International University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

Fall Term 2004

Analysis I — Problem Set 9 Issued: 5.11.07 Due: 13.11.07, noon

9.1. The closure, boundary and interior of a set. Let A be a set in the metric space X. Recall that A' is the set of cluster points of A, \overline{A} is the closure of A, A° is the interior of A, and ∂A is the boundary of A.

Prove or give counterexamples to the following statements:

- (a) $A \subseteq \partial A$, $\partial A \subseteq A$
- (b) $A \subseteq \overline{A}, \quad \overline{A} \subseteq A$
- (c) $A \subseteq A^{\circ}, A^{\circ} \subseteq A$
- (d) $A \subseteq A', A' \subseteq A$
- (e) $\partial A \subseteq \partial \partial A$, $\partial \partial A \subseteq \partial A$
- (f) $\overline{A} \subseteq \overline{\overline{A}}, \quad \overline{\overline{A}} \subseteq \overline{A}$
- (g) $A^{\circ} \subseteq A^{\circ \circ}, \quad A^{\circ \circ} \subseteq A^{\circ}$
- (h) $A' \subseteq A'', \quad A'' \subseteq A'$
- (i) $A' \subseteq \overline{A}, \quad \overline{A} \subseteq A'$
- (j) $A \cup A' \subseteq \overline{A}, \quad \overline{A} \subseteq A \cup A'$

9.2. Closed sets. Let (X, d_X) be a metric space. Show the following statements:

- (a) Finite unions and arbitrary intersections of closed subsets of X are closed.
- (b) $\overline{A} \cup \overline{B} = \overline{A \cup B} \quad \forall A, B \in X.$
- (c) $\bigcup_{i \in I} \overline{A_i} \subset \overline{\bigcup_{i \in I} A_i}$, where all $A_i \in X$. Give an example when equality fails.
- **9.3. Zeroes of a continuous function.** Let $f : K \to \mathbb{R}$, where $K \subset \mathbb{R}$ is a compact set, be a continuous function. Prove that the set of zeroes of f is a compact set in \mathbb{R} .
- **9.4.** Compact sets. Prove that [0,1] is covering compact in \mathbb{R} .
- **9.5.** Continuity and compactness(Bonus Problem). Let X, Y be two metric spaces and $f: X \to Y$ a continuous bijection. Prove that if X is compact, then f is a homeomorphism.