Jacobs University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

Spring Term 2008

Analysis II — Problem Set 2 Issued: 12.02.08 Due: 20.02.08, noon

2.1. Natural Logarithm

Compute the following integral using Riemann sums

$$\int_1^a \frac{dx}{x}, \text{ where } a > 1.$$

Hint: Consider a partition $1 = x_0 < x_1 < \ldots < x_n = a$, where $x_k := a^{k/n}$ and take $\xi_k := x_{k-1}$ as midpoints.

2.2. Riemann integrability and composition

Show that if $f : [a, b] \longrightarrow [c, d]$ is Riemann integrable and $\phi : [c, d] \longrightarrow \mathbb{R}$ is continuous, then the composite $\varphi \circ f$ is Riemann integrable.

2.3. Total variation

Given a function f on [a, b], define the *total variation* of f to be

$$Vf = \sup\left\{\sum_{k=1}^{n} \left| f(x_{k-1}) - f(x_k) \right| \right\},\$$

where the supremum is taken over all partitions $P = \{x_0, x_1, \dots, x_n\}$ of [a, b].

- (a) If f is continuously differentiable, use the Fundamental Theorem of Calculus to show $Vf \leq \int_a^b |f'|.$
- (b) Use MVT to establish the reverse inequality and conclude that $Vf = \int_a^b |f'|$.

2.4. Let

$$f(x) = \begin{cases} \frac{\sin x}{x}, \ x \neq 0\\ 0, \ x = 0 \end{cases}$$

.

Prove that f is integrable on [-1, 1] and $F(x) = \int_{-1}^{x} f(t)dt$ is differentiable on (-1, 1) and find F'(0).

2.5. Let $f \in \mathcal{R}[a, b]$. Prove that $\int_a^b f^2(x) dx = 0$ if and only if f(x) = 0 at all point $x \in [a, b]$, at which f is continuous.

2.6. Bonus problem.

Let $f \in \mathcal{R}[a, b]$. Prove that there exists a sequence of functions φ_n continuous on [a, b] s.t. $\int_a^b |\varphi_n(x) - f(x)| \longrightarrow 0 \text{ when } n \longrightarrow \infty.$