Analysis I -Assignement 4

4.1. Squeezing theorem

Let $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ be three sequences of real numbers such that: $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=b \in \mathbb{R}$ in (\mathbb{R}, d) where d is the standard metric on \mathbb{R}. Show that $\lim _{n \rightarrow \infty} b_{n}=b$ in (\mathbb{R}, d) as well.
4.2. Fibonacci sequence

Consider the sequence of real numbers which is inductively defined by $a_{1}=a_{2}=1$ and $a_{n+2}=a_{n+1}+a_{n}$ for all $n \in \mathbb{N}$
(a) Does the sequence $\left(a_{n}\right)$ converge in (\mathbb{R}, d) ?
(b) Show that the sequence defined by $x_{n}=\frac{a_{n+1}}{a_{n}}$ for all $n \in \mathbb{N}$, converges in (\mathbb{R}, d) and determine its limit.
4.3. Products of sequences

Let $\left(a_{n}\right),\left(b_{n}\right) \subset \mathbb{R}$ be sequences of real numbers so that:

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty, \lim _{n \rightarrow \infty} b_{n}=0
$$

The limit of the sequence of the products $\left(a_{n} b_{n}\right)$ can realize very different values depending on the sequences a_{n}, b_{n}. Find one example for each of the following cases :
(a) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=+\infty$.
(b) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=-\infty$.
(c) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=0$.
(d) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=c$ where $c \in \mathbb{R}$.
(e) $\left(a_{n} b_{n}\right)$ is bounded but does not converge.
(f) $\left(a_{n} b_{n}\right)$ is unbounded but does not converge to either $+\infty$ nor $-\infty$.
4.4. A real valued sequence Discuss the convergence of the real valued sequence given by :

$$
a_{1}=1, a_{n+1}=\frac{2\left(2 a_{n}+1\right)}{a_{n}+3} \text { for } n \in \mathbb{N}
$$

4.5. Some simple limits Determine the convergence or divergence of the following sequences in \mathbb{R} :
(a) $a_{n}=\frac{3 n}{n+1}$
(b) $b_{n}=\sqrt[3]{n^{3}+n^{2}}-\sqrt[3]{n^{3}-n^{2}}$
(c) $c_{n}=n(\sqrt[n]{n}-1)$
4.6. Lim sup and Lim inf properties Given sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ in \mathbb{R}.
(a) Show that $\liminf _{n \rightarrow \infty} a_{n}+\liminf _{n \rightarrow \infty} b_{n} \leq \liminf _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \liminf _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}$
(b) If the limit of $\left(a_{n}\right)$ exists, prove that $\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}$
(c) Show that $\limsup _{n \rightarrow \infty} b_{n}=\lim _{N \rightarrow \infty}\left(\sup \left\{b_{n}: n \geq N\right\}\right)$ and give a similar characterization for $\liminf _{n \rightarrow \infty} b_{n}$
4.7. Distance from a point to a set

The distance from a point x in a metric space (X, d) to a nonempty subset $S \subseteq X$ is defined to be:

$$
\operatorname{dist}(x, S)=\inf \{d(x, s): s \in S\}
$$

Show that there is a sequence $\left(s_{n}\right)_{n} \subset S$ with $\lim _{n \rightarrow \infty} s_{n}=x$, if and only if $\operatorname{dist}(x, S)=0$
4.8. Metrics in \mathbb{R}^{n}
(a) Show that the map $d_{\infty}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(x, y) \rightarrow:=\sup \left\{\left\|x_{i}-y_{i}\right\|: i=1, \cdots, n\right\}$ is a metric on \mathbb{R}^{n}.
(b) Let $X=\{[a, b] \subset \mathbb{R}: a<b\}$ and $Y=\{(a, b) \subset \mathbb{R}: a<b\}$ and

$$
d([a, b],[c, d]):=\inf \{\epsilon>0:[a, b] \subset[c-\epsilon, d+\epsilon] \text { and }[c, d] \subset[a-\epsilon, b+\epsilon]\}
$$

Are (X, d) and/or $(X \cup Y, \bar{d})$ metric spaces, where \bar{d} is the canonical extension od d onto $X \cup Y$?

4.9. Bonus Problem

(a) Suppose $0<b<a$. Define: $x_{0}=a, y_{0}=b$

$$
x_{n+1}=\frac{x_{n}+y_{n}}{2}, y_{n+1}=\frac{2 x_{n} y_{n}}{x_{n}+y_{n}}
$$

Show that the sequences have the same limit and find that limit.
(b) Now suppose $0<a<b$ and let : $x_{0}=a, y_{0}=b$

$$
x_{n+1}=\frac{x_{n}+y_{n}}{2}, y_{n+1}=\sqrt{x_{n+1} y_{n}}
$$

Show that the sequences have the same limit and find that limit.

