Jacobs University School of Engineering and Science Götz Pfander

Functional Analysis — Final Exam 26.5.10

Points achieved beyond 100 are Bonus Points.

F1. Let P be a bounded map on the normed space X satisfying $P^2 = P$.

- (a) Show that either ||P|| = 0 or $||P|| \ge 1$.
- (b) Show that $\ker P$, range P are closed.
- (c) Show that $X \cong \ker P \oplus \operatorname{range} P$, that is, any $x \in X$ can be written uniquely as y + zwith $y \in \ker P$ and $z \in \operatorname{range} P$, and X is topological isomorph to $\ker P + \operatorname{range} P$, each equipped with the relative topology. (For the topological part, you may want to show that $x_n = y_n + z_n \longrightarrow x = y + z$ in X if and only if $y_n \longrightarrow y$ in ker P and $z_n \longrightarrow z$ in range P.)
- (d) Show that if X is a separable Hilbert space and U a closed linear subspace of X, then exists a bounded map Q on X with $Q^2 = Q$ and range Q = U. (Note, this assertion does not necessarily hold in Banach spaces.)

F2. Let $\|\cdot\|$ and $\|\cdot\|\|$ be two norms on the vector space X, both making X a Banach space. Show that if for some M > 0 we have $\|x\| \le M \||x\|\|$ for all $x \in X$, then both norms are equivalent. (2)

F3. Let X be a Banach space, $S, T \in \mathcal{B}(X)$, then for $\lambda \in \rho(S) \cap \rho(T)$ we have

$$R_{\lambda}(S) - R_{\lambda}(T) = R_{\lambda}(S)(S - T)R_{\lambda}(T).$$

F4. Let H_1 and H_2 be separable Hilbert spaces and let $T: H_1 \longrightarrow H_2$ be a compact operator.

- (a) Show that T^*T is a compact, positive, and self adjoint on H_1 .
- (b) For any compact, positive, self adjoint operator A on a Hilbert space exists a unique positive, self adjoint operator B with $B^2 = A$. Denote B by $A^{\frac{1}{2}}$.
- (c) Let $|T| = (T^*T)^{\frac{1}{2}}$ and define $U \in \mathcal{B}(\operatorname{range} |T|, \operatorname{range} T)$ by setting U(|T|x) = Tx for $y = |T|x \in \operatorname{range} |T|$. Show that U is isometric and extends to $U' \in \mathcal{B}(\operatorname{range} |T|, \operatorname{range} T)$, and, by setting U'x = 0 for $x \in (\operatorname{range} |T|)^{\perp}$, we obtain (the polar decomposition) T = U|T|.

(Hint: First show |||T|x|| = ||Tx|| for all x.)

(d) Show that there exists an ONB $\{e_1, e_2, e_3, \ldots\}$ of H_1 and an ONB $\{f_1, f_2, f_3, \ldots\}$ of H_2 , as well as a sequence (of so-called singular values) $s_1 \ge s_2 \ge s_3 \ge \ldots \ge 0$ with $s_k \to 0$ as $k \to \infty$ and

$$Tx = \sum_{k=1}^{\infty} s_k \langle x, e_k \rangle f_k, \quad x \in H_1.$$
(30)

F5. Let X be a reflexive Banach space.

- (a) Show that ball $X = \{x : ||x|| \le 1\}$ is weakly compact, that is, compact with respect to the topology $\sigma(X, X^*)$.
- (b) Show that every weakly Cauchy sequence, that is, a sequence $\{x_n\}$ with $\{\langle x_n, x^* \rangle\}$ is Cauchy in \mathbb{F} for all $x^* \in X^*$, converges weakly to some $x \in X$. (30)

Spring Term 2010

(25)

(20)

(20)

$$(\mathbf{50})$$