Fall Term 2007

Analysis I — Problem Set 12 Issued: 26.11.07 Due: 04.12.07, noon

12.1. Calculate $f^{(n)}(0)$ for $f : \mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto \begin{cases} e^{-\frac{1}{x^2}}, & \text{for } x \neq 0; \\ 0, & \text{for } x = 0. \end{cases}$ Recall that $f^{(n)}$ is the derivative of the function $f^{(n-1)}$, where $f^{(0)} = f$ and $f^{(1)} = f'$. (Tip: Use induction and L'Hospital.)

- **12.2.** Assume that (f_n) is uniformly convergent on $A \subset \mathbb{R}$ to the function f_0 . Assume moreover that x_0 is a cluster point of A and, $\lim_{x\to x_0} f_n(x) = f_n(x_0)$ for $n \ge N$, $N \in \mathbb{N}$.
 - (a) Prove that $\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} f_0(x).$
 - (b) Prove that if (f_n) is uniformly convergent on $(0, \infty)$ to the function f_0 and $\lim_{x\to\infty} f_n(x) = \alpha \in \mathbb{R}$ for $n \ge N$, $N \in \mathbb{N}$, then

$$\lim_{n \to \infty} \lim_{x \to \infty} f_n(x) = \lim_{x \to \infty} f_0(x).$$

(c) Assume that (f_n) is a sequence of functions which are differentiable on (c, d), and let $[a, b] \subset (c, d)$. If $\sum_{n=1}^{\infty} f_n(x)$ converges at some $x_0 \in [a, b]$ and $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly on [a, b], then $\sum_{n=1}^{\infty} f_n(x)$ converges to a differentiable function, and

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

- (d) Show that $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$ is differentiable on \mathbb{R} .
- **12.3.** Show that $f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx^2)}{1+n^3}$ is continuously differentiable on \mathbb{R} and write explicitly its derivative.
- **12.4.** Assume that $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f' is uniformly continuous on \mathbb{R} . Define a sequence of functions (f_n) via

$$f_n(x) = n(f(x + \frac{1}{n}) - f(x)), x \in \mathbb{R}.$$

Then f_n converges to f' uniformly.

12.5. Prove the following inequalities:

(a)
$$1 - \frac{x^2}{2!} < \cos x$$
 for $x \neq 0$,
(b) $x - \frac{x^3}{3!} < \sin x$ for $x > 0$,
(c) $\cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ for $x \neq 0$,
(d) $\sin x < x - \frac{x^3}{3!} + \frac{x^5}{5!}$ for $x > 0$.