Analysis I — Problem Set 10 Issued: 12.11.07 Due: 20.11.07, noon

- 10.1. Compact sets. Let C_1, \ldots, C_n be compact sets in the metric space (X, d). Using the definition of covering compactness, show that $\bigcap_{i=1}^{n} C_i$ is compact.
- **10.2. The graph of a continuous function.** Consider $M \subseteq \mathbb{R}$ and a continuous function $f: M \longrightarrow \mathbb{R}$. (As usual, \mathbb{R} is equipped with the euclidean metric d_2 .)
 - (a) Prove that the graph $\Gamma_f := M \times f(M)$ of f is a closed subset of $M \times \mathbb{R} \subseteq \mathbb{R}^2$.
 - (b) Prove that if $M \subset \mathbb{R}$ is compact, then Γ_f is compact.
- 10.3. Complete, closed, and bounded does not imply compact. Consider the metric space $X := \mathbb{R}^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} : \forall n \in \mathbb{N} : x_n \in \mathbb{R}\}$ endowed with the metric $d_{\infty}((x_n), (y_n)) := \sup_n |x_n y_n|$.

Set $\mathbf{0} := (0, 0, \ldots)$. Show that the unit ball

$$D_1^X(\mathbf{0}) := \{x \in X : d_\infty(x, \mathbf{0}) \le 1\}$$

is closed, bounded, and complete, but not compact.

(*Hint:* It might help to consider a subset that is closed, but not compact, e.g. $\{0,1\}^{\mathbb{N}} \subset D_1^X(\mathbf{0})$.)

- **10.4. Uniform continuity.** Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be uniformly continuous. Show that there are constants $A, B \in \mathbb{R}^+$ such that $|f(x)| \leq A + B|x|$ for all $x \in \mathbb{R}$.
- **10.5.** Connectedness. Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty open subsets of X such that $X = U \cup V$. X said to be connected if there is no separation of X.

X is **disconnected** if it is not connected, i.e. if there exists a separation.

- (a) The unit interval [0, 1] is connected.
- (b) $\mathbb{R} \setminus \mathbb{Q}$ is disconnected.

10.6. Nice properties of functions with connected domain. Prove the following theorems.

- (a) Consider a connected metric space (X, d_X) and an arbitrary metric space (Y, d_Y) . Every *locally constant* continuous function $f: X \to Y$ is constant. (f is called locally constant if for each $x \in X$ there exists $\delta > 0$ such that f restricted to $B_{\delta}(x)$ is constant.)
- (b) Every polynomial $p : \mathbb{R} \to \mathbb{R}$ of odd degree has a zero. (*Hint:* $p(x) = \sum_{k=0}^{d} a_k x^k$ with $a_k \in \mathbb{R}, a_d \neq 0, d \text{ odd.}$)

- (c) Every continuous self-map of the unit interval has a fixed point: if $f : [0,1] \to [0,1]$ is continuous, then there exists $x \in [0,1]$ such that f(x) = x.
- 10.7. (Bonus problem)Completeness. Consider the space $\mathbb{R}^{\mathbb{N}}$ of all sequences of real numbers, i.e. $\mathbb{R}^{\mathbb{N}} := \{(a_n)_{n \in \mathbb{N}} : a_n \in \mathbb{R}\}$. Define the map

 $d: \mathbb{R}^{\mathbb{N}} \times \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}, ((a_n), (b_n)) \mapsto \frac{1}{2^k}$, where k is the smallest number such that $a_k \neq b_k$.

- (a) Show that d is a metric.
- (b) Consider now the subspace

$$S := \left\{ (a_n) \in \mathbb{R}^{\mathbb{N}} : \lim_{N \to \infty} \sum_{n=1}^N a_n < \infty \right\}$$

Decide whether S is complete or not. Prove your answer!

Hint: Consider the sequence
$$a^{(i)} = (a_n^{(i)})_{n \in \mathbb{N}} (i \in \mathbb{N})$$
, where $a_n^{(i)} = \begin{cases} 1 \text{ if } n \leq i \\ 0 \text{ if } n > i \end{cases}$, i.e. $a^{(i)} = (\underbrace{1, \dots, 1, 0, 0, \dots}_{i-times})$

10.8. (Bonus problem)Uniformly continuous functions and their extension. Let (a, b) be a subspace of the real line. Show that $f : (a, b) \longrightarrow \mathbb{R}$ is uniformly continuous if and only if f can be extended to a continuous function $\hat{f} : [a, b] \longrightarrow \mathbb{R}$ such that $\hat{f}|_{(a,b)} \equiv f$.