International University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

Analysis I — Problem Set 7 Issued: 15.10.07 Due: 30.10.07, noon

7.1. Series.

- (a) Show that $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges in \mathbb{R} .
- (b) Calculate the limit of $\sum_{k=1}^{\infty} \frac{1}{4k^2 1}$.
- (c) Determine whether the series $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ is convergent or not.
- (d) Determine the limit of $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^2}$.
- (e) Determine the limit of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$.

In the last two problems you may use the fact that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

7.2. Radius of convergence. Find the radius of convergence of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n$$
, (b) $\sum_{n=0}^{\infty} \frac{2^n}{n^2} z^n$, (c) $\sum_{n=0}^{\infty} \frac{n^3}{3^n} z^n$

You may use the fact that $\lim_{n\to\infty}\sqrt[n]{n}=1$

- 7.3. Leibniz criterion (Alternating series test) Let (a_n) be a monotonically decreasing sequence with $a_n > 0$ and $\lim_{n\to\infty} a_n = 0$. The the series $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.
- 7.4. Approximation of Real Numbers. Show that for every real number $x \in (0, 1)$ there are integers $1 < n_1 < n_2 < \ldots$ such that

$$x = \sum_{k=1}^{\infty} \frac{1}{n_k}$$

7.5. (Bonus problem)Decimal expansions Prove that real numbers correspond bijectively to decimal expansions not terminating in an infinite string of 9's, as follows.

The decimal expansion of $x \in \mathbb{R}$ is $N.x_1x_2x_3...$ where N is the largest integer $\leq x, x_1$ is the largest integer $\leq 10(x - N), x_2$ is the largest integer $\leq 100(x - N - \frac{x_1}{10})$, and so on.

(a) Show that each $x_k, k \in \mathbb{N}$ is a digit between 0 and 9.

Fall Term 2007

- (b) Show that for each $k \in \mathbb{N}$ there is an $l \ge k$ such that $x_l \ne 9$. (So far we showed that our map from \mathbb{R} to decimal expansions not terminating in an infinite string of 9's is well defined.)
- (c) Conversely, show that for each such expansion $N.x_1x_2x_3,...$ not terminating in an infinite string of 9's, the sequence

$$\left(N + \sum_{k=1}^{K} x_k \cdot 10^{-k}\right)_{K \in \mathbb{N}}$$

converges to a real number x with decimal expansion $N.x_1x_2x_3...$ (This takes care of surjectivity and injectivity. Explain why!)

(d) Show that 0.9999999... = $\lim_{K \to \infty} \sum_{k=1}^{K} 9 \cdot 10^{-k} = 1.0000000...$ (The mapping defined above is injective only due to our restriction to decimal expansions not terminating in an infinite string of 9's.)