lim z,, = 2o and z,, # z¢}.

n—oo
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3.3. Compactness

Even though the concept of compact and connected sets and spaces are of topological nature, we
shall restrict our treatise to metric spaces (which certainly are just a special breed of topological
spaces. )

DEFINITION 3.34. Let A be a subset of a metric space (X, d) and let U and V be collections
of subsets of X.

i. The family U is a covering of A if A C U U.
Ueu

ii. The family V is a U-subcovering of Aif V C U and A C U U.
UeV

iii. A family of sets U is called open if all U € U are open

iv. The family U is finite if U consists of finitely many sets (which in turn might contain
infinitely many elements of X.)

DEFINITION 3.35. A subset A of a metric space (X, d) is called (covering-) compact if every
open cover U of A contains a finite U-subcover V.

ExAMPLES 3.36.

i. Any finite set is compact.
ii. The set {+: n € N} is not compact.
iii. The set {X: n € N} U{0} is compact.
iv. In general, let (z,,) be a converging sequence in the metric space (X, d). Then

{z,: neN}U{lim z,} is compact.
n—oo

v. The open interval (0,1) C R is not compact in (R, ds), since U = {(2,1)} is an open
cover of (0,1) which contains no finite U-subcover.

DEFINITION 3.37. A subset A in the metric space (X, d) is sequentially compact if any sequence
(a,) in A has a subsequence (a,, ) with klim an, = ap and ag € A.
—00

One of the main goals of this section is to prove that in metric spaces sequentially com-
pactness and covering compactness are the same, that is, a set A is sequentially compact if and
only if A is covering compact. Be aware that this theorem does not hold in general topological
spaces.

Before proving this theorem, we shall discuss some consequences of compactness.

THEOREM 3.38. Let (X, d) be a metric space and A C X be compact. If B C A is closed in
X, then B is compact. Shortly: closed subsets of compact sets are compact.
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THEOREM 3.39. Any compact set A in (X, d) is bounded, that is, compact sets are bounded.

THEOREM 3.40. Any infinite subset B of a compact set A in (X, d) has at least one cluster
point in A.

THEOREM 3.41. Any compact set is closed.

Theorem 3.41 combines with Theorem 3.39 to the statement that compact sets are closed and
bounded. Does the converse hold? It would be nice, we would get a criterium for compactness
which is easy to check. Sadly, the converse does not hold in general (see Remark 3.49, but it
does hold in euclidean space, that is, R".

To prove the main result of this chapter, we need to introduce the concept of a Lebesgue
number.

DEFINITION 3.42. Let U be a covering of a set A in the metric space (X,d). Any number
A > 0 with the property that for all a € A exists U € U such that By(a) C U is called Lebesgue
number for the covering U of A.

LEMMA 3.43. Let U be an open covering of a sequentially compact set A in the metric space
(X,d). Then exists a Lebesgue number A > 0 for the covering U of A,

Proof. Assume there is an open cover U = (U;);e; of X without a Lebesgue-number, that is
for all n € N we can choose some x,, € X such that for all Bi(z,) € U; for all i € I.

Since A is sequential compact, we can extract a convergent subsequence (z,, )i of (z,) and
set z¢ := limy z,, € X. Since U is a covering, we have zy € U,, for some iy € I. Since U, is
open, there is an n € N such that Bi(zg) C U,,.

Pick K € N such that K > 2n and d(z,,,20) < 5. We have B (z,,) C Bi(xo) since
nK n

d(x, Tp,,) < 5= implies d(zo, ) < d(xo, Tpy ) + d(Tny — ) < 52 + 52 = +..

n

We conclude that B_1 (z,,) € Bim(xo) C U, a contradiction. O
K

Now we shall provide the main result of this chapter.

THEOREM 3.44. Let (X, d) be a metric space. A set A C X is sequentially compact if and
only if it A is covering compact.

