Analysis I - Problem Set 2

Issued: 14.09.04 Due: 20.09.04
2.1. Show rigorously that for every $n \in \mathbb{N},\left(\mathbb{Z}_{n},+\right)$ is an abelian group. (That includes showing that + is a well-defined operation).
(Bonus problem) Define $[x] \cdot[y]:=[x y]$. Is that a well-defined operation? For which n is $\left(\mathbb{Z}_{n},+, \cdot\right)$ a field? Prove your assertions.
2.2. Prove Theorem 1.11 in the script.
2.3. Let $(F,+, \cdot)$ be a field.
(a) Show that 0 is uniquely determined: there is only one neutral element under addition.
(b) For every $x \in F,-x$ is uniquely determined: there is only one $y \in F$ with $x+y=0$.
(c) Show that for every $x, y \in F$ we have $0 x=0 ;(-x) y=-(x y) ;(-x)(-y)=x y$.
2.4. Show the following statements in an ordered field. Remember $x>y: \Leftrightarrow(x \geq y \wedge x \neq y)$.
(a) If $x>0$ then $0>-x$, and vice versa.
(b) If $x>0$ and $z>y$, then $x z>x y$.
(c) If $0>x$ and $z>y$ then $x y>x z$.
(d) If $x \neq 0$ then $x^{2}>0$. In particular, $1>0$.
(e) If $y>x>0$ then $1 / x>1 / y>0$.
2.5. Show that $(\mathbb{R},+)$ is an abelian group using the definition of real numbers as Dedekind cuts and the addition on the cuts as defined in class.
2.6. Let $q \in \mathbb{Q} \backslash\{0\}$ and $r \in \mathbb{R}$ irrational. Show that both $q+r$ and $q \cdot r$ are irrational.

