Analysis I — Assignement 4

4.1. Squeezing theorem

Let $(a_n), (b_n)$ and (c_n) be three sequences of real numbers such that : $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = b \in \mathbb{R}$ in (\mathbb{R}, d) where d is the standard metric on \mathbb{R} . Show that $\lim_{n \to \infty} b_n = b$ in (\mathbb{R}, d) as well.

4.2. Fibonacci sequence

Consider the sequence of real numbers which is inductively defined by $a_1 = a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n$ for all $n \in \mathbb{N}$

- (a) Does the sequence (a_n) converge in (\mathbb{R}, d) ?
- (b) Show that the sequence defined by $x_n = \frac{a_{n+1}}{a_n}$ for all $n \in \mathbb{N}$, converges in (\mathbb{R}, d) and determine its limit.
- **4.3.** Products of sequences

Let $(a_n), (b_n) \subset \mathbb{R}$ be sequences of real numbers so that :

$$\lim_{n \to \infty} a_n = +\infty, \lim_{n \to \infty} b_n = 0.$$

The limit of the sequence of the products $(a_n b_n)$ can realize very different values depending on the sequences a_n, b_n . Find one example for each of the following cases :

(a) $\lim_{n \to \infty} (a_n b_n) = +\infty.$

(b)
$$\lim_{n \to \infty} (a_n b_n) = -\infty$$

(c)
$$\lim_{n \to \infty} (a_n b_n) = 0.$$

- (d) $\lim_{n \to \infty} (a_n b_n) = c$ where $c \in \mathbb{R}$.
- (e) $(a_n b_n)$ is bounded but does not converge.
- (f) $(a_n b_n)$ is unbounded but does not converge to either $+\infty$ nor $-\infty$.
- 4.4. A real valued sequence Discuss the convergence of the real valued sequence given by :

$$a_1 = 1, \ a_{n+1} = \frac{2(2a_n + 1)}{a_n + 3} \text{ for } n \in \mathbb{N}.$$

4.5. Some simple limits Determine the convergence or divergence of the following sequences in \mathbb{R} :

(a)
$$a_n = \frac{3n}{n+1}$$

(b) $b_n = \sqrt[3]{n^3 + n^2} - \sqrt[3]{n^3 - n^2}$
(c) $c_n = n(\sqrt[n]{n} - 1)$

4.6. Lim sup and Lim inf properties Given sequences (a_n) and (b_n) in \mathbb{R} .

(a) Show that $\liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n \le \liminf_{n \to \infty} (a_n + b_n) \le \liminf_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$

- (b) If the limit of (a_n) exists, prove that $\limsup_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$
- (c) Show that $\limsup_{n\to\infty} b_n = \lim_{N\to\infty} (\sup\{b_n : n \ge N\})$ and give a similar characterization for $\liminf_{n\to\infty} b_n$
- 4.7. Distance from a point to a set

The distance from a point x in a metric space (X, d) to a nonempty subset $S \subseteq X$ is defined to be :

$$dist(x,S) = \inf\{d(x,s) : s \in S\}$$

Show that there is a sequence $(s_n)_n \subset S$ with $\lim_{n \to \infty} s_n = x$, if and only if dist(x, S) = 0

4.8. Metrics in \mathbb{R}^n

- (a) Show that the map $d_{\infty} : \mathbb{R}^n \to \mathbb{R}^n (x, y) \to := \sup\{\|x_i y_i\| : i = 1, \cdots, n\}$ is a metric on \mathbb{R}^n .
- (b) Let $X = \{[a, b] \subset \mathbb{R} : a < b\}$ and $Y = \{(a, b) \subset \mathbb{R} : a < b\}$ and

$$d([a,b],[c,d]) := \inf\{\epsilon > 0 : [a,b] \subset [c-\epsilon,d+\epsilon] \text{ and } [c,d] \subset [a-\epsilon,b+\epsilon]\}$$

Are (X, d) and/or $(X \cup Y, \overline{d})$ metric spaces, where \overline{d} is the canonical extension of d onto $X \cup Y$?

4.9. Bonus Problem

(a) Suppose 0 < b < a. Define: $x_0 = a, y_0 = b$

$$x_{n+1} = \frac{x_n + y_n}{2}, \ y_{n+1} = \frac{2x_n y_n}{x_n + y_n}$$

Show that the sequences have the same limit and find that limit.

(b) Now suppose 0 < a < b and let : $x_0 = a, y_0 = b$

$$x_{n+1} = \frac{x_n + y_n}{2}, \ y_{n+1} = \sqrt{x_{n+1}y_n}$$

Show that the sequences have the same limit and find that limit.