Blatt 6 Aufgabe 1

"⇒": Sei Φ nicht injektiv, d.h. Kern Φ \neq {0}. Dann gibt es ein 0 \neq p \in Kern Φ mit p = 0 μ -f.ü. auf supp μ . Es hat p nur endlich viele Nullstellen $(x_k) \subset X$. Nun gilt für μ -fast alle $x \in$ supp μ , dass p(x)=0, d.h. $x=x_k$ für ein k=0,...,n. Die Menge supp $\mu \setminus (x_k) \subset \{p \neq 0\}$ ist also eine μ -Nullmenge. Da supp μ das Komplement der größten offenen μ -Nullmenge ist, muss supp $\mu \subset (x_k)$ gelten, und insbesondere ist supp μ endlich. Somit muss μ von der Form

$$\mu = \sum_{k=0}^{n} c_k \delta_{x_k}$$

sein.

"⇐": Sei

$$\mu = \sum_{k=0}^{n} c_k \delta_{x_k}.$$

Setze

$$p := \prod_{k=0}^{n} (id - x_k).$$

Dann ist $\int |p|^2 d\mu = 0$, also Kern $\Phi \neq \{0\}$.

Funktional-Analysis Zettel 6 Aufgabe 2

Diese Aufgabe liefert zusammen mit Aufgabe 3 den Beweisschritt $(ii) \Rightarrow (iii)$ in Hauptsatz (1.13). In Worten heißt dies, dass die durch die Rodrigues-Formel gegebene Polynome p_k jeweils die k-te hypergeometrische Differentialgleichung erfüllen.

In dieser Aufgabe zeigen wir, dass der Grad von p in der Rodriguesformel kleiner gleich zwei ist. Damit können wir dann in Aufgabe 3 mittels eines feinen Tricks (Leibniz) die Behauptung zeigen.

Teil a):

Sei
$$q = \sum_{j=0}^{n} c_j \operatorname{id}^j$$
 mit $c_n \neq 0$ und $n \geq 2$ gegeben.

$$\Rightarrow \partial^2 q = \sum_{j=2}^{n} c_j j(j-1) \operatorname{id}^{j-2}$$

$$\Rightarrow \deg(q \partial^2 q) = \deg(\sum_{j=0}^{n} c_j \operatorname{id}^j \sum_{j=2}^{n} c_j j(j-1) \operatorname{id}^{j-2})$$

$$\stackrel{\deg}{=}^{2^2} \deg(\sum_{j=0}^{2n-2} d_j \operatorname{id}^j) = 2n-2$$
Es gilt $d_{2n-2} = c_n^2 \cdot n \cdot (n-1) \neq 0$ da Koeffizienten aus Körper (nullteilerfrei).

Teil b):

Rodrigues-Formel für p_1 :

$$p_1 = \frac{1}{d_1 \varrho} \partial(\varrho p) = \frac{(\partial \varrho) p}{d_1 \varrho} + \frac{\partial p}{d_1} \quad \Rightarrow \quad \frac{\partial \varrho}{\varrho} p = d_1 p_1 - \partial p$$

Daraus folgt auch: $\partial^2(\varrho p) = d_1 \partial(\varrho p_1)$

Nun zur Rodrigues-Formel für p_2 :

$$d_{2}\varrho p_{2} = \partial^{2}(\varrho p^{2}) = \partial^{2}(\varrho p \cdot p) = \partial(\partial(\varrho p) \cdot p + \varrho p \partial p)$$
$$= \partial^{2}(\varrho p)p + 2\partial(\varrho p)\partial p + \varrho p \partial^{2} p$$
$$\stackrel{R.-F.f\"{u}r}{=} {}^{p_{1}} d_{1}\partial(\varrho p_{1})p + 2d_{1}\varrho p_{1}\partial p + \varrho p \partial^{2} p$$

Teilen durch ϱ liefert:

$$\frac{d_1p}{\rho}\partial\varrho p_1 + d_1p\partial\varrho p_1 + 2d_1p_1\partial\varrho p + p\partial^2\varrho p = d_2\varrho p_2$$

Daraus folgt:

$$p\partial^2 p = d_2 p_2 - 2d_1 p_1 \partial p - d_1 p \partial p_1 - d_1 p \frac{\partial \varrho}{\partial p_1}$$

Nochmaliges Anwenden der Rodrigues-Formel für p_1 liefert:

$$p\partial^{2}p = d_{2}p_{2} - 2d_{1}p_{1}\partial p - d_{1}p_{1}\partial p - d_{1}p\partial p_{1} - (d_{1}p_{1})^{2} + d_{1}p_{1}\partial p$$
$$= d_{2}p_{2} - d_{1}p_{1}\partial p - d_{1}p\partial p_{1} - d_{1}^{2}p_{1}^{2}$$

Nehmen wir einmal an, dass deg p > 2. Dann können wir erst recht Teil a) anwenden, d.h. $\deg(\partial^2 p \cdot p) = 2 \deg p - 2$:

Folgendes gilt:
$$p\partial^2 p = \underbrace{d_2 p_2 - d_1^2 p_1^2}_{\text{deg} \leq 2} - \underbrace{d_1 p_1 \partial p - d_1 p \partial p_1}_{\text{deg} \leq \text{deg } p}$$

Fall $\deg p_1 < 0$: Es folgt sofort ein Widerspruch, denn p_1 ist Nullpolynom. Fall $\deg p_1 = 0$: Widerspruch, denn es müsste $\deg p\partial^2 p = \deg p - 1 = 2\deg p - 2 \Leftrightarrow \deg p = 1$ gelten.

Fall deg $p_1 = 1$: Widerspruch, denn es müsste 2 deg $p - 2 \le \deg p$ $\Leftrightarrow \deg p \le 2$ gelten.

Insgesamt folgt: $\deg p \leq 2$

Lösungsblatt 6

Aufgabe 3

(a) Es gilt

$$\partial^{k+1}\left(arrho p^{k}
ight)=\partial\left(arrho\cdotrac{1}{arrho}\partial^{k}\left(arrho p^{k}
ight)
ight)=rac{\partialarrho}{arrho}\cdot\partial^{k}\left(arrho p^{k}
ight)+arrho\cdot d_{k}\partial p_{k}\;,$$

also folgt

$$-d_k\varrho\cdot Lp_k=\partial\left(\varrho p\cdot d_k\partial p_k\right)=\partial\left(-\frac{p\partial\varrho}{\varrho}\cdot\partial^k\left(\varrho p^k\right)+p\cdot\partial^{k+1}\left(\varrho p^k\right)\right)=(*)\;\;.$$

Da $\frac{p\partial\varrho}{\varrho} = d_1p_1 - \partial p$, folgt weiter

$$(*) = \left(\partial^2 p - d_1 \partial p_1\right) \cdot \partial^k \left(\varrho p^k\right) + \left(2\partial p - d_1 p_1\right) \cdot \partial^{k+1} \left(\varrho p^k\right) + p \cdot \partial^{k+2} \left(\varrho p^k\right).$$

(b) Es gilt

$$p\partial (\varrho \cdot p^k) = (p\partial \varrho + k\varrho \partial p) \cdot p^k = [d_1p_1 + (k-1)\partial p] \cdot \varrho p^k$$
.

Insbesondere

$$\partial^{k+1} \left(p \partial \left(\varrho p^k \right) \right) = \partial^{k+1} \left[\left(d_1 p_1 + (k-1) \partial p \right) \cdot \varrho p^k \right] \tag{**}$$

Nach Aufgabe 2 (ii) ist deg $p \leq 2$ und folglich deg $[d_1p_1 + (k-1)\partial p] \leq 1$ Durch Anwendung der Leibnizformel auf beiden Seiten der Gleichung (**) folgt

$$p \cdot \partial^{k+2} \left(\varrho p^k \right) + (k+1) \cdot \partial p \cdot \partial^{k+1} \left(\varrho p^k \right) + \frac{k \left(k+1 \right)}{2} \cdot \partial^2 p \cdot \partial^k \left(\varrho p^k \right) =$$

$$= \left(d_1 p_1 + (k-1) \, \partial p\right) \cdot \partial^{k+1} \left(\varrho p^k\right) + (k+1) \cdot \left(d_1 \partial p_1 + (k-1) \, \partial^2 p\right) \cdot \partial^k \left(\varrho p^k\right) \ .$$

Damit

$$(2\partial p - d_1 p_1) \cdot \partial^{k+1} \left(\varrho p^k \right) + p \cdot \partial^{k+2} \left(\varrho p^k \right) = (k+1) \cdot \left[d_1 \partial p_1 + \left(\frac{k}{2} - 1 \right) \partial^2 p \right] \cdot \partial^k \left(\varrho p^k \right) .$$

Durch Einsetzen in die Gleichung aus (i) folgt

$$Lp_k = -\frac{1}{d_k \varrho} \left[k d_1 \partial p_1 + \left(\frac{k (k+1)}{2} - k \right) \partial^2 p \right] \cdot \partial^k \left(\varrho p^k \right) = -k \cdot \left[d_1 \partial p_1 + \frac{k-1}{2} \partial^2 p \right] \cdot p_k ,$$

also die Behauptung.

