Analysis I — Problem Set 6 Issued: 12.10.2010 Due: 18.10.2010, 21:00 p.m.

6.1. Cauchy condesation test Let $(a_n)_n$ be a decreasing sequence. Then the series $\sum_{n=1}^{\infty} a_n$ is ∞

convergent if and only if the series $\sum_{n=1}^{\infty} 2^n a_{2^n}$ is convergent.

6.2. Radius of convergence. Find the radius of convergence of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} z^n$$
, (b) $\sum_{n=0}^{\infty} \frac{2^n}{n^2} z^n$, (c) $\sum_{n=0}^{\infty} \frac{n^3}{3^n} z^n$.

You may use the fact that $\lim_{n \to \infty} \sqrt[n]{n} = 1$

6.3. Series and sequences.

- (a) Determine whether the series $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ is convergent or not.
- (b) Find the limit of the sequence $a_n := \left(1 \frac{1}{n}\right)^n$.
- 6.4. Leibniz criterion (Alternating series test) Let (a_n) be a monotonically decreasing sequence with $a_n > 0$ and $\lim_{n\to\infty} a_n = 0$. The the series $\sum_{n=0}^{\infty} (-1)^n a_n$ converges.
- **6.5.** Approximating the harmonic series Let (a_n) be a sequence in (\mathbb{R}, d_1) such that $a_n > 0$ for all $n \in \mathbb{N}$. Show that if $\lim_{n \to \infty} (na_n) = l$ with $l \neq 0$, then $\sum a_n$ diverges.
- 6.6. Converging series Determine the limit of the following sequences:
 - (a) $\lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{(2n+1)^2}$

(b)
$$\lim_{N \to \infty} \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n^2}$$

You may use the fact that $\sum_{n \in \mathbb{N}} \frac{1}{n^2} = \frac{\pi^2}{6}$.

6.7. Approximation of Real Numbers. Show that for every real number $x \in (0, 1)$ there are integers $1 < n_1 < n_2 < \ldots$ such that

$$x = \sum_{k=1}^{\infty} \frac{1}{n_k}$$

Hint : Think of the harmonic series

- **6.8.** Abel's criterion Let $(a_n)_n, (b_n)_n$ be two sequences such that the series $A_N = \sum_{n=1}^N a_n$ is convergent and $(b_n)_n$ is decreasing and bounded. Then the series $S_N = \sum_{n=1}^N a_n b_n$ is also convergent.
- 6.9. Even more series Determine which of the following series converge or not :

p)

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 0 \text{ (discussion on}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n \log n}$$

(c)
$$\sum_{n=1}^{\infty} \cos n$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin n$$

6.10. BONUS PROBLEM Let $(a_n)_n$ be a real sequence such that $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} |a_n| = \infty$. Prove that for every real number $r \in R$ there exist a bijective function $f : \mathbb{N} \to \mathbb{N}$ (permutation of the naturals) such that $\sum_{n=1}^{\infty} a_f(n) = r$. Is this true for a complex sequence?