International University Bremen
School of Engineering and Science
Götz Pfander, Alexandru Sava

Analysis I -Assignement 11

11.1. Monotonicity of differentiable functions

Suppose $f^{\prime}(x)>0$ in (a,b).
(a) Prove that f is strictly increasing on (a, b).
(b) Let g be the inverse function of f, e.g., $g(f(x))=x$ for $x \in(a, b)$. Prove that g is differentiable and that $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$ for $x \in(a, b)$.
11.2. Higher order derivatives

Calculate $f^{(n)}(0)$ for $f: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto\left\{\begin{array}{ll}e^{-\frac{1}{x^{2}}}, & \text { for } x \neq 0 ; \\ 0, & \text { for } x=0 .\end{array}\right.$ Recall that $f^{(n)}$ is the derivative of the function $f^{(n-1)}$, where $f^{(0)}=f$ and $f^{(1)}=f^{\prime}$. (Tip: Use induction and L'Hospital.)

11.3. Darboux property of derivatives

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Let $a<b$ be two real numbers and suppose there are $x_{0}, y_{0} \in \mathbb{R}$ such that $f^{\prime}\left(x_{0}\right)=a$ and $f^{\prime}\left(y_{0}\right)=b$. Prove that for every $c \in(a, b)$ there exist $t \in(\min (a, b), \max (a, b))$ such that $f^{\prime}(t)=c$.
HINT : consider $g(x)=f(x)-c x$ on the interval $[\min (a, b), \max (a, b)$]

11.4. Interesting consequence of derivatives

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

11.5. Limits of functions

Assume that $\left(f_{n}\right)$ is uniformly convergent on $A \subset \mathbb{R}$ to the function f_{0}. Assume moreover that x_{0} is a cluster point of A and, $\lim _{x \rightarrow x_{0}} f_{n}(x)=f\left(x_{0}\right)$ for $n \geq N, N \in \mathbb{N}$.
(a) Prove that $\lim _{n \rightarrow \infty} \lim _{x \rightarrow x_{0}} f_{n}(x)=\lim _{x \rightarrow x_{0}} f_{0}(x)$.
(b) Prove that if $\left(f_{n}\right)$ is uniformly convergent on $(0, \infty)$ to the function f_{0} and $\lim _{x \rightarrow \infty} f_{n}(x)=$ $\alpha \in \mathbb{R}$ for $n \geq N, N \in \mathbb{N}$, then

$$
\lim _{n \rightarrow \infty} \lim _{x \rightarrow \infty} f_{n}(x)=\lim _{x \rightarrow \infty} f(x)
$$

(c) Assume that $\left(f_{n}\right)$ is a sequence of functions which are differentiable on (c, d), and let $[a, b] \subset(c, d)$. If $\sum_{n=1}^{\infty} f_{n}(x)$ converges at some $x_{0} \in[a, b]$ and $\sum_{n=1}^{\infty} f_{n}^{\prime}(x)$ converges uniformly on $[a, b]$, then $\sum_{n=1}^{\infty} f_{n}(x)$ converges to a differentiable function, and

$$
\left(\sum_{n=1}^{\infty} f_{n}(x)\right)^{\prime}=\sum_{n=1}^{\infty} f_{n}^{\prime}(x)
$$

(d) Show that $f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}+x^{2}}$ is differentiable on \mathbb{R}.

11.6. BONUS PROBLEM Sharkovskii's Theorem - Particular case

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. A point $x \in \mathbb{R}$ is called k - periodic if $f(f(\ldots(x) \ldots))=x$ (where f is composed with itself k times) but $f(f(\ldots(x) \ldots)) \neq x$ (f composed i times) for all $1 \leq i<k$. Show that if f admits a 3 - periodic point, then it admits a k - periodic point for all $k \in N$.