Lösungsblatt 7

Aufgabe 1 (a) Es gilt

$$L_k^{(\alpha)} = \frac{1}{k!} \sum_{j=0}^k {k \choose j} \left[\prod_{l=0}^{j-1} (\alpha + k - l) \right] \cdot id^{k-j} \cdot (-1)^{k-j} ,$$

und die Orthogonalitätsrelation. Damit folgt

$$\left(L_k^{(\alpha)} \middle| L_k^{(\alpha)}\right) = \left(\frac{\mathrm{id}^k \cdot (-1)^k}{k!} \middle| L_k^{(\alpha)}\right) =$$

$$= \frac{(-1)^k}{k!} \int_0^\infty \frac{\mathrm{id}^k}{k!} \cdot \partial^k \left(\mathrm{id}^{\alpha+k} \cdot e^{-\mathrm{id}}\right) d\lambda = \frac{1}{k!} \int_0^\infty \frac{\partial^k \left(\mathrm{id}^k\right)}{k!} \cdot \mathrm{id}^{\alpha+k} \cdot e^{-\mathrm{id}} d\lambda =$$

$$= \frac{1}{k!} \cdot \int_0^\infty \mathrm{id}^{\alpha+k} \cdot e^{-\mathrm{id}} d\lambda = \frac{(\alpha+k)!}{k!}$$

und somit die Behauptung.

(b) Nach Theorem 1.9 genügt es, die Parseval-Gleichung zu zeigen. Die Behauptung folgt, indem man

$$c_k := \left(\left. \widetilde{L}_k^{(\alpha)} \right| e^{-n \cdot \mathrm{id}} \right)$$

setzt. Für alle $n \in \mathbb{N}$ gilt

$$\left\| e^{-n \cdot \mathrm{id}} \right\|_{2,\varrho}^2 = \int_0^\infty x^\alpha \cdot e^{-(2n+1) \cdot x} \, dx = \frac{1}{(2n+1)^{\alpha+1}} \cdot \int_0^\infty y^\alpha \cdot e^{-y} \, dy = \frac{\alpha!}{(2n+1)^{\alpha+1}} \, .$$

Der k-te Fourier-Koeffizient von $e^{-n \cdot id}$ ergibt sich zu

$$\begin{split} \left(\left.\widetilde{L}_{k}^{(\alpha)}\right|e^{-n\cdot\mathrm{id}}\right) &= \sqrt{\frac{k!}{(\alpha+k)!}}\cdot\int_{0}^{\infty}L_{k}^{(\alpha)}\left(x\right)\cdot e^{-n\cdot x}\cdot\varrho\left(x\right)\,dx = \\ &= \sqrt{\frac{k!}{(\alpha+k)!}}\cdot\frac{1}{k!}\cdot\int_{0}^{\infty}\partial^{k}\left(x^{\alpha+k}\cdot e^{-x}\right)\cdot e^{-n\cdot x}\,dx = \\ &= \frac{(-1)^{k}}{\sqrt{k!\cdot(\alpha+k)!}}\cdot\int_{0}^{\infty}x^{\alpha+k}\cdot e^{-x}\cdot\partial^{k}\left(e^{-n\cdot x}\right)\,dx = \\ &= \frac{n^{k}}{\sqrt{k!\cdot(\alpha+k)!}}\cdot\int_{0}^{\infty}x^{\alpha+k}\cdot e^{-(n+1)\cdot x}\,dx = \end{split}$$

$$= \frac{n^k}{\sqrt{k! \cdot (\alpha+k)!} (n+1)^{\alpha+k+1}} \cdot \int_0^\infty y^{\alpha+k} \cdot e^{-y} \, dy =$$

$$=\frac{n^k\left(\alpha+k\right)!}{\sqrt{k!\cdot(\alpha+k)!}\left(n+1\right)^{\alpha+k+1}}=\sqrt{\frac{(\alpha+k)!}{k!}}\cdot\frac{1}{\left(n+1\right)^{\alpha+1}}\cdot\left(\frac{n}{n+1}\right)^k\;.$$

Es gilt aber mit $t = \left(\frac{n}{n+1}\right)^2 \in [0,1]$

$$\frac{(n+1)^{\alpha+1}}{(2n+1)^{\alpha+1}} = (1-t)^{-(\alpha+1)} = \sum_{k=0}^{\infty} {-\alpha-1 \choose k} \cdot (-1)^k \cdot t^{2k} = \frac{1}{\alpha!} \sum_{k=0}^{\infty} \frac{(\alpha+k)!}{k!} \left(\frac{n}{n+1}\right)^{2k} ,$$

da

$$\binom{\alpha+k}{k} = \prod_{j=1}^{k} \frac{\alpha+k-j+1}{j} = (-1)^{k} \cdot \prod_{j=1}^{k} \frac{-(\alpha+1)-(k-j+1)+1}{j} = (-1)^{k} \cdot \prod_{j=1}^{k} \frac{-(\alpha+1)-(k-j$$

$$= (-1)^k \cdot \prod_{i=1}^k \frac{-(\alpha+1) - i + 1}{p} = (-1)^k \cdot {\binom{-(\alpha+1)}{k}},$$

wobei die Substitution i = k - j + 1 angewandt wurde. Dies zeigt die Parsevalrelation und damit die Behauptung.

(c) Offenbar bilden die $\widetilde{L}_k^{(\alpha)}$ ein Orthonormalsystem. Es reicht also Totalität zu zeigen. Die Abbildung

$$\Phi: \mathbf{L}^2([0,1[,(-\ln)^{\alpha}) \longrightarrow \mathbf{L}^2(\mathbb{R}_{+}^*,\rho): f \longmapsto f \circ e^{-\mathrm{id}}$$

ist eine Isometrie, da

$$e^{-id} \left[(-\ln)^{\alpha} \cdot \lambda_{[0,1]} \right] = id^{\alpha} \cdot \left| \det \partial e^{-id} \right| \cdot \lambda_{\mathbb{R}_{+}} = \varrho \cdot \lambda_{\mathbb{R}_{+}}.$$

Insbesondere gilt

$$\int_0^1 (-\ln)^{\alpha} d\lambda = \int_0^{\infty} id^{\alpha} \cdot e^{-id} d\lambda.$$

Für $-1 < \alpha < 0$ ist

$$0 \leqslant \int_0^\infty \mathrm{id}^\alpha \cdot e^{-\mathrm{id}} \, d\lambda \leqslant \int_0^1 x^\alpha \, dx + \int_1^\infty e^{-x} \, dx = \frac{x^{\alpha+1}}{\alpha+1} \Big|_{x=0}^1 - e^{-x} \Big|_1^\infty = \frac{1}{\alpha+1} - \frac{1}{e} < \infty \ .$$

Für $\alpha \ge 0$ gibt es ein x_0 , so dass $(1+x^2) x^{\alpha} e^{-x} \le 1$ für alle $x \ge x_0$, also

$$0 \leqslant \int_0^\infty \mathrm{id}^\alpha \cdot e^{-\mathrm{id}} \, d\lambda \leqslant \int_0^{x_0} x^\alpha \cdot e^{-x} \, dx + \int_0^\infty \frac{dx}{1+x^2} \leqslant x_0 \cdot \|\varrho\|_\infty + \frac{\pi}{2} < \infty .$$

Damit ist das Maß $(-\ln)^{\alpha} \cdot \lambda_{[0,1]}$ endlich. Das Intervall]0,1[ist beschränkt, also ist \mathcal{P} in $\mathbf{L}^2(]0,1[,(-\ln)^{\alpha})$ dicht, die Folge $(\mathrm{id}^n)_{n\in\mathbb{N}}$ also total. Deren Bild $(e^{-n\,\mathrm{id}})_{n\in\mathbb{N}}$ unter Φ ist in $\mathbf{L}^2(\mathbb{R}_+^*,\varrho)$ total. Aber $e^{-n\,\mathrm{id}}$ liegt im Abschluss des Aufspanns der $L_k^{(\alpha)}$. Damit folgt die Behauptung.

Aufgabe 2

(a) Definiere

$$S\xi = \check{\xi}$$
 für alle $\xi \in \mathbf{L}^2(\mathbb{R}, e^{-\mathrm{id}^2})$.

Es gilt $S^2 = 1$ und

$$||S\xi||^2 = \int_{\mathbb{R}} |\xi(-x)|^2 e^{-x^2} dx = \int_{\mathbb{R}} |\xi(x)|^2 e^{-(-x)^2} dx = ||\xi||^2.$$

Damit gilt für $P_{\pm}=\frac{1}{2}\left(1\pm S\right)$, dass $P_{+}+P_{-}=1$,

$$P_{\pm}^2 = \frac{1}{4} (1 \pm S)^2 = \frac{1}{4} (2 \pm 2S) = P_{\pm} \text{ und } P_{+}P_{-} = (1 + S) (1 - S) = 1 - S^2 = 0$$

sowie

$$||P_{\pm}|| \leqslant \frac{1}{2} (1 + ||S||) \leqslant 1$$

also sind P_{\pm} orthogonale Projektionen, deren Bilder \mathbf{L}_{u}^{2} bzw. \mathbf{L}_{g}^{2} orthogonal aufeinander stehen und deren Summe ganz $\mathbf{L}^{2}\left(\mathbb{R},e^{-\mathrm{id}^{2}}\right)$ ist.

