Analysis I — Problem Set 5 Issued: 01.10.07 Due: 09.10.07, 12:01 p.m.

- **5.1. Squeezing theorem.** Let (a_n) , (b_n) and (c_n) be three sequences of real numbers such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = b \in \mathbb{R}$ in (\mathbb{R}, d_2) . Show that $\lim_{n \to \infty} b_n = b$ in (\mathbb{R}, d_2) as well.
- **5.2. Fibonacci sequence.** Consider the sequence of real numbers which is inductively defined by $a_1 = a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n$ for $n \in \mathbb{N}$
 - (a) Does the sequence (a_n) converge in (\mathbb{R}, d_2) ?
 - (b) Show that the sequence (x_n) defined by $x_n = \frac{a_{n+1}}{a_n}$ for $n \in \mathbb{N}$ converges in (\mathbb{R}, d_2) and determine its limit.

5.3. Products of sequences. Let $(a_n), (b_n) \subset \mathbb{R}$ be sequences of real numbers so that

$$\lim_{n \to \infty} a_n = +\infty, \ \lim_{n \to \infty} b_n = 0.$$

The limit of the sequence of the products $(a_n \cdot b_n)$ can realize very different values depending on the sequences a_n , b_n . Find one example for each of the following cases:

- (a) $\lim_{n \to \infty} (a_n \cdot b_n) = +\infty;$
- (b) $\lim_{n \to \infty} (a_n \cdot b_n) = -\infty;$
- (c) $\lim_{n \to \infty} (a_n \cdot b_n) = 0;$
- (d) $\lim_{n \to \infty} (a_n \cdot b_n) = c$ where $c \in \mathbb{R}$;
- (e) $\lim_{n \to \infty} (a_n \cdot b_n)$ is bounded but does not converge;
- (f) $\lim_{n \to \infty} (a_n \cdot b_n)$ is unbounded but does not converge to either $+\infty$ nor $-\infty$.
- **5.4.** The distance from a point x in a metric space (X, d) to a nonempty subset $S \subseteq X$ is defined to be

$$\operatorname{dist}(x,S) = \inf\{d(x,s) : s \in S\}.$$

Show that there exists a sequence $(s_n)_{n \in \mathbb{N}}$ in S with $\lim_{n \to \infty} s_n = x$, if and only if $\operatorname{dist}(x,S) = 0$.

- **5.5.** Prove that the sequence $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ given by $x_1 = 1$ and $x_{n+1} = x_n + \frac{1}{x_n^2}$, for all $n \in \mathbb{N}$ is not bounded.
- 5.6. Bonus problem. Discuss the convergence of the real valued sequence given by

$$a_1 = 1, a_{n+1} = \frac{2(2a_n + 1)}{a_n + 3}$$
 for $n \in \mathbb{N}$.