Proof. Suppose A is covering compact. Let (x,) be an arbitrary sequence in A. We have to
find a convergent subsequence.

Cover A with balls of radius 1. Since (by covering-compactness) finitely many of them
suffice, we throw away all but finitely many of them. Now among the remaining finitely many
balls there has to be at least one ball containing z,, for infinitely many values of n. Let us call
this ball B;. Let n; be an index such that x,, is contained in Bj.

Now we do the same thing again: cover the set B; N A, which is a covering-compact set,
with (finitely many!) balls of radius %; one of them, which we call By, must have the property
that By B; is visited infinitely often by the sequence. Choose ny > ny such that x,, € BoNB;.

Now continue with By and radius }L to construct B3 and n3 and continue the process.
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Set C,, = ﬂZ:l B N A and observe that sequence X O C7 O Cy D .... Since the nested
intersection of compact sets whose diameter tends to zero is a single point zy € A (check!), we
get by construction, x,, — xy. Since A is closed, we have x € A.

Let us now suppose that A is sequentially compact. Let U = (U;);e; be an arbitrary open
cover. We want to show that U admits a finite subcover. By Lemma 3.43, this cover has a
Lebesgue-number A > 0: every « € X has an ¢ = i(z) such that By(x) C Uy(y).

Choose any x; € X. Then either U; := Uj(,,) covers X and we are done. Otherwise choose
any o € X\ U and set U; := Uj(s,). Again, either U; UU, already covers X and we are done, or
we can choose z3 € X \ (U UUs) and so on. Either X is covered after a finite number of steps,
or this construction produces an infinite sequence (x,) in X. However, this sequence has no
convergent subsequence, because for all m # n, d(z,,,x,) > A. Hence this case is impossible.
O

LEMMA 3.45. For a < b we have [a,b] is compact in R. (Recall, if not specified we let d = d
in R™.)

LEMMA 3.46. Let A be compact in (R",d;) and B be compact in (R™,d;), i,j € {1,2,00}.
Then A x B is compact in (R"™™ dy), k = 1,2, c0.

Proof. Since the topology on (R™,d;), (R™,d;) and (R"*™ dj) does not depend on 4, j, k €
{1,2, 00}, we may assume that i = j =k = 1.

For ((:I:n,yn))neN we have lim (x,,y,) = (2o, y0) in (R™*™ dy) if and only if lim z, = xg

n—oo

(R",dy) and lim y, = yo and (R™, dy), since di((zn, yn), (0, %0)) = di(2n,70) + di (yn, 0

Let ((ay, bn))ne ~ Pbe asequence in Ax B. We shall construct a subsequence of ((an, b"))ne N
which converges in A X B.

Using sequential compactness of A, we choose a subsequence (ay, )ren of (an)ne n Which
converges to ay € A. Similarly, we pick a subsequence (bnkl)leN of (by, )keny Which converges

to by € B. The subsequence ((ankl,bnkl))leN of ((an,bn))neN obviously converges to (ag,by) €
A x B. O

THEOREM 3.47. Any set of the form [ay, b] X [ag, ba] X ... X [an, b,] C R™ are compact.

Proof. Proof by induction using Lemma 3.46. OJ

THEOREM 3.48. (HEINE-BOREL.) Consider the metric space R™ equipped with one of the
standard metrics dq, dy or doo. Any A C R™ is compact if and only if A is closed and bounded.

Proof. Tf A is bounded it is contained in some set of the form [ay, b1] X [ag, be] X . .. X [an, by C
R"™ which is compact by Theorem 3.47. Since A is therefore a closed subset of a compact set,
we have A compact by Theorem 3.38. 0
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REMARK 3.49. The continuous functions

1, forxgﬁﬂ
fa:0,1] — R, z— (¢ —nn+Lz+n+1, for = <z<i

0, for%<x<1

in C([0, 1]) have the properties d(f,., fm) = 1 if n # m and d(f,,,0) = 1. Theset A={f,, n¢€
N} C By(0) is bounded in C([0,1]) and closed, since any convergent sequence in A converges
to a limit in A (there are no convergent sequences in A). But A is not compact, since the open

covering
U= (B, (fu)}
contains no finite U-subcovering of A.
As additional example let us consider R with the discrete metric and A = (0,1), or R with
the metric dy : (z,y) — 1%&’52) and A = R™. In both cases A is bounded and closed but not
compact.

