Analysis I —Assignement 5

5.1. Real sequence

Prove that the sequence $x_{n}=(n+1)^{p}-n^{p}$ has a limit for every $p \in \mathbb{R}$. Call this limit L_{p} and discuss the values of L_{p} as p varies.
5.2. Some usefull inequality Prove the following inequality for $p \in \mathbb{R}, p \geq 1$
$\left.\left(a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}\right)^{\frac{1}{p}}+\left(b_{1}^{p}+b_{2}^{p}+\cdots+b_{n}^{p}\right)^{\frac{1}{p}} \geq\left(a_{1}+b_{1}\right)^{p}+\left(a_{2}+b_{2}\right)^{p}+\cdots+\left(a_{n}+b_{n}\right)^{p}\right)^{\frac{1}{p}}$
where $\left(a_{k}\right)_{k},\left(b_{k}\right)_{k}$ are nonnegative real sequences. What is the interpretation of this inequality ? (Think of \mathbb{R}^{n})
5.3. Absolute convergence Let $\left(z_{n}\right)_{n}$ be a sequence of complex numbers such that the sequence $\left(A_{n}\right)_{n}$ given by $A_{n}=\left\|z_{1}\right\|+\left\|z_{2}\right\|+\cdots+\left\|z_{n}\right\|$ is convergent, where $\|a+i b\|=\sqrt{a^{2}+b^{2}}$. Show that the sequence $B_{n}=z_{1}+z_{2}+\cdots+z_{n}$ is also convergent. Does it follow that if B_{n} is convergent then A_{n} is convergent.

Hint: You should think of Cauchy sequences and their properties

5.4. Density and Jacobi's theorem

Given a metric space (X, d) and a subset $Y \subset X$, we say that Y is dense in X if for every $x \in X$ there is a sequence $\left(y_{n}\right)_{n} \subset Y$ such that $\lim _{n} y_{n}=x$. Is \mathbb{Q} dense in \mathbb{R} ? How about \mathbb{R} in \mathbb{C}. Argue why. Now let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and let $\stackrel{n}{M}=\{m+n \alpha: m, n \in \mathbb{Z}\}$. Show that M is dense in \mathbb{R}.

5.5. Stolz-Caesaro lemma

Let $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$ be two real sequences such that $\left(b_{n}\right)_{n}$ is strictly increasing and unbounded. Prove that :

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}
$$

given that the limit on the right exists. What if the left limit exists, can you say anything about the right limit?

Hint:Try to use limsup and liminf

5.6. Bonus Problem

Let (X, d) be a metric space. Prove the following statements :
(a) If $\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}$ are two Cauchy sequences in X then $\left(d\left(x_{n}, y_{n}\right)\right)_{n}$ converges in \mathbb{R}.
(b) For two sequences $\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}$ in X we say that $\left(x_{n}\right) \sim\left(y_{n}\right)$ iff $\lim _{n} d\left(x_{n}, y_{n}\right)=0$. Prove that " \sim " is an equivalence relation.
(c) For $\left[x_{n}\right],\left[y_{n}\right] \in X / \sim$ define $\widetilde{d}\left(\left[x_{n}\right],\left[y_{n}\right]\right)=\lim _{n} d\left(x_{n}, y_{n}\right)$. Then \widetilde{d} is well-defined and $(X / \sim, \widetilde{d})$ is a complete metric space. (Notice that you have to prove three things here)

