Jacobs University School of Engineering and Science Götz Pfander, Alex Sava

Analysis I — Problem Set 2 Issued: 14.09.04 Due: 20.09.04

2.1. Show rigorously that for every $n \in \mathbb{N}$, $(\mathbb{Z}_n, +)$ is an abelian group. (That includes showing that + is a well-defined operation).

(Bonus problem) Define $[x] \cdot [y] := [xy]$. Is that a well-defined operation? For which n is $(\mathbb{Z}_n, +, \cdot)$ a field? Prove your assertions.

2.2. Prove Theorem 1.11 in the script.

2.3. Let $(F, +, \cdot)$ be a field.

- (a) Show that 0 is uniquely determined: there is only one neutral element under addition.
- (b) For every $x \in F$, -x is uniquely determined: there is only one $y \in F$ with x + y = 0.
- (c) Show that for every $x, y \in F$ we have 0x = 0; (-x)y = -(xy); (-x)(-y) = xy.
- **2.4.** Show the following statements in an ordered field. Remember $x > y : \Leftrightarrow (x \ge y \land x \ne y)$.
 - (a) If x > 0 then 0 > -x, and vice versa.
 - (b) If x > 0 and z > y, then xz > xy.
 - (c) If 0 > x and z > y then xy > xz.
 - (d) If $x \neq 0$ then $x^2 > 0$. In particular, 1 > 0.
 - (e) If y > x > 0 then 1/x > 1/y > 0.
- **2.5.** Show that $(\mathbb{R}, +)$ is an abelian group using the definition of real numbers as *Dedekind cuts* and the addition on the cuts as defined in class.
- **2.6.** Let $q \in \mathbb{Q} \setminus \{0\}$ and $r \in \mathbb{R}$ irrational. Show that both q + r and $q \cdot r$ are irrational.