THEOREM 3.50. A compact metric space (X, d) is complete.

THEOREM 3.51. Let (X,dx) be compact, and f : (X,dx) — (Y,dy) be continuous. Then
Ry = f(X) is compact in (Y,dy).

To appreciate compactness some more, let us visit a stronger form of continuity.

DEFINITION 3.52. Let (X,dx) and (Y,dy) be metric spaces. A function f : X — Y is
uniformly continuous on X, if for all e € R > 0 exists § > 0 s.t. dy(f(x), f(y)) < e for all z,x
with dx<I,:f) < 0.

This is obviously equivalent to Ve > 03¢ > 0s.t. Vo € X f(Bs(x)) C B.(f(x)).
PROPOSITION 3.53. Any uniformly continuous function f : (X,dx) — (Y, dy) is continuous.

EXAMPLE 3.54.

i. f:R— R, x+ 2z is uniformly continuous.

ii. f:RT — R, z+— % is continuous but not uniformly continuous.

THEOREM 3.55. Any continuous function defined on compact metric spaces is uniformly
continuous. That is, given a compact metric space (X,dy) and continuous f : (X,dy) —
(Y,dy), then f is uniformly continuous as well. (See homework problem 11.2.)
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3.4. Connectedness

Again, we constrain ourselves to metric spaces.

DEFINITION 3.56. A metric space (X, d) is connected if X and () are the only clopen, that is,
open and closed, subsets of X.

A separation of a metric space (X,d) is a pair of nonempty open subsets U,V C X with
X=UUVand0=UnNYV.

Any subset A of the metric space (X,d) is connected if the metric space (A, d|axa) is
connected.

PROPOSITION 3.57. A metric space (X, d) is connected if and only if there exists no separation
of X.

The most important result of this section is fairly elementary:

THEOREM 3.58. If (X,d) is connected and f : (X,dx) — (Y, dy) is continuous, then Ry =
f(X) is connected.

REMARK 3.59. Using the fact that images of compacts under continuous transformations are
compact and that images of connected sets under continuous transformations are connected,
we can easily see that none of the sets

i [0,1] CR

ii. [0,1)CR

iii. S'={2z€C: |2|=1}inC

iv. The 8set S'U{z€C: [z —2i|=1}inC

is homeomorphic to another set in the list.

THEOREM 3.60. Let us consider the real line R with metric dq, do, and d.,. The following are
equivalent:

i. The set A C R is connected.
ii. For any a,b € A C R and any ¢ € R with with a < ¢ < b we have ¢ € A.

ili. The set A C R is a (possibly unbounded) interval.

That is, connected sets in R are exactly intervals and vice versa.

COROLLARY 3.61. Let f : [a,b] — R be continuous. Then exists ¢,d € R with f([a,b]) =
[, d].
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THEOREM 3.62. (INTERMEDIATE VALUE THEOREM.) Let (X, d) be connected and f : X —
R be continuous. Given any x1,z in X and ¢ € R with f(z1) < ¢ < f(x2), then exists z € X
with f(x) =c.

THEOREM 3.63. Let S;, i@ € I be a family of connected sets in a metric space (X,d). If
ﬂ S; # 0, then U S; is connected.

icl icl

EXAMPLE 3.64. Open and closed balls in (R",d;), i = 1,2, 00 are connected. To see this, let
A be an open or closed ball in (R", d;,), for some ig € {1,2,00}. For x € A consider

fe:[0,1] — R™, t—tz+ (1 —t)x.

