Analysis I - Problem Set 6

Issued: 12.10.2010 Due: 18.10.2010, 21:00 p.m.
6.1. Cauchy condesation test Let $\left(a_{n}\right)_{n}$ be a decreasing sequence. Then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if the series $\sum_{n=1}^{\infty} 2^{n} a_{2^{n}}$ is convergent.
6.2. Radius of convergence. Find the radius of convergence of each of the following power series:
(a) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} z^{n}$,
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2}} z^{n}$,
(c) $\sum_{n=0}^{\infty} \frac{n^{3}}{3^{n}} z^{n}$.

You may use the fact that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$

6.3. Series and sequences.

(a) Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{n} n \text { ! }}{n^{n}}$ is convergent or not.
(b) Find the limit of the sequence $a_{n}:=\left(1-\frac{1}{n}\right)^{n}$.
6.4. Leibniz criterion (Alternating series test) Let $\left(a_{n}\right)$ be a monotonically decreasing sequence with $a_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n}=0$. The the series $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ converges.
6.5. Approximating the harmonic series Let $\left(a_{n}\right)$ be a sequence in $\left(\mathbb{R}, d_{1}\right)$ such that $a_{n}>0$ for all $n \in \mathbb{N}$. Show that if $\lim _{n \rightarrow \infty}\left(n a_{n}\right)=l$ with $l \neq 0$, then $\sum a_{n}$ diverges.
6.6. Converging series Determine the limit of the following sequences:
(a) $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{(2 n+1)^{2}}$
(b) $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n^{2}}$

You may use the fact that $\sum_{n \in \mathbb{N}} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
6.7. Approximation of Real Numbers. Show that for every real number $x \in(0,1)$ there are integers $1<n_{1}<n_{2}<\ldots$ such that

$$
x=\sum_{k=1}^{\infty} \frac{1}{n_{k}}
$$

Hint : Think of the harmonic series
6.8. Abel's criterion Let $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n}$ be two sequences such that the series $A_{N}=\sum_{n=1}^{N} a_{n}$ is convergent and $\left(b_{n}\right)_{n}$ is decreasing and bounded. Then the series $S_{N}=\sum_{n=1}^{N} a_{n} b_{n}$ is also convergent.
6.9. Even more series Determine which of the following series converge or not:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p>0$ (discussion on p)
(b) $\sum_{n=1}^{\infty} \frac{1}{n \log n}$
(c) $\sum_{n=1}^{\infty} \cos n$
(d) $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$
(e) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin n$
6.10. BONUS PROBLEM Let $\left(a_{n}\right)_{n}$ be a real sequence such that $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty}\left|a_{n}\right|=\infty$. Prove that for every real number $r \in^{\prime} R$ there exist a bijective function $f: \mathbb{N} \rightarrow \mathbb{N}$ (permutation of the naturals) such that $\sum_{n=1}^{\infty} a_{f}(n)=r$. Is this true for a complex sequence?

