International University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

> Analysis I — Problem Set 8 Issued: 29.10.07 Due: 06.11.07, noon

8.1. Continuous Maps

(a) Let

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ 1/n & x = \frac{m}{n} \text{ coprime} \end{cases}$$

Prove that f is continuous exactly at all irrational points.

(b) Let

$$f: \mathbb{Q} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 0 & x > \sqrt{2} \\ 1 & x \le \sqrt{2} \end{cases}$$

Prove that f is continuous.

- 8.2. Continuous functions attain average values. Let $f : (a,b) \to \mathbb{R}$ be continuous. Prove that for any choice of points $x_1, x_2, \ldots, x_n \in (a,b)$, there is an $x_0 \in (a,b)$ such that $f(x_0) = \frac{1}{n}(f(x_1) + f(x_2) + \ldots + f(x_n)).$
- 8.3. Continuity and the limes inferior. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $(x_n)_{n \in \mathbb{N}}$ be bounded.
 - (a) Show that $\liminf_n f(x_n) \le f(\liminf_n x_n)$.
 - (b) Give an example for $\liminf_n f(x_n) < f(\liminf_n x_n)$.
- **8.4.** Metric spaces Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \to Y$. Prove that the following are equivalent:
 - (a) The function f is continuous.
 - (b) For all $x_0 \in X$ and for all sequences $(x_n)_{n \in \mathbb{N}}$ in X with $\lim_{n \to \infty} x_n = x_0$ we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.
- 8.5. Uniform convergence of power series. Let $D = \{z \in \mathbb{C}, |z| \leq 1\}$ be the unit ball in the complex plane and $X = \{f : D \to \mathbb{C}, f \text{ is bounded}\}$ and $d_u(f,g) = \sup\{|f(z) g(z)|, z \in D\}$.
 - (a) Show that (X, d_u) is a metric space.
 - (b) Suppose that f(z) = ∑_{n=0}[∞] a_nzⁿ has radius of convergence R > 1. Show that f ∈ X and f_N ∈ X, where f_N : D → C, z ↦ ∑_{n=0}^N a_nzⁿ.
 (c) Prove that lim f = f in the metric graph (Y, d)
 - (c) Prove that $\lim_{N\to\infty} f_N = f$ in the metric space (\mathbf{X}, d_u) .

Note: Recall that $f : A \to \mathbb{C}$ is bounded if there exists $M \in \mathbb{R}$ such that $|f(a)| \leq M$ for all $a \in A$.

Fall Term 2007