Analysis I — Problem Set 2 Issued: 10.09.07 Due: 18.09.07, 12:00 am

2.1. Let $A \neq \emptyset$ be a set. Prove the following two statements:

- (a) Any partition $\mathcal{D} = \{D_i\}_{i \in I}$ of A induces on A the equivalence relation defined by $a \sim b$ if $a, b \in D_{i_0}$ for some $i_0 \in I$.
- (b) Any equivalence relation \sim on A can be used to define a partition \mathcal{D} of A.

Hence studying partitions is the same as studying equivalence relations.

- **2.2.** Let $(F, +, \cdot)$ be a field.
 - (a) Show that 0 is uniquely determined: there is only one neutral element under addition.
 - (b) For every $x \in F$, -x is uniquely determined: there is only one $y \in F$ with x + y = 0.
 - (c) Show that for every $x, y \in F$ we have 0x = 0; (-x)y = -(xy); (-x)(-y) = xy.
- **2.3.** Show that the following statements hold in an ordered field *F*. Remember $x > y : \Leftrightarrow (x \ge y \land x \ne y)$.
 - (a) If x > 0 then 0 > -x, and vice versa.
 - (b) If x > 0 and z > y, then xz > xy.
 - (c) If 0 > x and z > y then xy > xz.
 - (d) If $x \neq 0$ then $x^2 > 0$. In particular, 1 > 0.
 - (e) If y > x > 0 then 1/x > 1/y > 0.
- **2.4.** Show that \mathbb{Q} with the order $O_{\mathbb{Q}}$ on \mathbb{Q} given in class is an ordered field. Use the definition of \mathbb{Q} as equivalence classes with respect to the equivalence relation $R_{\mathbb{Q}}$.