Analysis II — Problem Set 9 Issued: 15.03.08 Due: 23.03.08

9.1. Lagrange Multipliers.

Let $f, h \in C^1(U), U \subseteq \mathbb{R}^n$ open, be given with $\nabla f(a) = (Df)_a \neq 0$ and h(a) > h(x) for all $x \in B_{\epsilon}(a) \cap \{x : f(x) = 0\}, \epsilon > 0$. Then $\nabla f(a) = \lambda \nabla g(a)$ for some $\lambda \in \mathbb{R}$. Such λ is called *Lagrange Multiplier*.

Hint: W.l.o.g., assume that $\frac{\partial f}{\partial x_n} \neq 0$ and consider $U \subseteq \mathbb{R}^{n-1} \times \mathbb{R}$. The implicit function theorem provides a function g. Differentiation of the equation $f(x_1, \ldots, x_{n-1}, g(x_1, \ldots, x_{n-1})) = 0$ and the function $H(x_1, \ldots, x_{n-1}) = h(x_1, \ldots, x_{n-1}, g(x_1, \ldots, x_{n-1}))$ at (a_1, \ldots, a_{n-1}) provides two equations which combine to proof the result.

9.2. Find maxima and minima of the function $f(x, y) = 4x^2 - 3xy$ on the disk $D = \{(x, y) : \|(x, y)\| \le 1\}$.

Hint: Consider first extrema on D° and then on ∂D .

9.3. Admissible sets.

A set $E \in \mathbb{R}^n$ is called admissible, if it is bounded (i.e. contained in some rectangle R) and if it's boundary ∂E is a zero set. The volume of an admissible set is defined to be

$$\operatorname{vol}(E) := \int_E 1 \cdot dx := \int_{R \supset E} \chi_E(x) dx,$$

where χ_E is a characteristic function.

Let $E \in \mathbb{R}^n$ be some admissible set, contained in some rectangle R. Show that

$$\operatorname{vol}(E) = \sup \{ \sum_{\substack{I \subset E \\ I \in G}} |I| : G \text{ is a grid on } R, I \text{ are subrectangles of the grid } G \}.$$

Also prove: Given $\epsilon > 0$, there exist δ such that if mesh $G < \delta$, then

$$\left| \operatorname{vol}\left(E \right) - \sum_{I \subset E} \left| I \right| \right| < \epsilon,$$

the sum being taken over all subrectangles I of G contained in E. Finally, prove that

$$\operatorname{vol}(E) = \inf_{P} \sum_{I \cap E \neq \emptyset} |I|,$$

the sum now being taken over all subrectangles I of the grid G having a non-empty intersection with E.

Hint: Use Darboux sums and Darboux integrals with respect to the function χ_E .

9.4. Integral over a set.

Riemann integral of a function over an admissible set E is defined to be

$$\int_E f(x)dx := \int_{R\supset E} f\chi_E(x)dx,$$

where R is an arbitrary rectangle, containing E. Assuming that $m \leq f(x) \leq M$ for any $x \in E$, show that

$$m \cdot \operatorname{vol}(E) \le \int_{E} f(x) dx \le M \cdot \operatorname{vol}(E).$$

Given additionally that f is continuous on E, prove that

$$\lim_{n \longrightarrow \infty} \left(\int_E f^n(x) dx \right)^{1/n} = \sup_{x \in E} f(x).$$

9.5. In the derivation of Fubini's theorem it is observed that for all $y \in [c,d] \subset Y$, where Y is a zero set, the lower and upper integrals with respect to x agree, $\underline{F}(y) = \overline{F}(y)$. One might think that the values of \underline{F} and \overline{F} on Y have no effect on their integrals. Not so. Consider the function defined on the unit square $[0,1] \times [0,1]$,

$$f(x,y) = \begin{cases} 1 & \text{if } y \text{ is irrational,} \\ 1 & \text{if } y \text{ is rational and } x \text{ is irrational,} \\ 1 - \frac{1}{q} & \text{if } y \text{ is rational and } x = \frac{p}{q} \text{ is rational and written in lowest terms.} \end{cases}$$

- (a) Show that f is Riemann integrable, and its integral is 1.
- (b) Observe that if $Y = \mathbb{Q} \cap [0, 1]$, then for each y which is not in Y,

$$\int_0^1 f(x,y)dx$$

exists and equals 1.

(c) Observe that if for each $y \in Y$ we choose in a completely arbitrary manner some $h(y) \in [\underline{F}(y), \overline{F}(y)]$ and set

$$H(y) = \begin{cases} \underline{F}(y) = \overline{F}(y) & \text{if } y \text{ not in } Y, \\ h(y) & \text{if } y \in Y. \end{cases}$$

then the integral of H exists and equals 1, but if we take

$$G(y) = \begin{cases} \underline{F}(y) = \overline{F}(y) & \text{if } y \text{ not in } Y \\ 0 & \text{if } y \in Y. \end{cases}$$

the integral does not exist.

9.6. Bonus problem. Let $A \subset \mathbb{R}^2$ be a Jordan measurable set in the *xy*-plane contained in the half-plane $\{(x, y) : y \geq 0\}$ and let V be a subset of \mathbb{R}^3 obtained by revolving the set A about the x-axis. Prove that the volume of V is equal to $\int_V 2\pi y dx dy$.