(b) Es gilt $(\xi \circ id^2) \circ \sqrt{\cdot} = \xi$ auf \mathbb{R}_+^* für alle $\xi \in L^2(\mathbb{R}_+^*, id^{-1/2} \cdot e^{-id})$, also ist die Abbildung surjektiv. Isometrie gilt wegen

$$\int_{\mathbb{R}} \left| \xi \left(x^2 \right) \right|^2 e^{-x^2} dx = 2 \int_0^\infty \left| \xi \left(x^2 \right) \right|^2 e^{-x^2} dx = \int_0^\infty \left| \xi \left(x \right) \right|^2 x^{-\frac{1}{2}} e^{-x^2} dx$$

(c) Es gilt $\frac{1}{\sqrt{\cdot}} \cdot \left(\operatorname{id} \cdot \xi \circ \operatorname{id}^2 \right) \circ \sqrt{\cdot} = \xi \operatorname{auf} \mathbb{R}_+^*$ für alle $\xi \in L^2 \left(\mathbb{R}_+^*, \operatorname{id}^{1/2} \cdot e^{-\operatorname{id}} \right)$, also ist die Abbildung surjektiv. Isometre gilt wegen

$$\int_{\mathbb{R}} |x \cdot \xi(x^2)|^2 e^{-x^2} dx = 2 \int_0^\infty x^2 |\xi(x^2)|^2 e^{-x^2} dx = \int_0^\infty |\xi(x)|^2 x \cdot x^{-1/2} e^{-x} dx.$$

- (d) Bezeichne die Isometrien aus (ii) und (iii) mit I_{\pm} . $\left(\widetilde{L}_{k}^{\pm 1/2}\right)$ sind hilbertsche Basen von $\mathbf{L}^{2}\left(\mathbb{R}_{+}^{*},\mathrm{id}^{\mp 1/2}\cdot e^{-\mathrm{id}}\right)$ nach Aufgabe 1, also sind $I_{\pm}\widetilde{L}_{k}^{(\pm 1/2)}$ hilbertsche Basen von $\mathbf{L}_{g/u}^{2}$. Dies ist die Behauptung.
- (e) Setze

$$p_{2k} = I_+ \widetilde{L}_k^{(-1/2)}$$
 und $p_{2k+1} = I_- \widetilde{L}_k^{(+1/2)}$.

Die (p_k) sind eine Familie von Orthogonalpolynomen in $\mathbf{L}^2\left(\mathbb{R}, e^{-\mathrm{id}^2}\right)$, ebenso die Hermitepolynome (H_k) . Daher gilt $H_k \in \mathbb{K} \cdot p_k$ und die (H_k) sind total.

(f) Der Leitkoeffizient von H_k ist 2^k , der von $L_k^{(\pm 1/2)}$ ist $\frac{(-1)^k}{k!}$. Da $H_{2k} \in \mathbb{K} \cdot I_+ L_k^{(-1/2)}$ und $H_{2k+1} \in \mathbb{K} \cdot I_- L_k^{(+1/2)}$, reciht es, die Leitkoeffizienten zu vergleichen. Es folgt

$$H_{2k} = (-1)^k \cdot k! \cdot 4^k \cdot L_k^{(-1/2)} \circ id^2$$

und

$$H_{2k+1} = (-1)^k \cdot k! \cdot 2^{2k+1} \cdot \mathrm{id} \cdot L_k^{(+1/2)} \circ \mathrm{id}^2$$
.

Aufgabe 3 (a) Da μ moderat ist, gibt es μ -integrierbare Mengen $A_k \subset A_{k+1} \subset X$ mit $X \setminus \bigcup_{k=0}^{\infty} A_k \in \mathcal{N}(\mu)$. Es reicht, $f_k = 1_{A_k} \cdot \min(k, f)$ zu setzen.

(b) Sei $\psi \in \mathbf{L}^2(\mu)$ mit $0 < \|\psi\|_2 \le 1$. Es gibt $\varphi_k \in G$ mit $\psi = \lim_k \varphi_k$ in $\mathbf{L}^2(\mu)$. Insbesondere $\|\psi\|_2 = \lim_k \|\varphi_k\|_2$ und für ein $k_0 \in \mathbb{N}$ und alle $k \geqslant k_0$ ist $\varphi_k \neq 0$. Definiere

$$\psi_k = \|\psi\|_2 \cdot \frac{\varphi_k}{\|\varphi_k\|_2} \in G .$$

 $\text{Dann gilt} \left\| \psi_k \right\|_2 \leqslant 1 \text{ und aufgrund der Stetigkeit von} \cdot : \mathbb{K} \times \mathbf{L}^2 \left(\mu \right) \longrightarrow \mathbf{L}^2 \left(\mu \right) \text{ folgt } \psi = \lim_k \psi_k \text{ .}$

(c) Da $|f| \in \mathbf{L}^2(\mu)$ impliziert, dass $f \in \mathbf{L}^2(\mu)$, nehme an, dass $f \geqslant 0$. Sei $\psi \in \mathbf{L}^2(\mu)$ mit $\|\psi\|_2 \leqslant 1$. Mit (ii) gibt es eine Folge $\psi_k \in G$ mit $\|\psi_k\|_2 \leqslant 1$ und $\psi = \lim_k \psi_k$. Nun folgt aus der Cauchy-Schwarz-Ungleichung

$$\int |\psi - \psi_{\ell}| \cdot f_k \, d\mu \leqslant \|\psi - \psi_{\ell}\|_2 \cdot \|f_k\|_2 \longrightarrow 0 \quad (\ell \longrightarrow \infty) ,$$

also $\int |\psi_{\ell} f_k| d\mu \longrightarrow \int |\psi f_k| d\mu$. Es folgt

$$\int^* |\psi| \cdot |f| \ d\mu = \sup_k \lim_{\ell} \int |\psi_{\ell}| \cdot |f_k| \ d\mu \leqslant \sup_{\varphi \in G, \ \|\varphi\|_2 \leqslant 1} \int^* |\varphi| \cdot |f| \ d\mu < \infty,$$

also folgt die Behauptung aus dem Satz der Vorlesung mit $F = \mathbf{L}^{2}(\mu)$.

Funktionalanalysis I Blatt 8, Aufgabe 1

(a) Es ist zu zeigen, dass $\overline{A \times B} = \overline{A} \times \overline{B}$ Bezeichne \mathcal{R} die Menge aller Halbnormen auf $E \times F$, d.h. $\mathcal{R} := \{p \times_{\infty} q \mid p \in \mathcal{P}, q \in \mathcal{Q}\}$

Sei zunächst $(x,y) \in \overline{A} \times \overline{B}$. Es ist zu zeigen, dass jede Kugel im Produktraum um (x,y) einen nicht-leeren Durchschnitt mit $A \times B$ hat. Sei also $R \subset \mathcal{R}$ beliebig mit $|R| < \infty$ und ε_R gegeben. Dann gilt:

$$B_{R}((x,y),\varepsilon_{R}) = \bigcap_{r \in R} B_{r}((x,y),\varepsilon_{r}) = \bigcap_{r \in R} \{(a,b) \in E \times F \mid r((a,b) - (x,y)) \leq \varepsilon_{r}\} =$$

$$= \bigcap_{\max(p,q)=r \in R} \{(a,b) \in E \times F \mid \max(p(a-x),q(b-y)) \leq \varepsilon_{r}\} =$$

$$= \bigcap_{\max(p,q)=r \in R} \{(a,b) \in E \times F \mid p(a-x) \leq \varepsilon_{r} \wedge q(b-y) \leq \varepsilon_{r}\} =$$

$$= \bigcap_{\max(p,q)=r \in R} B_{p}(x,\varepsilon_{r}) \times B_{q}(y,\varepsilon_{r}) = \bigcap_{\max(p,q)=r \in R} B_{p}(x,\varepsilon_{r}) \times \bigcap_{\max(p,q)=r \in R} B_{q}(y,\varepsilon_{r}) =$$

Da $x \in \overline{A}$ und $y \in \overline{B}$, existieren $a \in A \cap U$ und $b \in B \cap V$, also $(a, b) \in B_R((x, y), \varepsilon_R) \cap A \times B$.

Sei umgekehrt $(x,y) \in \overline{A \times B}$. Sei weiter $P \subset \mathcal{P}$ mit $|P| < \infty$ und ε_P sowie $Q \subset \mathcal{Q}$ mit $|Q| < \infty$ und ε_Q gegeben. Man definiert $R := \{p \times_{\infty} q \mid p \in P, q \in Q\}$ und $\varepsilon := \min_{i \in P \cup Q}(\varepsilon_i)$. Dann gilt:

$$B_{P}(x,\varepsilon_{P}) \times B_{Q}(y,\varepsilon_{Q}) \supset \bigcap_{p \in P} B_{p}(x,\varepsilon) \times \bigcap_{q \in Q} B_{q}(y,\varepsilon) =$$

$$= \{a \in E \mid p(a-x) \leq \varepsilon \,\forall \, p \in P\} \times \{b \in F \mid q(b-y) \leq \varepsilon \,\forall \, q \in Q\} =$$

$$= \{(a,b) \in E \times F \mid \max(p(a-x),q(b-y)) \leq \varepsilon \,\forall \, p \in P \,\forall \, q \in Q\} = \bigcap_{r \in R} B_{r}((x,y),\varepsilon) = B_{R}((x,y),\varepsilon)$$

Da $(x,y) \in \overline{A \times B}$, existiert $z \in B_R((x,y),\varepsilon) \cap A \times B$. Daraus folgt die Behauptung.

(b) Sei $P \subset \mathcal{P}$ mit $|P| \leq \infty$ und $r_P \in \mathbb{R}_+^*$. Für alle $p \in P$ ist $D_p(x, r_p) = p^{-1}([0, r_p[)$ offen, da p

stetig und $[0, r_p[$ offen in \mathbb{R}_+ . Also ist $D_P(x, r_P)$ als endlicher Schnitt von offenen Mengen selbst offen. Analog folgt, dass $B_P(x, r_P)$ abgeschlossen ist. Daraus folgt dann:

$$D_P(x,r_P) = D_P(x,r_P)^{\circ}$$
 und $B_P(x,r_P) = \overline{B_P(x,r_P)}$ sowie $\overline{D_P(x,r_P)} \subset B_P(x,r_P)$

Weiter gilt:

$$Rd(D_P) = \overline{D_P} \setminus D_P = \overline{D_P} \cap F \setminus D_P$$

Ohne Einschränkung betrachtet man Kugeln um 0 und definiert

$$R := \{ y \in B_P \mid \exists p \in P \text{ mit } p(y) = r_p \}$$

Es ist nun zu zeigen, dass R genau der Rand von D_P ist.