The functions f, are continuous and their ranges Ry, are therefore connected. The result follows
from Theorem 3.63 since

A=JRy, and ([ Ry, ={z} #0.

z€A z€A
DEFINITION 3.65. A metric space (X, d) is called totally disconnected if for each x € X and

€ > 0 exists a clopen set A in X with z € A C B(x).

ExXAMPLE 3.66. Cantor’s middle third set is an uncountable set which is totally disconnected.
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3.5. Sequences of functions, uniform convergence

In this section we shall discuss in detail the metric space C'(X) of continuous, complex valued
functions defined on a compact metric space X.

The metric on C'(X) has been discussed in numerous homework problems.

DEFINITION 3.67. Let (X,dx) be a metric space and let B(X) be the set of all bounded,
complex valued functions on X, that is,

B(X)={f:X — C: for f exists M € R" such that |f(z)| < M for all z € X }.
On B(X) we can define the metric
doo(f,9) = sup{[f(z) = g(x)| : = € X}.

The set of continuous, complex valued functions on X is denoted by C'(X). Note that (X, d)
being compact implies that all continuous functions defined on X are bounded and we have
C(X) C B(X), and, therefore, C'(X) inherits the metric do, from B(X).

DEFINITION 3.68. Let (X, dx) and (Y, dy) be metric spaces and let f, : X — Y, n € N be
a sequence of functions mapping X to Y.

The sequence (f,)nen converges pointwise to fo : X — Y, if lim f,(x) = fo(z) for all
x € X, that is, if lim dy(f.(z), fo(z)) for all x € X.
The sequence (f,,)nen converges uniformly to fo: X — Y if for all € > 0 exists N € N

such that
dy (fu(z), fo(x)) <e forall x € X and for all n > N.

That is
JLI{,IOSUP {dy(fu(z), fo(z)): v € X} =0.

PROPOSITION 3.69. The sequence (f,) converges in (B(X),dx) to fo if and only if (f,)
converges to fy: X — C uniformly.

THEOREM 3.70. Let (f,) be a sequence of continuous functions in (B(X), dy ) which converges
to fo. Then fy is continuous and for any sequence (zy) in X with klim T = To we have

lim lim f,(xx) = fo(zo) = lim lim f,(x).

n—oo k—oo k—o00 n—o00

COROLLARY 3.71. If (X, d) is compact, then C(X) is a closed subspace of B(X).

Proof. Since (X,d) is compact we have f(X) is compact and therefore bounded for any
continuous f : X — C. Hence C(X) C B(X) and, by Theorem 3.70 we have C'(X) closed in
(B(X), doo). O

THEOREM 3.72. Let (X, d) be a compact metric space. Then (C'(X),dw) is a complete metric
space.
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4. DIFFERENTIATION
4.1. Central results

In this section, we shall discuss derivatives of real valued functions defined on subsets of R.
Our main objective is to illuminate the interplay of continuity and differentiability.

To define derivatives of real valued functions, we shall analyze so—called difference quotients.
The discussion of such requires the following definition of functional limits.

DEFINITION 4.1. Let (X,dx) and (Y, dy) be metric spaces and let f map X to Y. If z is a
cluster point in X, we write f(z) — yo as * — xo or lim f(z) = yo if yo € Y and if for any
T—x0

e > 0 exists § > 0 such that dy (f(z),yo) < € whenever 0 < dx(x,z¢) < §. The point yy € Y is
called functional limit of f as x approaches xy.

REMARK 4.2. If we restrict ourselves to cluster points, we could rephrase previous results
using functional limits. E.g., we have:

i. If z is a cluster point in (X, dx), then lim f(z) = yo if and only if for all sequences (z,,)
r—x0

in X with x,, # xo, n € N, we have lim f(z,) = yo.

n—oo

ii. Let (X,dx) and (Y, dy) be metric spaces, let f map X to Y, and let = be a cluster point
in (X,dx). Then lim f(x) = f(zo) if and only if f is continuous at x.
T—T0

iii. For U open in R we have U’ D U, hence, the restriction to cluster points will not play a

role in the following discussion of derivatives. By the way, any set A in a metric space
(X, d) with A = A’ is called perfect.

