Jacobs University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

Analysis I — Problem Set 3

Issued: 17.09.07 Due: 25.09.07, noon, Analysis Mailbox in Research 1

3.1. Prove that $\sqrt{2} \in \mathbb{R}$ by showing that $x \cdot x = 2$, where x = A|B is the cut in \mathbb{Q} with $A = \{r \in \mathbb{Q} : r \leq 0 \text{ or } r^2 < 2\}$, and $B = \mathbb{Q} \setminus A$.

The explicit use of Dedekind cuts is not necessary to solve any of the following problems.

- **3.2.** Let $r \in \mathbb{Q}$ be rational with $r \neq 0$ and $x \in \mathbb{R}$ be irrational. Show that x + r and rx are also irrational. Hint: Proof by contradiction.
- **3.3.** Let A and B be sets of real numbers, and set $A + B = \{a + b, a \in A, b \in B\}$, and $A \cdot B = \{a \cdot b, a \in A, b \in B\}$. Check whether the following is true for any A and B, defined above:
 - (a) $\sup(A+B) = \sup A + \sup B;$
 - (b) $\sup(A \cdot B) = \sup A \cdot \sup B$.

3.4. Rational Powers

(a) Let $m, p \in \mathbb{Z}$ and $n, q \in \mathbb{N}$ such that m/n = p/q =: r. For $b \in \mathbb{R}, b > 0$, set

$$b^r := (b^m)^{1/n}$$
.

Show that b^r is well-defined, i.e. show that $(b^m)^{1/n} = (b^p)^{1/q}$.

- (b) Justify why it makes sense to define b^{1/n}, n ∈ {2k + 1 | k ∈ N}, only for non-negative numbers b.
 Hint: Consider the expression (-8)^{1/3}.
- (c) Let $r, s \in \mathbb{Q}$. Show that $b^{r+s} = b^r b^s$ for b > 0.

3.5. Irrational Powers

(a) Fix $b \in \mathbb{R}$ with $b \ge 1$. For $x \in \mathbb{R}$ define $P(b, x) := \{b^t \mid t \in \mathbb{Q}, t \le x\}$. Prove that

$$b^r = \sup P(b, r) \quad \text{ for all } r \in \mathbb{Q}.$$

Hence it makes sense to define

$$b^x = \sup P(b, x)$$
 for all $x \in \mathbb{R}$.

(b) Prove that $b^{x+y} = b^x b^y$ for all $x, y, b \in \mathbb{R}$ with $b \ge 1$.