Sei zunächst $y \in R$. Dann existiert $p \in P$ mit $p(y) = r_p$. Es folgt $y \notin D_P(0, r_P)$, also $y \in F \setminus D_P(0, r_P)$. Man zeigt nun noch, dass y im Abschluss von D_P liegt:

Sei M eine endliche Teilmenge aus \mathcal{P} und ε_M aus \mathbb{R}_+^* gegeben. Für alle $m \in M$ existiert ein c aus]0,1[, s.d. $m(y-cy)=m(y)(1-c)\leq \varepsilon_m$. Für $c=\max_{m\in M}(c_m)$ gilt dann $cy\in B_M(y,\varepsilon_M)$, sowie $p(cy)=cp(y)< r_p$ für alle $p\in P$.

Damit gilt $R \subset \operatorname{Rd}(D_P)$.

Insgesamt gilt also $R = Rd(D_P)$. Daraus folgt die Behauptung:

$$\overline{D_P} = D_P \cup \operatorname{Rd}(D_P) = D_P \cup R = B_P$$
,

somit

$$B_P^{\circ} = \overline{D_P} \setminus \operatorname{Rd}(D_P) = B_P \setminus R = D_P$$
.

Lösungsblatt 8

Aufgabe 2 Sei $\alpha > 0$ und $\varphi \in F$. Es gilt

$$\wedge_{j} q_{j} \left(\alpha \cdot \varphi \right) = \inf_{\sum_{j} \frac{\varphi_{j}}{\alpha} = \varphi} \sum_{j \in J} \alpha \cdot q_{j} \left(\frac{\varphi_{j}}{\alpha} \right) = \alpha \cdot \inf_{\sum_{j} \varphi_{j} = \varphi} \sum_{j \in J} q_{j} \left(\varphi_{j} \right) = \alpha \cdot \wedge_{j} q_{j} \left(\varphi \right) .$$

Insbesondere gilt

$$-\infty < 2 \cdot \wedge_{j} q_{j}(0) = \wedge_{j} q_{j}(0) \leqslant \sum_{j \in J} q_{j}(0) = 0,$$

also $\wedge_j q_j(0) = 0$.

Sei weiter $\psi \in F$. Wann immer $\sum_j \psi_j = \psi$ und $\sum_j \varphi_j = \varphi$, gilt $\sum_j (\varphi_j + \psi_j) = \varphi + \psi$, also

$$\wedge_{j} q_{j} \left(\varphi + \psi \right) \leqslant \sum_{j \in J} q_{j} \left(\varphi_{j} + \psi_{j} \right) \leqslant \sum_{j \in J} q_{j} \left(\varphi_{j} \right) + \sum_{j \in J} q_{j} \left(\psi_{j} \right) .$$

Indem man zunächst zum Infimum über (φ_i) und dann über (ψ_i) übergeht, folgt

$$\wedge_{j}q_{j}(\varphi + \psi) \leqslant \wedge_{j}q_{j}(\varphi) + \wedge_{j}q_{j}(\psi)$$
.

Dies zeigt die Behauptung.

Aufgabe 3

(a) Es gilt mit Analysis, Hauptsatz 17.3,

$$\int_{\mathbb{R}^n}^* \frac{dx}{\left(1+|x|^2\right)^{2s}} = \int_0^{\infty*} \int_0^* \frac{d\lambda_{\mathbb{S}^{n-1}}(\sigma) dr}{(1+r^2)^{2s}}$$
$$= \frac{2\pi^{n/2}}{\Gamma(n/2)} \int_0^{\infty*} \frac{r^{n-1} dr}{(1+r^2)^{2s}} \leqslant \frac{2\pi^{n/2}}{\Gamma(n/2)} \left(1+\int_1^{\infty*} \frac{dr}{r^{1+4s-n}}\right) .$$

Für 4s > n gilt

$$\int_{1}^{\infty*} \frac{dr}{r^{1+4s-n}} = \frac{1}{n-4s} \cdot \frac{1}{r^{4s-n}} \bigg|_{r=1}^{\infty} = \frac{1}{n-4s} < \infty \ ,$$

also folgt die Behauptung aus dem Integrabilitätssatz.

(b) Es gilt für alle $\alpha \in \mathbb{N}^n$ mit $|\alpha| \leq k$

$$\begin{aligned} \left\| \left\langle \mathrm{id} \right\rangle^k \partial^{\alpha} \varphi \right\|_2^2 &= \left\| \left\langle \mathrm{id} \right\rangle^{-2s} \left\langle \mathrm{id} \right\rangle^{2(k+s)} \left| \partial^{\alpha} \varphi \right|^2 \right\|_1 \leqslant \left\| \left\langle \mathrm{id} \right\rangle^{-2s} \right\|_1 \cdot \left\| \left\langle \mathrm{id} \right\rangle^{2(k+s)} \left| \partial^{\alpha} \varphi \right|^2 \right\|_{\infty} \\ &\leqslant \left\| \left\langle \mathrm{id} \right\rangle^{-s} \right\|_2^2 \cdot \left\| \left\langle \mathrm{id} \right\rangle^{k+\lceil s \rceil} \partial^{\alpha} \varphi \right\|_{\infty}^2 \leqslant \left\| \left\langle \mathrm{id} \right\rangle^{-s} \right\|_2^2 \cdot p_{k+\lceil s \rceil} \left(\varphi \right) , \end{aligned}$$

also folgt die Behauptung.

(c) Sei $k \in \mathbb{N}$ und $|\alpha| \leq k$. Zunächst einmal gilt

$$\left\| \langle \mathrm{id} \rangle^k \, \partial^\alpha \varphi \right\|_{\infty} \leqslant \left\| \partial^{(1)} \left(\langle \mathrm{id} \rangle^k \, \partial^\alpha \varphi \right) \right\|_{1} .$$

Weiterhin ist

$$\partial^{(1)} \left(\langle \mathrm{id} \rangle^k \, \partial^\alpha \varphi \right) = \sum_{\beta + \gamma = (1)} \prod_{j=1}^n \frac{1}{\beta_j! \gamma_j!} \cdot \partial^\beta \, \langle \mathrm{id} \rangle^k \cdot \partial^{\alpha + \gamma} \varphi$$

Nun gilt $\beta_i, \gamma_i \in \{0, 1\}$, also $\beta_i! \gamma_i! = 1$. Weiterhin mit $\ell = |\beta|$ und supp $\beta = \{j_1, \dots, j_\ell\}$

$$\partial^{\beta} \langle \mathrm{id} \rangle^{k} = \partial_{j_{1}} \cdots \partial_{j_{\ell}} (1 + |\mathrm{id}|^{2})^{k} = 2k \partial_{j_{1}} \cdots \partial_{j_{\ell-1}} \operatorname{pr}_{j_{\ell}} (1 + |\mathrm{id}|^{2})^{k-1}$$

$$= 4k (k-1) \partial_{j_1} \cdots \partial_{j_{\ell-2}} \operatorname{pr}_{j_{\ell-1}} \operatorname{pr}_{j_{\ell}} \left(1 + |\operatorname{id}|^2 \right)^{k-2} = \cdots = \frac{2^k k!}{(k-|\beta|)!} \operatorname{id}^{\beta} \langle \operatorname{id} \rangle^{k-|\beta|} ,$$

falls $|\beta| \leq k$ und ansonsten 0. Es gilt

$$\left| \operatorname{id}^{\beta} \langle \operatorname{id} \rangle^{k - |\beta|} \cdot \partial^{\alpha + \gamma} \varphi \right| \leqslant \left| \langle \operatorname{id} \rangle^{k} \cdot \partial^{\alpha + \gamma} \varphi \right| = \left| \langle \operatorname{id} \rangle^{-n} \right| \cdot \left| \langle \operatorname{id} \rangle^{k + n} \cdot \partial^{\alpha + \gamma} \varphi \right| ,$$

also folgt $(|\gamma| \leq n)$ mit Cauchy-Schwarz

$$\left\| \partial^{(1)} \left(\langle \operatorname{id} \rangle^k \, \partial^{\alpha} \varphi \right) \right\|_1 \leqslant \sum_{\beta + \gamma = (1), |\beta| \leqslant k} \frac{2^k k!}{(k - |\beta|)!} \left\| \langle \operatorname{id} \rangle^{-n} \cdot \langle \operatorname{id} \rangle^{k+n} \, \partial^{\alpha + \gamma} \varphi \right\|_1 \leqslant C \cdot q_{k+n} (\varphi) ,$$

wobei C definiert ist als

$$C = \left\| \langle \operatorname{id} \rangle^{-n} \right\|_2 \cdot \sum_{\beta + \gamma = (1), |\beta| \leqslant k} \frac{2^k k!}{(k - |\beta|)!}.$$

Da α beliebig war, folgt die Behauptung.

(d) Es gibt Konstanten c, C > 0 mit

$$q_k \leqslant c \cdot p_{k+\lceil \frac{n+1}{4} \rceil} \quad \text{und} \quad p_k \leqslant C \cdot q_{k+n}$$

als sublineare Funktional auf $\mathcal{C}^{(\infty)}(\mathbb{R}^n)$. Für alle $\varphi \in \mathcal{C}^{(\infty)}(\mathbb{R}^n)$ gilt also genau dann $p_k(\varphi) < \infty$ für alle $k \in \mathbb{N}$, wenn $q_k(\varphi) < \infty$ für alle $k \in \mathbb{N}$. Also gilt $\mathcal{S}(\mathbb{R}^n) = \mathcal{S}_2(\mathbb{R}^n)$. Die Gleichheit der Topologien folgt, da die Systeme (p_k) und (q_k) von Halbnormen auf $\mathcal{S} = \mathcal{S}_2$ äquivalent sind.

