Jacobs University Bremen School of Engineering and Science Götz Pfander, Sergei Markouski, Alex Sava

Spring Term 2008

Analysis II — Problem Set 6 Issued: 11.03.08 Due: 26.03.08

6.1. Introducing new independent variables u, v and a new function $\omega(u, v)$, simplify the equation

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} - 2z = 0,$$

given that

$$u = \frac{x}{y}, v = \frac{x^2 + y^2}{2}, w = \frac{xy}{z}.$$

6.2. We say that $f : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}$ is homogeneous of degree $\alpha > 0$ if

$$f(\lambda x) = \lambda^{\alpha} f(x) \quad \text{for all } \lambda > 0 \text{ and } x \neq 0.$$
 (1)

Show that for any homogeneous and differentiable function $f: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}$ we have

$$\sum_{j=1}^{n} x_j \frac{\partial f}{\partial x_j}(x) = \alpha f(x).$$

6.3. Assume that $f : [a,b] \times (c,d) \longrightarrow \mathbb{R}$ is continuous and $\frac{\partial f}{\partial y}$ exists and is continuous on $[a,b] \times (c,d)$. Show that then $F(y) = \int_a^b f(x,y) \, dx$ is $C^1(c,d)$, and

$$F'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) \, dx, \quad y \in (c, d).$$

- **6.4.** (a) Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be differentiable with $||(Df)_x||_{\mathcal{L}} \le c < 1$ for all $x \in \mathbb{R}^n$. Show that f has a fixed point.
 - (b) Apply the above to show that

$$f(x,y) = \begin{pmatrix} \frac{\cos x}{2} \\ \frac{x+y}{4} \end{pmatrix}, \quad (x,y) \in \mathbb{R}^2,$$

has a fixed point.

- **6.5.** Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$, be a differentiable function, $v = (v_1, ..., v_n) : U \to \mathbb{R}^n$ be a differentiable vector field.
 - (a) Prove that $\operatorname{div}(fv) = \langle \operatorname{grad} f, v \rangle + f \operatorname{div} v$.
 - (b) Find div *F* for a vector field $F : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$, $F(x) = \frac{x}{\|x\|}$.
- **6.6.** Let $U \subset \mathbb{R}^3$ be open and $f: U \to \mathbb{R}$, be a twice differentiable function, $v: U \to \mathbb{R}^3$ be a twice differentiable vector field.
 - (a) Show that rot grad f = 0.
 - (b) Show that div rot v = 0.