DEFINITION 4.3. Let A C R and f: A — R. We say that f is differentiable at a cluster
point z¢ in A, that is, at zo € AN A’, if

o @) = flwo)

Tr—T0 T — x‘o

=L

for some L € R. In this case L is called derivative of f at zo and we write f'(zo) = L. If
A C A" and f is differentiable at = for all € A, then we call f differentiable on A.
f(zo +h) = f(xo)
h
In order to avoid “cluster point” disclaimers, we shall mostly restrict ourselves to consider
open sets U as domains of differentiable functions. Open subsets of R have the property that
all its elements are cluster points.

= L.

Further, we have that f’(z¢) = L if and only if ]llin%

EXAMPLE 4.4. For exp: R — R, 2+ Y "~ we have exp/(z) = exp(a).
n!
n=0

Differentiable functions are continuous:

THEOREM 4.5. For U open in R and f : U — R differentiable at zy € U we have f continuous
at xg.
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THEOREM 4.6. (SUM, PRODUCT, AND QUOTIENT RULE.) Let U be open in R and f,g :
U — R be differentiable at o € U. Then

i. f+ g is differentiable at z and (f + g)'(xo) = f'(x0) + ¢’ (x0).
ii. fg is differentiable at ¢ and (fg) (xo) = f'(z0)g(z0) + f(z0)g (o).

0) — f(z0)g' (7o)
9(x0)? '

/ /
iii. If g(xg) # 0, then g is differentiable at o and <i> (1g) = J'(wo)g(
g

THEOREM 4.7. (CHAIN RULE.) Let U,V be open in R and f : U — V be differentiable at
g € U and g : V — R be differentiable at f(z¢) € V. Then g o f is differentiable at zy and

we have (g o f) (xg) = ¢'(f(x0)) [ (x0).

2" sin ( ) ifx#0
0 ifx=20
0,1,2,3, is continuous and differentiable on R\ {0}, and its derivative is a continuous function

on R\ {0}.

ExXAMPLES 4.8. For n = 0,1,2,3 set f,(z) = . Note that f,, n =

i. fo is not continuous at 0.
ii. f; is continuous at 0 but not differentiable at 0.
iii. fy is differentiable at 0, and, hence, on R, but its derivative f} is not continuous at 0.

iv. f3 is again differentiable on R and its derivative f} is continuous on R.

THEOREM 4.9. INTERIOR EXTREMUM THEOREM. Let U C R be open and f : U — R be
differentiable on U. If there exists a maximum [resp. minimum] of f at ¢, then f’(c) = 0.

THEOREM 4.10. ROLLE’S THEOREM. Let b > a, and f : [a,b] — R be continuous and
differentiable on (a,b). If f(a) = f(b), then exists ¢ € (a,b) such that f'(c) = 0.

THEOREM 4.11. MEAN VALUE THEOREM. Let b > a, and f : [a,b] — R be continuous and
differentiable on (a,b). Then exists ¢ € (a,b) such that f'(c) = f(bl)) fa)

THEOREM 4.12. GENERALIZED MEAN VALUE THEOREM. Let b > a, and f, g : [a,0] — R
be continuous and differentiable on (a, b). Then exists ¢ € (a,b) such that (g(b) — g(a))f'(c) =

(f(b) = f(a))g'(c).
Proof. Apply Rolle’s theorem to h(z) = (g(b) — g(a))f(z) = (f(b) — f(a))g(x), z € [a,b]. O
We have seen that not all functions which are differentiable on an open interval have con-
tinuous derivatives. Nevertheless, they do not have ” jump—discontinuities:

THEOREM 4.13. DARBOUX’S THEOREM. Let f : (a,b) — R be differentiable. Then the
function f’ : (a,b) — R has the intermediate value property, that is, for u,v € (a,b) and

¢ € Rwith f(u) < & < f'(v) exists ¢ € (min{u, v}, max{u,v})) with f'(c) = .
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DEFINITION 4.14. A function f: A — R is

i. monotonically increasing, or simply increasing, if f(x) < f(y) for all z,y € A, with x <y

ii. strictly monotonically increasing, or simply strictly increasing, if f(z) < f(y) for all
r,y € A withx <y

iii. monotonically decreasing, or simply decreasing, if f(x) > f(y) for all z,y € A, with x < y,
and

iv. strictly monotonically decreasing, or simply strictly decreasing, if f(x) > f(y) for all
x,y € A, with z < y.

A function is called monotone if it is either monotonically increasing or decreasing, and strictly
monotone if it is either strictly increasing or strictly decreasing.

THEOREM 4.15. Let f : (a,b) — R be differentiable. Then f is

i. monotonically increasing if and only if f'(z) > 0 for all = € (a,b), and

ii. monotonically decreasing if and only if f/(x) < 0 for all € (a,b).

EXAMPLE 4.16. Discussion of 2", n € Ny, including the remark that f(z) = 2 is strictly
increasing on R but f/(0) = 0.

THEOREM 4.17. Let f : [a,b] — R be continuous and strictly monotone. Let [c,d] = f([a, b])
and ¢ : [c,d] — R be the inverse function of f. If f is differentiable at o € (a,b) with

f'(z0) # 0, then ¢ is differentiable at yo = f(zo) € (¢, d) and ¢'(yo) = f/(lxo) - f/(¢1(y0))'

DEFINITION 4.18. INFINITE LIMITS AND LIMITS AT INFINITY. Let f: A — R, ACR
and let 2o, L € R* = RU {400, —0c0}. For € > 0, we call (%, o0) an e-neighborhood of co and
(—00, —1) an e-neighborhood of —oc.

Further, we say that f(x) — L as x — a or f(x) approaches L as x approaches z, if for all
e > 0 exists a 0 > 0 with

g€ A CR: O0<|z—x9| < f(z) € Be(xo), if L € R;
or Ty = 00 : xo >3 o with z € Aimplies ¢ f(z) € (£,00) if L = oc;
or Xy = —00 : To < —3 f(z) € (—o0,—1), if L =—o0.

THEOREM 4.19. L’HOSPITAL’S RULE Suppose that f and g are real valued differentiable
functions defined on (a,b) where a € RU {—o00} and b € R U {o0}, ¢'(z) # 0 on (a,b), and
f'(x)

— LeR"asz — a.

g ()
Iff(x)—>0andg(m)—>0as:v—>a,orifg(x)eooasxﬁa,then%—>L€R*as
g(x
T — a.

An analogous statement holds of course if z — b or if g(z) — —oo0.
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4.2. Taylor series

DEFINITION 4.20. HIGHER DERIVATIVES. For r € N we say that f : U — R, U open, has
an n-th derivative at xq if f© = f, fO = f @ = ¢ f0o=D = f=27 are defined on
(zo — €, 29 + €) for some ¢ > 0 and f™~ is differentiable at .

If f has an n-th derivative on U, that is, f has an n-th derivative at xq for all o € U, and
if f™ = f*=17 g continuous on U, then we write f € C™(U). If f € C*(U) for all n € N,
then we write f € C*°(U) and say f is called smooth.

Certainly, we shall also write C™(A) or C*°(A) if A has the property that all its members
are cluster points, that is, A C A’. For example, we could consider C*([0, 1]).

REMARK 4.21. Note that the notation described above is in accordance to the symbol C°(U) =
C(U) of continuous functions on U.

