Götz Pfander, Alex Sava

Analysis I - Problem Set 1

Issued: 07.09.10 Due: 13.09.10, noon, Analysis Mailbox in Research 1
1.1. Negate the following statements:
(a) $\exists p \in \mathbb{Q}: \quad p^{2}=2$
(b) $\forall p \in \mathbb{Q} \quad \exists n \in \mathbb{N}: \quad n \geq p$
(c) $\forall m \in \mathbb{N} \quad \forall n \in \mathbb{N}: \quad m \leq n \quad \Longrightarrow \quad m+1 \leq n+1$
1.2. Let A, B and C be sets. Determine whether the following statements are true or false. If a double implication fails, determine whether one or the other implication holds. Give a proof or counterexample respectively:
(a) $(A \cup B)^{c}=A^{c} \cap B^{c}$
(b) $(A \cap B)^{c}=A^{c} \cup B^{c}$
(c) $A \subset B \wedge A \subset C \quad \Longleftrightarrow A \subset(B \cup C)$
(d) $A \subset B \quad \vee \quad A \subset C \quad \Longleftrightarrow \quad A \subset(B \cap C)$
1.3. (a) Denote the identity function for any set C by $i d_{C}$, i.e. $i d_{C}: C \longrightarrow C, x \mapsto x$.

Let $f: A \longrightarrow B$ be a function.
$g: B \longrightarrow A$ is called a left inverse for f if $g \circ f=i d_{A}$ and
$h: B \longrightarrow A$ is called a right inverse for f if $f \circ h=i d_{B}$.
Prove that
(a) f has a left inverse $\Longleftrightarrow \mathrm{f}$ is injective.
(b) f has a right inverse $\Longleftrightarrow \mathrm{f}$ is surjective.
(b) Show that for any finite set M the following equivalence holds:

$$
f: M \longrightarrow M \text { is injective } \Longleftrightarrow f: M \longrightarrow M \text { is surjective }
$$

1.4. Let A, B be ordered sets with order \leq_{A}, \leq_{B} respectively and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$. Define

$$
\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right): \Leftrightarrow \quad\left(a_{1} \neq a_{2} \wedge a_{1} \leq_{A} a_{2}\right) \quad \vee \quad\left(a_{1}=a_{2} \wedge b_{1} \leq_{B} b_{2}\right)
$$

Show that \leq is an order on $A \times B$.
Remark: This order on $A \times B$ is called the dictionary order.