FA Blatt 8, Aufgabe 4

Teil (a): Sei J ein Intervall in \mathbb{R} und $\lambda \in \mathbb{K}$ $AC(J) = KerD_{\lambda} \oplus KerB$ $\Leftrightarrow B \mid_{KerD_{\lambda}} : KerD_{\lambda} \to B(AC(J))$ bijektiv , wobei $KerD_{\lambda} = \{f \in AC(J) \mid \partial f - \lambda f = 0\} = \langle e^{\lambda \cdot} \rangle$ $B \mid_{KerD_{\lambda}}$ bijektiv $\Leftrightarrow Be^{\lambda} \neq 0$

Teil (b):

Verwende Variation der Konstanten -Ansatz:

$$\begin{split} &f(x) = c(x) \cdot e^{\lambda x}, \text{ wobei } c \in A\mathcal{C}(J) \\ &\Rightarrow \partial f(x) = \partial c(x) e^{\lambda x} + \lambda c(x) e^{-\lambda x} = \lambda c(x) e^{\lambda x} + g(x) \\ &\Rightarrow \partial c(x) = g(x) - e^{-\lambda x} \\ &\Rightarrow c(x) = \int_{[\tau,k]} g(y) e^{-\lambda y} d\lambda(y), \text{ wobei } \tau \in J \\ &\Rightarrow f(x) = e^{\lambda x} \cdot \int_{[\tau,x]} g(y) e^{-\lambda y} d\lambda(y) \end{split}$$

Nebenbedingung (i):

$$f(\tau_0) = 0$$

$$\Rightarrow \kappa(x, y) = 1_{(\tau_0, x)}(y)e^{\lambda(x-y)}$$

Nebenbedingung (ii):

$$\begin{split} f(\tau_0) &= f(\tau_1) \\ f(x) &= (\xi + \int_{[\tau_0, x]} g(y) e^{-\lambda y} d\lambda(y)) \cdot e^{\lambda x} \\ \Rightarrow \xi e^{\lambda \tau_0} &= (\xi + \int_{[\tau_0, \tau_1]} g(y) e^{-\lambda y} d\lambda(y)) \cdot e^{\lambda \tau_1} \\ \Rightarrow \xi &= \frac{e^{\lambda \tau_1}}{e^{\lambda \tau_0} - e^{\lambda \tau_1}} \int_{[\tau_0, \tau_1]} g(y) e^{-\lambda y} d\lambda(y) \\ \Rightarrow \kappa(x, y) &= (1_{(\tau_0, \tau_1)}(y) \frac{1}{e^{\lambda (\tau_0 - \tau_1)} - 1} + 1_{(\tau_0, x)}(y)) \cdot e^{\lambda}(x - y) \end{split}$$

Teil (c):

$$S := R - C \mid_{KerD} \subseteq R$$

 $\forall g \in G : CSg = CRg - CRg = 0$
 $DSg = DRg = g$ (Da R Retraktion)

$$\begin{split} & \text{Teil } (\textbf{d}) \colon \\ & f(x) = (Rg)(x) = e^{\lambda x} \int_{(\tau_0,x)} g(y) e^{-\lambda y} d\lambda(y) \\ & Ker D_{\lambda} = \langle e^{\lambda \cdot} \rangle \\ & Cf = \int_{(\tau_0,\tau_1)} f(x) d\lambda(x) \\ & C^{-1} \mid_{Ker D_{\lambda}} CRg \stackrel{!}{=} k \cdot e^{\lambda}, k \in \mathbb{K} \\ & \Rightarrow k \cdot \int_{(\tau_0,\tau_1)} e^{\lambda x} d\lambda(x) = CRy = \int_{(\tau_0,\tau_1)} e^{\lambda x} \int_{(\tau_0,x)} g(y) e^{-\lambda y} d\lambda(y) d\lambda(x) \\ & \Rightarrow k = \frac{1}{\int_{(\tau_0,\tau_1)} e^{\lambda x} d\lambda(x)} \cdot \int_{(\tau_0,\tau_1)} e^{\lambda x} \int_{(\tau_0,x)} g(y) e^{-\lambda y} d\lambda(y) d\lambda(x) \\ & \Rightarrow (Sg)(x) = (Rg)(x) - ke^{\lambda x} = e^{\lambda x} \cdot \left(\int_{(\tau_0,x)} g(y) e^{-\lambda y} d\lambda(y) - \frac{\int_{(\tau_0,\tau_1)} e^{\lambda z} \int_{(\tau_0,\tau_1)} g(y) e^{-\lambda y} d\lambda(y)}{\int_{(\tau_0,\tau_1)} e^{\lambda z} d\lambda(z)} \\ & \text{Der Z\"{a}hler vereinfacht sich zu:} \\ & \int_{(\tau_0,\tau_1)} g(y)(e^{\lambda(\tau_1-y)} - 1) d\lambda(y) \\ & \text{Also: } \kappa_s(x,y) = (1_{(\tau_0,x)}(y) \cdot e^{-\lambda y} - \frac{1_{(\tau_0,\tau_1)}(y) e^{\lambda(\tau_1-y)} - 1}{\int_{(\tau_0,\tau_1)} e^{\lambda x} d\lambda(x)}) \cdot e^{\lambda x} \end{split}$$

Lösungsblatt 9

Aufgabe 1

(a) Die Abbildung d hat sicherlich positive Werte, ist symmetrisch und translationsinvariant. Sind $\varphi \neq \psi$, so existiert $k \in \mathbb{N}$ mit

$$d(\varphi, \psi) \geqslant \min(p_k(\varphi - \psi), 1) > 0$$
.

Sind $\varphi, \psi, \gamma \in F$, so gilt für alle $k \in \mathbb{N}$

$$p_k(\varphi - \psi) \leqslant p_k(\varphi - \gamma) + p_k(\gamma - \psi)$$
.

Falls also $p_k(\varphi - \gamma)$, $p_k(\psi - \gamma) < 1$, folgt

$$\min (p_k(\varphi - \psi), 1) \leqslant p_k(\varphi - \psi) \leqslant p_k(\varphi - \gamma) + p_k(\gamma - \psi)$$

$$= \min (p_k (\varphi - \gamma), 1) + \min (p_k (\gamma - \psi), 1) .$$

Falls $\times p_k(\varphi - \gamma) \ge 1$, so gilt

$$\min\left(p_{k}\left(\varphi-\psi\right),1\right)\leqslant1\leqslant1+\min\left(p_{k}\left(\gamma-\psi\right),1\right)=\min\left(p_{k}\left(\varphi-\gamma\right),1\right)+\min\left(p_{k}\left(\gamma-\psi\right),1\right).$$

In jedem Fall

$$\frac{1}{k+1}\min\left(p_{k}\left(\varphi-\psi\right),1\right)\leqslant d\left(\varphi,\gamma\right)+d\left(\gamma,\psi\right) \qquad \text{ für alle } k\in\mathbb{N}.$$

Die Dreiecksungleichung für d folgt sofort.

(b) Sei 0 < r < 1. Ist k fest, so ist

$$\left\{ \psi \in F \mid d(\varphi, \psi) \leqslant \frac{r}{k+1} \right\} \subset B_{p_k}(\varphi, r) .$$

Umgekehrt sei $l \in \mathbb{N}$ mit $\frac{1}{l+1} \leqslant r$, dann ist

$$\bigcap_{k \leqslant l} B_{p_k}(\varphi, r) \subset \{ \psi \in F \mid d(\varphi, \psi) \leqslant r \} .$$

Dies liefert die Äquivalenz der Topologien.

(c) Da für jedes $k \in \mathbb{N}$

$$\left\{ \psi \in D \; \left| \; \delta \left(0, \psi \right) < \frac{1}{k+1} \right. \right\}$$

offen ist, existiert eine stetige Halbnorm p_k mit

$$D_{p_k}(0,1) \subset \left\{ \psi \in F \mid \delta(0,\psi) < \frac{1}{k+1} \right\}.$$

Aufgrund der Translationsinvarianz der Metrik δ ist $\mathcal{T}_{(p_k)}$ eine feinere lokal konvexe Topologie auf G als \mathcal{T}_d . Wegen der Stetigkeit der Halbnormen p_n ist $\mathcal{T}_{(p_k)}$ aber auch gröber als \mathcal{T}_d .

(d) Wir verwenden die Metrik d aus Teil (a). Da die Topologien gleich sind, genügt es die Äquivalenz der Cauchy-Eigenschaft zu zeigen.

Sei $(\varphi_n)_{n\in\mathbb{N}}$ zunächst eine (p_k) -Cauchyfolge. Zu $1>\varepsilon>0$ gibt es $l\in\mathbb{N}$ mit $\frac{1}{l+1}\leqslant\varepsilon$ und $n_l\in\mathbb{N}$ mit

$$p_k \left(\varphi_m - \varphi_n \right) \leqslant \varepsilon \quad \text{für alle } k < l \text{ und } m, n \geqslant n_l \ .$$

Für alle $m, n \ge n_l$ gilt dann

$$d\left(\varphi_{m},\varphi_{n}\right)=\sup_{k\in\mathbb{N}}\frac{1}{k+1}\cdot\min\left(p_{k}\left(\varphi_{m}-\varphi_{n}\right),1\right)\leqslant$$

$$\leq \max \left[\max_{k \leq l} p_k \left(\varphi_m - \varphi_n \right), \sup_{k \geq l} \frac{1}{k+1} \right] \leq \varepsilon$$

d.h. $(\varphi_k)_k$ ist eine d-Cauchy-Folge.

Sei umgekehrt $(\varphi_n)_{n\in\mathbb{N}}$ eine d-Cauchy-Folge. Seien $1>\varepsilon>0$ und k gegeben. Es gibt ein $l\in\mathbb{N}$ mit

$$\frac{1}{k+1}p_k(\varphi_m-\varphi_n)\leqslant d(\varphi_m,\varphi_n)\leqslant \frac{\varepsilon}{k+1} \quad \text{für alle } m,n\geqslant l.$$

Es folgt

$$p_k(\varphi_m - \varphi_n) \leqslant \varepsilon$$
 für alle $m, n \geqslant l$.