If U is an interval, for example U = (a, b) we shall write C"(a, b) rather than C"((a,b)).

THEOREM 4.22. TAYLOR'S THEOREM. Given f : (a,b) — R and n € N with f € C"(a,b)
and f™ defined (but not necessarily continuous) on (a,b). For z in (a,b) define the n — 1-th
degree Taylor polynomial as

n—1 (k) o
Pray(z) =) / k(' >(9: —x0)¥, € (a,b).

k=0

For any z € (a,b) exists a &, between x, and z such that

F™(&)

£(@) = Ppay(@) +

(x — x0)™.

REMARK 4.23. Taylor’s Theorem is used to compute approximate values of functions by means
of evaluating polynomials.

For example, if | f(™(£)| < M for all £ between x and x, then we have

F" (&)

n!

|f(x) = Pray(z)| =

n M n
(x — )" < H|m—m0|
For x being close to z( the right hand side, and, therefore, the approximation error are small.

COROLLARY 4.24. If f € C™(a,b) with f( (&) =0 for all £ € (a,b), then f is a polynomial of
degree at most (n — 1).

COROLLARY 4.25. If for f € C*(a,b) there exists M > 0 with |f™(&)| < M for all € € (a,b)
and n € N, then for any zy € (a,b), we have

) (1 )
fo =Y T ) e )
k=0 '
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DEFINITION 4.26. For f € C*(a,b) and zy € (a,b), call the formal power series

S F) (g
Tpo(e) =S L) (b e (a,b)

k!
k=0

Taylor series of f at xg.
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REMARK 4.27.

i. The radius of convergence of a Taylor series is not necessarily larger than 0.

ii. Even if the Taylor series of a function converges, it might not converge to the function.
12

e, forz#0 o iiofes f e C®(R), f™(0) = 0 for

0, else.

n € N and, therefore, T} has radius of convergence R = oo and Tyo(z) = 0 # f(z) for

x # 0.

For example, consider f(x) = {

THEOREM 4.28. Assume that (f,) is a sequence of functions which are differentiable on

(¢,d), and let [a,b] C (c,d). If an(x) converges at some z € [a,b] and Zf,;(x) converges
n=1

n=1

uniformly on [a, b], then Z fn(x) converges to a differentiable function, and

n=1

(2 fn($)> AL

Proof. Use Theorem 3.70. O
PropPOSITION 4.29. If f(z) = ch(m — 20)F for z € (a,b), then f € C®(a,b) and f®)(z) =
k=0
cx k! for k € N. Further, we have f'(z) = ch k(z — x)* ! for x € (a,b), that is, we can
k=1
differentiate the series of functions f term by term.
Proof. Use Theorem 4.28. U
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4.3. The exponential function and friends

e

NE
| ¥

The following theorem lists important facts regarding the exponential function exp(z) =

£
Il
o

z € C, some of which we stated and proved earlier.

THEOREM 4.30. THE EXPONENTIAL FUNCTION.
i. exp(z) = Z 77 converges absolutely for z € C.
k=0

il. exp(z + w) = exp(z) exp(w) for z,w € C.
iii. exp(z) =exp(1)* =¢€” for z € R.
iv. exp/(z) = exp(x) for z € R.
v. exp(z) > 0 for z € R and exp is strictly monotonically increasing.
vi. exp(z) — 0o as x — oo and exp(z) — 0 as © — —o0.
vii. exp : R — R™ is bijective.

:L.n

—0asxz — oo forallneN.
exp()

Viil.

DEFINITION 4.31. The inverse function of exp : R — R is called natural logarithm and is
denoted by log : R* — R.

PROPOSITION 4.32.

i. log(zy) = log(x) + log(y) for x,y € RT.
ii. The natural logarithm is a differentiable function with log'(z) = 1 for z € R*,

iii. For x > 0 we have 2% = exp(alog(z)) = 8@ and f : Rt — R, x + 2 is differentiable
with f/(z) = az® L.

iv. For a > 0 we have again a® = exp(rlog(a)) = e*5@ and g : R — R, z — a” is
differentiable with ¢'(z) = a” log(a).

