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4.1. (a) Show that Z =5 for x € (0, 2m).
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Hint: Use 5.14 and 5.39 in the script posted online.
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(b) Use (a) to show that E COS;M = <$ 5 W) - %, x € [0,27], and in particular
n
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Hint: Use 4.29 for [a,b] C (0,27).

4.2. Fourier series. Prove the following statements:
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(a) If f e C([0,1]) with f(n) =0 for all n € Z, then f(x) =0 for all x € [0, 1].
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(b) We showed that for f € R([0,1]) we have Z |f(n)|2 = / |f(z)|? dz. Give a
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counterexample to Z lf(n)] = / |f(z)| dx. Check for your counterexample that
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Z |f(n)\2 = /1 |f(z)|? dz is correct.
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(c) If f e C([0,1]) with Z |f(n)| convergent, then S(f, N) — f uniformly (and
therefore pointwise). o
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(d) If f € R([0,1]) with Y [f(n)| convergent, then f(0) = f(1).
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(e) If f € C([0,1]) with Z Inf(n)| convergent, then f € C([0,1]) and f(t) =

n=—oo
o0

271 Z nf(n)e%mt.

n=—oo



4.3. Partial derivatives.

(a) Consider the function
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and the induced functions
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e Show that Fy,, z¢o € R, and Fy,, yo € R, are differentiable on R.
e Show that F is not continuous at (0,0) (consequently, it is not differentiable at

(0,0)).

(b) Show that the function
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z2+y?
(0,0)

F:R>? —R
’(:p’y)r—>{ O for (x7y)

is differentiable at (0,0), but its partial derivatives are discontinuous at (0, 0).