Somit folgt die Behauptung.

Funktionalanalysis 1 Aufgabe 2, Blatt 9

- 9) Es ist zu zeigen: (F folgenvollständig ⇔ Weierstr. Kriterium gilt, d.h. jede absolut konvergente Reihe konvergiert)
- ⇒ Satz aus Skript
- \Leftarrow : Sei $(\varphi_k)_{k\in\mathbb{N}}$ \subset F Cauchy-Folge. Angenommen der Hinweis gilt

$$\Rightarrow \sum_{l=0}^{\infty} \left(\varphi_{\alpha(l+1)} - \varphi_{\alpha(l)} \right)$$
 konvergent nach Vor. (Weierstr. Kr.)

Es ist:
$$\sum_{l=0}^{\infty} \left(\varphi_{\alpha(l+1)} - \varphi_{\alpha(l)} \right) = \lim_{n \to \infty} \sum_{l=0}^{n} \left(\varphi_{\alpha(l+1)} - \varphi_{\alpha(l)} \right) = \text{(Teleskop-Summe)} \lim_{n \to \infty} \varphi_{\alpha(n+1)} - \varphi_{\alpha(0)}$$

$$\Rightarrow \lim_{n\to\infty} \varphi_{\alpha(n)} = \sum_{l=0}^{\infty} \left(\varphi_{\alpha(l+1)} - \varphi_{\alpha(l)} \right) + \varphi_{\alpha(0)} =: \varphi$$

Es gilt:
$$p_k \left(\varphi_n - \varphi \right) = p_k \left(\varphi_n - \varphi_{\alpha(n)} + \varphi_{\alpha(n)} - \varphi \right) \le p_k \left(\varphi_n - \varphi_{\alpha(n)} \right) + p_k \left(\varphi_{\alpha(n)} - \varphi \right)$$
, somit $\lim_{n \to \infty} \varphi_n = \varphi$.

Beweis des Hinweises:

Sei $(\varphi_n)_{n\in\mathbb{N}}$ Cauchy-Folge in F

Es gibt ein wachsendes abzählbares System von HN, das die Topologie erzeugt,

$$\forall j \in \mathbb{N} \ \exists \ \alpha(j) \ \forall \ k,l \ge \alpha(j) : p_j(\varphi_k - \varphi_l) \le \frac{1}{2^j}, \ \text{OE} \ \alpha \ \text{Teilfolge}.$$

Sei p_i bel. fest

$$\Rightarrow \sum_{j=i}^{\infty} p_i \left(\varphi_{\alpha(j+1)} - \varphi_{\alpha(j)} \right) \leq \sum_{j=i}^{\infty} p_j \left(\varphi_{\alpha(j+1)} - \varphi_{a(j)} \right) \leq \sum_{j=i}^{\infty} \frac{1}{2^j} < \infty ,$$

somit
$$\sum_{l=0}^{\infty} \left(\varphi_{\alpha(l+1)} - \varphi_{\alpha(l)} \right)$$
 absolut konvergent.

Blatt 9 Aufgabe 3

(i) z.z.: A_k abgeschlossen

Seien $f_i \in A_k$ mit $lim_j f_j = f \in C([0,1])$ gleichmäßig. Für alle $j \in IN$ existiert ein $t_j \in [0,1]$ mit

$$\sup_{s \in [0,1] \setminus \{t_j\}} \left| \frac{f_j(t_j) - f(s)}{t_j - s} \right| \le k.$$

Da [0,1] kompakt ist, existiert eine Teilfolge α von IN, so dass $\lim_j t_{\alpha(j)} = t \in [0,1]$. Für alle $s \in [0,1] \setminus \{t\}$ gilt

$$\begin{split} |f(t)-f(s)| &= lim_j \ |f_{\alpha(j)}(t) - f_{\alpha(j)}(s)| = limsup_j \ |f_{\alpha(j)}(t) - f_{\alpha(j)}(t_{\alpha(j)})| + |f_{\alpha(j)}(t_{\alpha(j)}) - f_{\alpha(j)}(s)| \\ &= lim_j \ k \ |t - t_{\alpha(j)}| + k \ |t_{\alpha(j)} - s| = k \ |t - s| \\ &d.h. \end{split}$$

$$\sup_{s \in [0,1] \setminus \{t\}} \left| \frac{f(t) - f(s)}{t - s} \right| \le k$$

also $f \in A_k$.

(ii) z.z: $CA_k \subset C([0,1])$ dicht

Sei $f \in C([0,1])$ und $\epsilon > 0$. Da $C^{(1)}([0,1]) \subset C([0,1])$ dicht ist, existiert ein $g \in C^{(1)}([0,1])$ mit $||f-g||_8 = \epsilon / 2$. Sei m > 4 $(k+||g'||_8) / \epsilon$ mit $m/2 \in IN^*$. Definiere $h:=g+\epsilon / 2$ sin(p m id). Es ist $||h-f||_8 = ||h-g||_8 + ||g-f||_8 = \epsilon / 2 + \epsilon / 2 = \epsilon$. Behauptung: $h \in CA_k$. Nach dem Mittelwertsatz gilt

$$\left|\frac{h(s)-h(t)}{s-t}\right| \ge \frac{\mathbf{e}}{2} \left|\frac{\sin(\mathbf{p}ms)-\sin(\mathbf{p}mt)}{s-t}\right| - \left|\frac{g(s)-g(t)}{s-t}\right| \ge \frac{\mathbf{e}}{2} \left|\frac{\sin(\mathbf{p}ms)-\sin(\mathbf{p}mt)}{s-t}\right| - \left\|g'\right\|_{\infty}.$$

Sei $t \in [0,1]$. Es gibt ein $s \in [0,1]$ mit |s-t|=2 / m und $|\sin(pms)-\sin(pmt)|=1$. Daraus folgt

$$\left|\frac{h(s)-h(t)}{s-t}\right| \ge \frac{\mathbf{e}}{2} \frac{m}{2} - \left\|g\right\|_{\infty} > k.$$

(iii) Nach dem Satz von Baire ist $\bigcap_{k \in IN} CA_k \subset C([0,1])$ dicht. Da

$$\bigcap_{k \in IN} CA_k \subset \{f \in C([0,1]) \mid f \text{ nirgends differenzierbar}\} \subset C([0,1])$$

folgt die Behauptung.

Funktional-Analysis Zettel 10 Aufgabe 1

Sei F ein \mathbb{K} -Vektorraum und sei $H \subset F$ (echt enthaltener UVR) eine Hyperebene, d.h. $F = H + \mathbb{K} \cdot \varphi$ für ein $\varphi \in F$.

Teil a):

Zu zeigen: $\forall \varphi \in F \backslash H \ gilt : F = H \oplus \mathbb{K}.\varphi$

Beweis: Es ex. ein $\varphi \in F \setminus H$ mit $F = H + \mathbb{K}.\varphi$. (Sonst wäre Voraussetzung "echt enthalten" verletzt, denn wegen H VR gilt: $\mathbb{K}.\varphi \subset H \ \forall \varphi \in H$.)

(i) Existenz einer Zerlegung:

Sei
$$\psi \in F \setminus H \subset F \implies \psi = \underbrace{c.\varphi}_{\in \mathbb{K} \setminus \{0\}} + \underbrace{\chi}_{\in H}$$
 Wäre $c = 0$ so wäre $\psi \in H$.

Umformen liefert: $\varphi = \frac{1}{c}(\chi - \psi)$ Sei nun $\eta \in F$ beliebig. Dann gilt:

$$\eta = d.\varphi + \tilde{\chi} = \underbrace{\frac{d}{c}\chi + \tilde{\chi}}_{\in H} - \underbrace{\frac{1}{c}\psi}_{\in \mathbb{K}}$$

(ii) Direktheit:

Angenommen es existiert ein $0 \neq \eta \in H \cap \mathbb{K}.\psi$.

$$\Longrightarrow \eta = c.\psi \ mit \ c \neq 0 \ \implies \underbrace{\frac{1}{c}\eta}_{\in H} = \psi \ \implies \psi \in H$$

Dies ist ein Widerspruch.

Teil b):

Sei F lokal konvex und hausdorffsch. Zu zeigen: $\overline{H} \in \{H, F\}$

Beweis: Angenommen es sei $H \neq \overline{H}$. Dann existiert $\exists \varphi \in \overline{H} \backslash H$. Mit Teil a) folgt $F = H + \mathbb{K}.\varphi \subset \overline{H}$. Da der Abschluss von H auch in F liegt, folgt $F = \overline{H}$.

Teil c):

Zu zeigen: Für jede Linearform $\mu: F \longrightarrow \mathbb{K}, \mu \neq 0$ und jedes $\varphi \in F$ mit $\mu(\varphi) = 1$ gilt: $F = Ker\mu \oplus \mathbb{K}.\varphi$.

Beweis: Zuerst zeigen wir, dass $\mu|_{\mathbb{K},\varphi}$ surjektiv ist.

Sei $a \in \mathbb{K}$ und $\varphi \in F$ mit $\mu(\varphi) = 1$. Da F VR, ist auch $a.\varphi \in F$. Da μ linear ist, gilt: $\mu(a.\varphi) = a$.

(i) Existenz der Zerlegung:

Angenommen es existiert ein $\psi \in F$ so dass gilt: $\psi \notin Ker\mu + \mathbb{K}.\varphi$

Dann gilt: $\mu(\psi) = d \in \mathbb{K} \setminus \{0\}$. Da $\mu|_{\mathbb{K}.\varphi}$ surjektiv existiert $\eta \in \mathbb{K}.\varphi$ so dass gilt: $\mu(\eta) = d$.

$$\Longrightarrow \psi = \underbrace{(\psi - \eta)}_{\in Ker\mu} + \underbrace{\eta}_{\in \mathbb{K}.\varphi} \text{ weil } \mu(\psi - \eta) = \mu(\psi) - \mu(\eta) = d - d = 0$$

Dies ist ein Widerspruch.