Proof. ii. Use Theorem 4.17, iii. and iv. by chain rule. 0

DEFINITION 4.33. For a > 0, the function of g(z) : R — R™, z +— a” is bijective and its
inverse is called logarithm to base a. We shall denote g~! by log, : R* — R.

After discussing the behavior of the restriction of the function exp : C — C to the
real axis R, that is, exp : R — C, we shall now consider its restriction to the imaginary
axis IR C C. Once we described its properties, we fully understand exp : C — C since
exp(a + bi) = exp(a) exp(bi) for a,b € R.

We shall study exp : iR — C by studying its real and imaginary part.
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DEFINITION 4.34. We define the sine function sin : R — R by setting sin(z) = Imexp(ix)
for x € R and the cosine function cos : R — R by setting cos(x) = Reexp(iz) for x € R.

For convenience, we shall write cosz for cos(x), sinz for sin(z), cos™ z for (cos(z))", and
sin” z for (sin(z))", for z € R and n € N.

THEOREM 4.35.

00
l’2k+1

i. sinz = kzzo(—l)km for x € R.
g - L ok

ii. cosz = kZ:O(—l) )] for x € R.
iii. sin’ = cos and cos’ = — sin.

iv. sin?z +cos?xz =1 for x € R.

v. cos and sin are 27-periodic, that is, sin(z + 27) = sinx, cos(x + 27) = cosx, where 7 is
the smallest > 0 such that cosz = 0.

COROLLARY 4.36. exp : C — C is 2mi—periodic.

Proof. exp(z + 2mi) = exp(z) exp(27mi) = exp(z)(cos(27) + isin(27)) = exp(z) for z € C. O
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4.4. Fixed point theorems and approximative methods
DEFINITION 4.37. An element 2y € X is called fized point of f: X — X if f(xo) = zy.

DEFINITION 4.38. A contraction on a metric space (X, d) is a map f: X — X such that for
some constant k, 0 < k < 1, we have

d(f(x), f(y) < kd(z,y) for all z,y € X .

ProprosITION 4.39. Contractions are uniformly continuous mappings.

THEOREM 4.40. BANACH FIXED POINT THEOREM. If f : X — X is a contraction on a
complete metric space (X, d), then exists a unique fixed point xy € X, and for any choice of
x1 € X, the sequence (x,,) defined by

X1, T2 :f(‘rl)vxii :f(IQ) :f(f(xl)) :fof(xl)v"'axn-l-l :f(l’n); )
converges to xg. Moreover, we have

kn—l
1—k

d(zp, z9) < e d(zg, xp—1) <

S d(x9, 7).

THEOREM 4.41. NEWTON’S METHOD.? Let f be continuous on [a, b] and twice differentiable

n (a,b). If f(a) <0, f(b) >0, f'(x) >0 >0and 0 < f"(x) < M for x € (a,b), then exists
a unique point & € (a,b) with f(§) = 0. Moreover, for any z; with f(z1) > 0 the sequence
recursively defined by

n

converges to & and we have

2n

20 |M
_ < — | — _
‘ITL“rl £| — M 26 (xl 5)

THEOREM 4.42. Let f : [a,b] — R, a < b, be a differentiable function with f([a,b]) C [a,b]
and let ¢ < 1 such that |f'(z)| < ¢,Vo € D. For z; € [a,b] set x, = f(x,-1) for n > 1. Then
the sequence (z,) converges to the unique solution £ € D of the equation f(§) = ¢ and the
following inequalities holds:

n

|$1'—'$0L

q q
— dn < n - 4n— S
€ = @l £ T = 7] < 5

4We shall only give one of the many cases/versions of Newton’s method.
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