Analysis I —Assignement 7

7.1. Discrete metric spaces Let $\left(X, d_{0}\right)$ be a metric space with $d_{0}(x, y)=\left\{\begin{array}{ll}0 & x=y \\ 1 & x \neq y\end{array}\right.$.
(a) Prove that every subset of X is clopen.
(b) Prove that every function defined on X is continuous.
(c) Which sequences converge in X ?
7.2. Metric spaces

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$. Prove that the following are equivalent:
(a) The function f is continuous.
(b) For all $x_{0} \in X$ and for all sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.
7.3. Continuous functions

Check using the $\varepsilon-\delta$ definition if the following functions are continuous on the real line: $f(x)=[x]$ where x represents the biggest integer $\leq x ; f(x)=\left\{\begin{array}{l}\frac{x^{2}-1}{x-1}, x \neq 1 \\ a, x=1\end{array}\right.$; $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ with $a_{k} \in \mathbb{R}, k \in \overline{0 \ldots n} ; \frac{2 x}{1+x^{2}}$
7.4. Properties of continuous functions

Prove the following properties of continuous functions $f: X \rightarrow Y$ where $\left(X, d_{1}\right),\left(Y, d_{2}\right)$ are metric spaces:
(a) If $K \subset Y$ is closed then $f^{-1}(K)$ is also closed. Is it always true that if $K \subset X$ is closed then $f(K)$ is also closed ? Prove or give counterexamples.
(b) If $K \subset X$ is connected then $f(K)$ is connected. (A subset $E \subset X$ is called connected if for every 2 open subsets $A, B \subset X$ with $A \cap B=\emptyset$ and $X \subset(A \cup B)$ then either $X \subset A$ or $X \subset B)$
(c) For a subset $E \subset X$ define its closure \bar{E} by the intersection of all closed sets in X that contain E. Then \bar{E} is a closed set for any E and $f(\bar{E}) \subset \overline{f(E)}$. Find an example where the inclusion is proper.
7.5. A special function

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows: $f(x)=\left\{\begin{array}{l}0, \text { if } x \text { is irrational } \\ \frac{1}{n} \text { if } x=\frac{m}{n} \text { in lowest terms, } n>0\end{array}\right.$
Prove that f is continuous on the set of irrational numbers and discontinuous on the rationals.
7.6. Convex implies continuous

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called convex if for every $\alpha, \beta>0, \alpha+\beta=1$ we have that :

$$
\alpha f(x)+\beta f(y) \geq f(\alpha x+\beta y)
$$

for any $x, y \in \mathbb{R}$. Prove that every convex function is also continuous.
7.7. Fixed point

Let $f:[0,1] \rightarrow[0,1]$ continuous. Prove that there exist $c \in[0,1]$ such that $f(c)=c$.
7.8. Rudin page 98 problem 3 and more

Let f be a continuous real valued function on a metric space X. Let $Z(f)$ (the zero set of f) be the set of all $p \in X$ at which $f(p)=0$.
(a) Prove that $Z(f)$ is closed.
(b) Recall that for a set $E \subset X$ the distance from a point to this set is defined as

$$
h(x)=\inf _{s \in E} d(x, s)
$$

Prove that h is uniformly continuous
(c) Use the previous part to show that for any closed set $E \subset X$ there exist a continuous function $f: X \rightarrow \mathbb{R}$ that is 0 on E and positive elsewhere.

7.9. Bonus Problem

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. For a discontinuity point c we say c is of type 1 if $\lim _{x \rightarrow c, x<c} f(x)=$ $\lim _{x \rightarrow c, x>c} f(x) \neq f(c)$ or $\lim _{x \rightarrow c, x<c} f(x) \neq \lim _{x \rightarrow c, x>c} f(x)$. Call c of type 2 if at least one of the previous limits doesn't exist or it is infinite.
(a) Give examples of functions to illustrate the existence of all types of discontinuities.
(b) Show that if f is monotone then f has only discontinuities of type 1 and there are countable many.