(ii) Direktheit: siehe Teil a)

Zusatz:

Zu zeigen: μ stetig \iff $Ker\mu$ abgeschlossen

Beweis:

" \Longrightarrow ": Klar, da $\{0\}$ abgeschlossen in \mathbb{K} und $Ker\mu = \mu^{-1}(\{0\})$

" \Leftarrow ": Sei also $Ker\mu$ abgeschlossen. Mit Hauptsatz (2.8) folgt, dass $F/Ker\mu$ hausdorffsch. Wegen Obigem und wegen des Isomorphiesatzes ist dieser Quotient eindimensional. Also folgt mit Hauptsatz (2.7), dass $F/Ker\mu \cong \mathbb{K}$, d.h. es gibt eine stetige Bijektion $[\mu]$ zwischen $F/Ker\mu$ und \mathbb{K} . Da $\pi: F \longrightarrow F/Ker\mu$ stetig ist und da

$$\begin{array}{ccc} F & \stackrel{\mu}{\longrightarrow} & \mathbb{K} \\ \downarrow \pi & \nearrow_{[\mu]} \\ F/Ker\mu & \end{array}$$

kommutiert ist $\mu = [\mu] \circ \pi$ stetig.

Teil d):

Zu zeigen: Für jedes $\varphi \in \mathcal{K}(\mathbb{R})$ und $\epsilon > 0$ existiert ein $\psi \in \mathcal{K}(\mathbb{R})$ mit

$$\int_{\mathbb{R}} \psi \ d\lambda = 0 \text{ und } \|\varphi - \psi\|_{\infty} \le \epsilon.$$

Beweis: Hier gibt es viele Konstruktionsmöglichkeiten für ψ .

Eine Möglichkeit ist eine "Punktspiegelung" an $x=\max \ supp \ \varphi$ mit einer anschließenden Dehnung. In Formeln heißt dies

$$\psi(t) := \varphi(t) - \frac{\epsilon}{c} \cdot \varphi(\frac{\epsilon}{c}(t-b)) \quad \text{mit } c := \|\varphi\|_{\infty} \text{ und } b := \max \ supp \ \varphi$$

Man kann sonst auch weit außen Kompakta nehmen und Real- und Imaginärteil des Integrals von φ mit Funkionswerten ϵ und $i\epsilon$ abfeiern. Dabei muss man aber noch auf einen stetigen Auf- und Abstieg der Funktion achten, was das Aufschreiben in Formeln erschwert.

Zusatz:

Was bedeutet dies?

- (i) $Ker\mu$ liegt dicht in $\mathcal{K}(\mathbb{R})$ bzgl. $\|\cdot\|_{\infty}$.
- (ii) Da der Abschluss von $Ker\mu$ somit $\mathcal{K}(\mathbb{R})$ wäre, was sicherlich falsch ist, kann $Ker\mu$ nicht abgeschlossen sein, und da $\mathcal{K}(\mathbb{R})$ lokal konvex hausdorffsch ist, kann μ somit nicht stetig sein.

Funktionalanalysis I WS 03/04

Übungsblatt 10, Aufgabe 2

```
(a) Sei (\varphi_k) Cauchyfolge in (\mathcal{K}(X), \mathcal{P}),
wobei \mathcal{P} := \{ \| \cdot \|_{\infty, \rho} : \rho \in (\mathbb{R}_+^{\star})^X \}
Es gilt: (\rho \varphi_k)_{k \in \mathbb{N}} \subset \mathcal{C}^0(X), \forall \rho \in \mathcal{P}
Da (\rho \varphi_k)_{k \in \mathbb{N}} CF in (\mathcal{C}^0(X), \|\cdot\|_{\infty}) ist, gilt:
(\rho \varphi_k)_{k \in \mathbb{N}} \to \varphi_\rho \text{ glm. } \forall \rho \in \mathcal{P}
\varphi_{\rho} \in \mathcal{C}^{0}(X), da diese Menge bzgl. der Sup-Norm vollst. ist.
Ferner ist für festes x \in X(\rho(x)\varphi_k(x)) eine CF in \mathbb{R}
\Rightarrow \varphi_{\rho} = \rho \cdot \varphi \forall \rho
```

Denn $\rho(x)$ lässt sich aus dem Limes herausziehen.

Noch zu zeigen: $\varphi \in \mathcal{K}(X)$

Bew.: Ann: $\varphi \notin \mathcal{K}(X)$

 $\Rightarrow supp(\varphi)$ ist unendliche Menge

 $\Rightarrow supp(\varphi) \setminus K \neq \emptyset$ für jede endliche Menge K

Definiere nun ein spezielles ρ :

$$\rho: X \longrightarrow \mathbb{R}_+^{\star}, x \longmapsto \frac{1}{|\varphi(x)|} \mid_{\{\varphi(x) \neq 0\}}$$

Da $\rho\varphi\in\mathcal{C}^0(X)$ existiert ein endliches K, so dass $\rho(x)\varphi(x)\leq \frac{1}{2}\forall x\notin K$

im Widerspruch dazu, dass es für jedes endliche K ein Element in supp $(\varphi) \setminus K$ mit $\rho(x)\varphi(x) = 1$ gibt.

(b) Dass die angegebene Norm nach unten halbstetig ist, ist klar:

Betrachte sie als Supremum von entsprechenden Halbnormen bei welchen über endliche Teilmengen von X summiert wird.

Noch zu zeigen: $\|\cdot\|_1$ ist nicht stetig

Bew.: Ann: $\|\cdot\|_1$ ist stetig

$$\Rightarrow \exists \tilde{\rho}_1, ..., \tilde{\rho}_n \in (\mathbb{R}_+^*)^X, c \in \mathbb{R}_+$$

$$\operatorname{mit} \|\varphi\|_{1} \leq c \cdot \max_{i=1,\dots,n} \|\varphi\|_{\infty,\rho_{i}} \forall \varphi$$

Definiere: $\rho := c \cdot \max_{i=1,\dots,n} \tilde{\rho}_i$

Dann gilt: $c \cdot \max_{i=1,\dots,n} \|\tilde{\rho}_i \varphi\|_{\infty} = \max_{i=1,\dots,n} \max_{x \in K} c \cdot |\tilde{\rho}_i(x)\varphi(x)| \le \max_{x \in K} |\rho(x)\varphi(x)|$

 $\Rightarrow \|\varphi\|_1 \le \|\rho\varphi\|_{\infty} = \|\varphi\|_{\rho,\infty}$

Definiere: $M_L := \{x \in X : \rho(x) \le L\}$

 $\Rightarrow card(M_L) \leq L$

Und: $\rho^{-1}(\mathbb{R}^{\star}_{+}) = X$

 $\Rightarrow \bigcup_{L \in \mathbb{N}} M_L = X$

Dabei ist die linke Seite als abz. Vereinigung von endlichen Mengen abzählbar, die rechte hingegen überabzälbar.

 \Rightarrow Widerspruch und somit die Beh.

Lösungsblatt 10

Aufgabe 3

(a) Seien $\chi \in \mathcal{H}$, $\zeta \in \mathcal{G}$ fest. Die in beiden Argumenten semilineare Abbildung

$$\omega_{\chi,\zeta}: (\xi,\eta) \longrightarrow (\xi|\chi) \cdot (\eta|\zeta) : \mathcal{H} \times \mathcal{G} \longrightarrow \mathbb{K}$$

definiert eine semilineare Abbildung

$$\omega_{\chi,\zeta}: \mathcal{H} \quad \mathcal{G} \longrightarrow \mathbb{K} \quad \text{mit} \quad \omega_{\chi,\zeta}(\xi \quad \eta) = (\xi | \chi) \cdot (\eta | \zeta) .$$

Nun gilt

$$\omega_{\chi+\alpha\cdot\pi,\zeta}\left(\xi-\eta\right)=\left(\xi|\chi+\alpha\cdot\pi\right)\cdot\left(\eta|\zeta\right)=\left(\left(\xi|\chi\right)+\alpha\cdot\left(\xi|\pi\right)\right)\cdot\left(\eta|\zeta\right)=\left(\omega_{\chi,\zeta}+\alpha\cdot\omega_{\pi,\zeta}\right)\left(\xi-\eta\right)$$
 und analog

$$\omega_{\chi,\zeta+\alpha\cdot\vartheta} = \omega_{\xi,\zeta} + \alpha\cdot\omega_{\pi,\zeta}$$

Das heißt, die Abbildung

$$:\mathcal{H} imes\mathcal{G}\longrightarrow (\mathcal{H}-\mathcal{G})^{\circledast}$$

ist bilinear. Sie definiert daher eine lineare Abbildung

$$:\mathcal{H}\quad \mathcal{G}\longrightarrow (\mathcal{H}\quad \mathcal{G})^{\circledast}$$

mit

$$(\chi \quad \zeta)(\xi \quad \eta) = \omega_{\chi,\zeta}(\xi \quad \eta) = (\xi|\chi) \cdot (\eta|\zeta)$$
.

Nun definiert man die sesquilineare Abbildung

$$(\cdot|\cdot)_{\mathcal{H}\ \mathcal{G}}:\mathcal{H}\ \mathcal{G}\times\mathcal{H}\ \mathcal{G}\longrightarrow\mathbb{K}$$

durch

$$(s|t)_{\mathcal{H} \ \mathcal{G}} = (s)(t)$$
 für alle $s,t \in \mathcal{H} \ \mathcal{G}$.

