Analysis I —Assignement 3

3.1. Supremum properties

Prove or disprove the following of the supremum :
(a) for a nonempty subset of \mathbb{R} which is bounded below :

$$
\inf A=-\sup \{-A\} \text { where }-A=\{-x \mid x \in A\}
$$

(b) for two nonempty subsets of \mathbb{R}, call them A and B :

$$
\sup (A+B)=\sup A+\sup B \text { where } A+B=\{x+y \mid x \in A \text { and } y \in B\}
$$

(c)

$$
\sup (A \cdot B)=\sup A \cdot \sup B \text { where } A \cdot B=\{x \cdot y \mid x \in A \text { and } y \in B\}
$$

If any of the above is false, give a sufficient condition for it to hold.

3.2. Rational Powers

(a) Show that for every non-negative real number b and every natural number $n>0$ there exist an unique non-negative real number a denoted $b^{\frac{1}{n}}$, such that $a^{n}=b$
(b) Let $m, p \in \mathbb{Z}$ and $n, q \in \mathbb{N}$ such that $: \frac{m}{n}=\frac{p}{q}=r$. For $b \in \mathbb{R}, b>0$, set :

$$
b^{r}=\left(b^{m}\right)^{\frac{1}{n}}
$$

Show that b^{r} is well defined, i.e. show that $\left(b^{m}\right)^{\frac{1}{n}}=\left(b^{p}\right)^{\frac{1}{q}}$.
(c) Justify why it makes sense to define $b^{\frac{1}{m}}, n \in\{2 k+1 \mid k \in \mathbb{N} \cup\{0\}\}$, only for nonnegative numbers b.
Hint: Consider the expression $(-8)^{\frac{1}{3}}$.
(d) Let $r, s \in \mathbb{Q}$. Show that : $b^{r+s}=b^{r} b^{s}$ for $b>0$.
3.3. Interesting property of the reals Let $M \subset \mathbb{R}^{+}$be uncountable. Show that for every $r \in \mathbb{R}$ there is a finite number of different elements $a_{1}, a_{2}, \ldots, a_{n} \in M$ such that :

$$
\sum_{k=1}^{n} \geq r
$$

Hint: Among the sets $M_{N}=\left\{a \in M \left\lvert\, a \geq \frac{1}{N}\right.\right\}, N \in \mathbb{N}$, there has to be an infinite one.
3.4. Calculus with complex numbers

Let $z=\frac{1+\sqrt{3} i}{2}$
(a) Determine $|z|, z^{-1}, \bar{z}, z^{n}$ for $n \in \mathbb{N}$.
(b) Let $T \subset \mathbb{C}$ be the triangle with vertices $a=5, b=6+i, c=7$. What geometric shape do $z^{n} a, z^{n} b, z^{n} c$ form for any $n \in \mathbb{N}$? Draw them into the complex plane together with T and z.
(c) Calculate $(1+i)^{n}+(1-i)^{n}$ for any $n \in \mathbb{Z}$. Why is the result always a real number ?
3.5. Square roots and complex numbers

Show that every complex number $w=u+i v$ has exactly two square roots (with one exception).
Hint : Define $z=a+b i$ with $a, b=\sqrt{\frac{1}{2}(|w| \pm u)}$. Show that $z^{2}=w$ if $v \geq 0$. And $(\bar{z})^{2}=w$ if $v \leq 0$.

3.6. Bonus Problem

(a) Fix $b \in \mathbb{R}$ with $b \geq 1$. For $x \in \mathbb{R}$ define $P(b, x)=\left\{b^{t} \mid t \in \mathbb{Q}, t \leq x\right\}$. Prove that:

$$
b^{r}=P(b, r) \text { for all } r \in \mathbb{Q}
$$

Hence it makes sense to define :

$$
b^{x}=\sup _{x \in \mathbb{R}} P(b, x)
$$

(b) Prove that $b^{x+y}=b^{x} b^{y}$ for all $x, y, b \in \mathbb{R}$ with $b \geq 1$.

