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6.1. Cauchy condesation test Let (ay), be a decreasing sequence. Then the series Z an 18
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convergent if and only if the series Z 2"a9n is convergent.
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6.2. Radius of convergence. Find the radius of convergence of each of the following power
series:
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You may use the fact that lim /n =1
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6.3. Series and sequences.
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(a) Determine whether the series Z is convergent or not.

nn
n=1

(b) Find the limit of the sequence a,, := (1 - 71L> :

6.4. Leibniz criterion (Alternating series test) Let (a,) be a monotonically decreasing
sequence with a, > 0 and lim,_, a, = 0. The the series) > ,(—1)"a, converges.

6.5. Approximating the harmonic series Let (a,) be a sequence in (R, d;) such that a,, > 0
for all n € N. Show that if lim (na,) =1 with [ # 0, then ) a,, diverges.
n—oo

6.6. Converging series Determine the limit of the following sequences:

(a) limy_oo Zﬁle (2n<1|»1)2
(b) limypoo S0, CUE
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You may use the fact that Y 5 = %

6.7. Approximation of Real Numbers. Show that for every real number x € (0, 1) there
are integers 1 < nj; < ng < ... such that
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x: —_—
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Hint : Think of the harmonic series
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6.8. Abel’s criterion Let (ay)n, (bn)n be two sequences such that the series Ay = Zan is
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convergent and (b, ), is decreasing and bounded. Then the series Sy = Zanbn is also
n=1
convergent.
6.9. Even more series Determine which of the following series converge or not :
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(a) Z P> 0 (discussion on p)
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6.10. BONUS PROBLEM Let (ay), be a real sequence such that Zan converges and
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Z |an,| = oco. Prove that for every real number r € R there exist a bijective function
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f : N — N (permutation of the naturals) such that Zaf(n) = r. Is this true for a

n=1
complex sequence?



