Jacobs University School of Engineering and Science Götz Pfander

Functional Analysis —Midterm 1 22.3.10

- **MT1.** Let *H* be a separable Hilbert space. Show that for $A : H \longrightarrow H$ hermitian, we have I + iA is invertible.
- **MT2.** Show that the space $l^1(\mathbb{N})$ is of first category in $l^2(\mathbb{N})$.
- **MT3.** Let $w \in C(\mathbb{R})$ be real valued and let $\langle f, g \rangle_w = \int f(x)\overline{g(x)}w(x) dx$. Define a Hilbert space H_w using this sesquilinear form. Under which conditions is this in fact a Hilbert space? Under which conditions does it equal $L^2(\mathbb{R})$, that is, under which conditions does it define an equivalent norm?
- **MT4.** Let X be a Banach space and $U \subseteq X$ closed. Let $S \in \mathbb{B}(U, l^{\infty}(\mathbb{N}))$. Show that there exists $T \in \mathbb{B}(X, l^{\infty}(\mathbb{N}))$ with T restricted to U is S and ||T|| = ||S||. (Tip, apply Hahn Banach to $l_n : u \mapsto (Su)_n$.)
- **MT5.** For X, Y normed spaces, we say that a bounded linear map $T: X \longrightarrow Y$ is Fredholm if
 - (a) Kernel(T) is finite dimensional.
 - (b) Image(T) is closed and finite codimensional.

Show that the right shift and the left shift operators on $l^2(\mathbb{N})$ are Fredholm. Moreover, show that for any compact operator $u: X \longrightarrow Y$ we have I - u is Fredholm.