Analysis I — Assignement 5

5.1. Real sequence

Prove that the sequence $x_n = (n+1)^p - n^p$ has a limit for every $p \in \mathbb{R}$. Call this limit L_p and discuss the values of L_p as p varies.

5.2. Some useful inequality Prove the following inequality for $p \in \mathbb{R}, p \geq 1$

$$(a_1^p + a_2^p + \dots + a_n^p)^{\frac{1}{p}} + (b_1^p + b_2^p + \dots + b_n^p)^{\frac{1}{p}} \ge (a_1 + b_1)^p + (a_2 + b_2)^p + \dots + (a_n + b_n)^p)^{\frac{1}{p}}$$

where $(a_k)_k, (b_k)_k$ are nonnegative real sequences. What is the interpretation of this inequality ? (Think of \mathbb{R}^n)

5.3. Absolute convergence Let $(z_n)_n$ be a sequence of complex numbers such that the sequence $(A_n)_n$ given by $A_n = ||z_1|| + ||z_2|| + \cdots + ||z_n||$ is convergent, where $||a + ib|| = \sqrt{a^2 + b^2}$. Show that the sequence $B_n = z_1 + z_2 + \cdots + z_n$ is also convergent. Does it follow that if B_n is convergent then A_n is convergent.

Hint: You should think of Cauchy sequences and their properties

5.4. Density and Jacobi's theorem

Given a metric space (X, d) and a subset $Y \subset X$, we say that Y is dense in X if for every $x \in X$ there is a sequence $(y_n)_n \subset Y$ such that $\lim_n y_n = x$. Is \mathbb{Q} dense in \mathbb{R} ? How about \mathbb{R} in \mathbb{C} . Argue why. Now let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and let $M = \{m + n\alpha : m, n \in \mathbb{Z}\}$. Show that M is dense in \mathbb{R} .

5.5. Stolz-Caesaro lemma

Let $(a_n)_n, (b_n)_n$ be two real sequences such that $(b_n)_n$ is strictly increasing and unbounded. Prove that :

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

given that the limit on the right exists. What if the left limit exists, can you say anything about the right limit?

Hint:Try to use lim sup and lim inf

5.6. Bonus Problem

Let (X, d) be a metric space. Prove the following statements :

- (a) If $(x_n)_n, (y_n)_n$ are two Cauchy sequences in X then $(d(x_n, y_n))_n$ converges in \mathbb{R} .
- (b) For two sequences $(x_n)_n, (y_n)_n$ in X we say that $(x_n) \sim (y_n)$ iff $\lim_n d(x_n, y_n) = 0$. Prove that " ~ " is an equivalence relation.
- (c) For $[x_n], [y_n] \in X/ \sim \text{define } \widetilde{d}([x_n], [y_n]) = \lim_n d(x_n, y_n)$. Then \widetilde{d} is well-defined and $(X/\sim, \widetilde{d})$ is a complete metric space. (Notice that you have to prove three things here)