Analysis I — Assignement 7

7.1. Discrete metric spaces Let (X, d_0) be a metric space with $d_0(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$.

- (a) Prove that every subset of X is clopen.
- (b) Prove that every function defined on X is continuous.
- (c) Which sequences converge in X?

7.2. Metric spaces

Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \to Y$. Prove that the following are equivalent:

- (a) The function f is continuous.
- (b) For all $x_0 \in X$ and for all sequences $(x_n)_{n \in \mathbb{N}}$ in X with $\lim_{n \to \infty} x_n = x_0$ we have $\lim_{n \to \infty} f(x_n) = f(x_0).$
- **7.3.** Continuous functions

Check using the $\varepsilon - \delta$ definition if the following functions are continuous on the real line: f(x) = [x] where x represents the biggest integer $\leq x$; $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ a, & x = 1 \end{cases}$; $p(x) = a_n x^n + \dots + a_1 x + a_0$ with $a_k \in \mathbb{R}, k \in \overline{0 \dots n}$; $\frac{2x}{1 + x^2}$

7.4. Properties of continuous functions

Prove the following properties of continuous functions $f : X \to Y$ where $(X, d_1), (Y, d_2)$ are metric spaces:

- (a) If $K \subset Y$ is closed then $f^{-1}(K)$ is also closed. Is it always true that if $K \subset X$ is closed then f(K) is also closed? Prove or give counterexamples.
- (b) If $K \subset X$ is connected then f(K) is connected. (A subset $E \subset X$ is called connected if for every 2 open subsets $A, B \subset X$ with $A \cap B = \emptyset$ and $X \subset (A \cup B)$ then either $X \subset A$ or $X \subset B$)
- (c) For a subset $E \subset X$ define its closure \overline{E} by the intersection of all closed sets in X that contain E. Then \overline{E} is a closed set for any E and $f(\overline{E}) \subset \overline{f(E)}$. Find an example where the inclusion is proper.
- **7.5.** A special function

Let $f : \mathbb{R} \to \mathbb{R}$ be defined as follows: $f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} & \text{in lowest terms, } n > 0 \end{cases}$

Prove that f is continuous on the set of irrational numbers and discontinuous on the rationals.

7.6. Convex implies continuous

A function $f : \mathbb{R} \to \mathbb{R}$ is called convex if for every $\alpha, \beta > 0, \alpha + \beta = 1$ we have that :

$$\alpha f(x) + \beta f(y) \ge f(\alpha x + \beta y)$$

for any $x, y \in \mathbb{R}$. Prove that every convex function is also continuous.

7.7. Fixed point

Let $f: [0,1] \to [0,1]$ continuous. Prove that there exist $c \in [0,1]$ such that f(c) = c.

7.8. Rudin page 98 problem 3 and more

Let f be a continuous real valued function on a metric space X. Let Z(f) (the zero set of f) be the set of all $p \in X$ at which f(p) = 0.

- (a) Prove that Z(f) is closed.
- (b) Recall that for a set $E \subset X$ the distance from a point to this set is defined as

$$h(x) = \inf_{s \in E} d(x, s)$$

Prove that h is uniformly continuous

(c) Use the previous part to show that for any closed set $E \subset X$ there exist a continuous function $f: X \to \mathbb{R}$ that is 0 on E and positive elsewhere.

7.9. Bonus Problem

Let $f : \mathbb{R} \to \mathbb{R}$. For a discontinuity point c we say c is of type 1 if $\lim_{x \to c, x < c} f(x) = \lim_{x \to c, x > c} f(x) \neq f(c)$ or $\lim_{x \to c, x < c} f(x) \neq \lim_{x \to c, x > c} f(x)$. Call c of type 2 if at least one of the previous limits doesn't exist or it is infinite.

- (a) Give examples of functions to illustrate the existence of all types of discontinuities.
- (b) Show that if f is monotone then f has only discontinuities of type 1 and there are countable many.