International University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

Fall Term 2007

4.1. Let $M \subset \mathbb{R}^+$ be uncountable. Show that for every $r \in \mathbb{R}$ there is a finite number of *different* elements $a_1, \ldots, a_n \in M$ of M such that

$$\sum_{k=1}^n a_k \ge r \; .$$

(*Hint:* Among the sets $M_N := \{a \in M : a \ge \frac{1}{N}\}, N \in \mathbb{N}$, there has to be an infinite one.)

4.2. Let $z = (1 + \sqrt{3}i)/2$.

- (a) Determine $|z|, z^{-1}, \overline{z}, z^n$ for $n \in \mathbb{N}$;
- (b) Let $T \in \mathbb{C}$ be the triangle with vertices a = 5, b = 6 + i, c = 7. What geometric objects do $z^n a$, $z^n b$, $z^n c$ for any $n \in \mathbb{N}$ form? Draw them into the complex plane, together with T and z;
- (c) Calculate $(1+i)^n + (1-i)^n \forall n \in \mathbb{Z}$. Why is the result always a real number?
- 4.3. Show that no order can be defined in the complex field which turns it into an ordered field.
- **4.4.** (a) Show that the map $d_{\infty} : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ $(x, y) := \sup\{ |x_i y_i| : i = 1, ..., n \}$ is a metric on \mathbb{R}^n .

(b) Let $X = \{ [a, b] \subset \mathbb{R} : a < b \}$ and $Y = \{ (a, b) \subset \mathbb{R} : a < b \}$ and

 $d([a,b],[c,d]) := \inf \left\{ \epsilon > 0 : [a,b] \subset [c-\epsilon,d+\epsilon] \text{ and } [c,d] \subset [a-\epsilon,b+\epsilon] \right\}.$

Are (X, d) and/or $(X \cup Y, \overline{d})$ metric spaces, where \overline{d} is the canonical extension of d onto $X \cup Y$?

- **4.5.** Find the limit of the sequence of complex numbers $z_n = \left(\frac{1+i}{2}\right)^n$, $n \in \mathbb{N}$. Sketch the sequence in the complex plane.
- **4.6.** Show that for every $c \in \mathbb{R}$ there is a sequence (a_n) of rational numbers with $a_n \to c$.