Dann ist

$$\overline{(\xi - \eta | \chi - \zeta)_{\mathcal{H} - \mathcal{G}}} = \overline{(\xi | \chi) \cdot (\eta | \zeta)} = (\chi | \xi) \cdot (\zeta | \eta) = (\chi - \zeta | \xi - \eta)_{\mathcal{H} - \mathcal{G}},$$

also $(\cdot|\cdot)_{\mathcal{H}}$ \mathcal{G} hermitesch. Sei nun $t\in\mathcal{H}$ \mathcal{G} . Dann ist $t=\sum_{i}\xi_{i}$ η_{i} . Sei (χ_{j}) eine hilbertsche Basis von \mathcal{H} . Dann gibt es (α_{ij}) mit $\xi_{i}=\sum_{j}\alpha_{ij}\chi_{j}$. Es folgt

$$t = \sum_{ij} \alpha_{ij} \chi_j \quad \eta_i = \sum_j \chi_j \quad \sum_i \alpha_{ij} \eta_i = \sum_j \chi_j \quad \zeta_j \ ,$$

wobei $\zeta_j = \sum_i \alpha_{ij} \eta_i$. Nun gilt

$$||s||_{\mathcal{H} \mathcal{G}}^{2} = \sum_{ij} (\chi_{i} \quad \zeta_{i} | \chi_{j} \quad \zeta_{j})_{\mathcal{H} \mathcal{G}} = \sum_{ij} (\chi_{i} | \chi_{j}) \cdot (\zeta_{i} | \zeta_{j}) = \sum_{i} ||\zeta_{i}||^{2}.$$

Falls $||s||_{\mathcal{H}_{\mathcal{G}}} = 0$, folgt also $\zeta_i = 0$ für alle i, somit s = 0. Damit ist $(\cdot|\cdot)_{\mathcal{H}_{\mathcal{G}}}$ ein Skalarprodukt. (b) Durch

$$\mathbf{L}^{2}(\mu) \times \mathbf{L}^{2}(\nu) \longrightarrow \mathbf{L}^{2}(\mu \quad \nu) : (f,g) \longmapsto f \quad g$$

wobei

$$(f \quad g)(x,y) = f(x)g(y)$$
 für alle $x \in X$, $y \in Y$,

ist eine bilineare Abbildung definiert. Sie ist wohldefiniert nach dem Satz von Tonelli, da f-g $\mu-\nu$ -messbar ist und

$$\int_{X}^{*} \int_{Y}^{*} |f - g|^{2} d\nu d\mu = \int_{X} |f|^{2} d\mu \cdot \int_{Y} |g|^{2} d\nu < \infty.$$

Damit gibt es eine lineare Abbildung

$$\Phi: \mathbf{L}^{2}(\mu) \quad \mathbf{L}^{2}(\nu) \longrightarrow \mathbf{L}^{2}(\mu \quad \nu): f \quad g \longmapsto f \quad g.$$

Weiter gilt nach dem Satz von Fubini

$$\|f - g\|_{\mathbf{L}^{2}(\mu - \nu)}^{2} = \int_{X} \int_{Y} |f - g|^{2} d\nu d\mu = \|f\|_{\mathbf{L}^{2}(\mu)}^{2} \cdot \|g\|_{\mathbf{L}^{2}(\nu)}^{2} = \|f - g\|_{\mathbf{L}^{2}(\mu) - \mathbf{L}^{2}(\nu)}^{2}$$

für alle $f \in \mathbf{L}^2(\mu)$ und $g \in \mathbf{L}^2(\nu)$. Falls also $t \in \mathbf{L}^2(\mu)$ $\mathbf{L}^2(\nu)$ beliebig ist, schreibe $t = \sum_i f_i$ g_i , wobei (f_j) wie in (a) eine hilbertsche Basis von $\mathbf{L}^2(\mu)$ sei. Dann gilt (Pythagoras)

$$||t||_{\mathbf{L}^{2}(\mu)}^{2}|_{\mathbf{L}^{2}(\nu)} = \sum_{i} ||g_{i}||_{\mathbf{L}^{2}(\nu)}^{2} = \sum_{i} ||f_{i}||_{\mathbf{L}^{2}(\mu-\nu)}^{2} = ||\Phi(t)||_{\mathbf{L}^{2}(\mu-\nu)}^{2}.$$

Damit ist Φ eine Isometrie und setzt sich somit zu einer Isometrie auf die Vervollständigung fort.

Um zu sehen, dass die induzierte Abbildung surjektiv ist, reicht zu zeigen, dass Φ dichtes Bild hat. $\mathcal{K}(X \times Y)$ ist dicht. Sei $\chi \in \mathcal{K}(X \times Y)$ und seien $K \subset X$, $L \subset Y$ kompakt mit supp $\chi \subset K \times L$. Φ induziert eine Injektion

$$\mathcal{C}^{0}\left(K\right) \quad \mathcal{C}^{0}\left(L\right) \hookrightarrow \mathcal{C}^{0}\left(K \times L\right) = \mathcal{K}\left(X \times Y, K \times L\right) \ .$$

Man sieht leicht, dass das Bild dieser Injektion eine Unteralgebra A von $\mathcal{C}^0\left(K\times L\right)$ ist. Seien $(x,y),(u,v)\in K\times L$ mit $(x,y)\neq (u,v)$. Dann ist $\times x\neq u$. Es gibt $\varphi\in\mathcal{C}\left(K\right)$ mit $\varphi\left(x\right)=1$ und $\varphi\left(u\right)=0$ und $\psi\in\mathcal{C}^0\left(L\right)$ mit $\psi\left(y\right)=1$. Dann ist

$$\left(\varphi \quad \psi\right)\left(x,y\right) = 1 \neq 0 = \left(\varphi \quad \psi\right)\left(u,v\right) \; ,$$

also trennt A die Punkte von $K \times L$. Damit ist A dicht in \mathcal{C}^0 ($K \times L$) und χ liegt im Abschluss von Φ (\mathbf{L}^2 (μ) — \mathbf{L}^2 (ν)). (Verknüpfung von Abbildungen mit dichtem Bild hat dichtes Bild.) Damit

$$\mathbf{L}^{2}\left(\mu-\nu\right)=\overline{\mathcal{K}\left(X\times Y\right)}\subset\overline{\Phi\left(\mathbf{L}^{2}\left(\mu\right)-\mathbf{L}^{2}\left(\nu\right)\right)}\ .$$

Funktionalanalysis I WS 03/04 Übungsblatt 11, Aufgabe 1

(a) Zu zeigen:
$$\varphi \cdot \psi \in \ell^1(X)$$

Beweis:
$$\sum_{x \in X} |\varphi(x) \cdot \psi(x)|^{Hoelder \neq} \leq (\sum_{x \in X} |\varphi(x)|^p)^{\frac{1}{p}} (\sum_{x \in X} |\psi(x)|^q)^{\frac{1}{q}} < \infty$$

Denn $\varphi \in \ell^p(X)$ und $\psi \in \ell^q(X)$.

Dass die Abbildung linear ist folgt aus der Linearität des Integrals.

Noch zu zeigen: μ_{ψ} stetig.

Beweis:
$$\|\mu_{\psi}\| = \sup_{\varphi \in \ell^p(X), \|\varphi\|_p \le 1} |\sum_{x \in X} \varphi(x) \cdot \psi(x)|$$

 $\le \sup_{x \in X} |\varphi(x) \cdot \psi(x)| \le \sup_{x \in X} |\varphi(x)|^p)^{\frac{1}{p}} (\sum_{x \in X} |\psi(x)|^q)^{\frac{1}{q}}$
Dabei ist der erste Term ≤ 1 und der zweite $= \|\psi\|_q$
Insbesondere ist $\|\mu_{\psi}\| < \infty$, μ_{ψ} also stetig.

(b) Nach Teil (a) gilt bereits: $\|\mu_{\psi}\| \leq \|\psi\|_q$

Bleibt also zu zeigen:
$$\|\mu_{\psi}\| \geq \|\psi\|_q$$

Beweis: Finde ein
$$\varphi$$
 mit $\|\varphi\|_p \le 1$ so dass $|\sum_{x \in X} \varphi(x) \cdot \psi(x)| = \|\psi\|_q$ Ist $\psi = 0$, so setze $\varphi = 0 \Rightarrow$ Behauptung.

Ist
$$\psi \neq 0$$
, dann definiere:
$$\varphi := \frac{\bar{\psi}}{\|\psi\|_q} \cdot \frac{|\psi|^{q-1}}{\|\psi\|_q^{q-1}}$$

Dann gilt:

(I)
$$\|\varphi\|_p^p = \sum_{x \in X, \psi(x) \neq 0} \left(\frac{|\psi(x)|^{q-1}}{\|\psi\|_q^{q-1}}\right)^p = \sum_{x \in X} \frac{|\psi(x)|^q}{\|\psi\|_q^q} = \|\psi\|_q^{-q} \cdot \sum_{x \in X} |\psi(x)|^q = 1$$

(II)
$$|\sum_{x \in X} \varphi(x) \cdot \psi(x)| = \frac{1}{\|\psi\|_q^{q-1}} \cdot |\sum_{x \in X} \frac{\bar{\psi}(x)}{|\psi(x)|} \cdot |\psi(x)|^{q-1} \cdot \psi(x)|$$

= $\frac{1}{\|\psi\|_q^{q-1}} \cdot |\sum_{x \in X} |\psi(x)|^q| = \|\psi\|_q$

 $\Rightarrow T$ ist Isometrie.

(c) Zu zeigen: T surjektiv.

Beweis: Sei
$$\mu \in \ell^p(X)'$$

Definiere:
$$\psi(x) := \mu(1_{\{x\}})$$
 und zeige (i) $\psi(x) \in \ell^q(X)$ und (ii) $\mu_{\psi} = \mu$

Sei $K \subset X$ eine endliche Teilmenge.

$$\sum_{\substack{x \in K \\ \mu \text{ linear} \\ = \\ \mu \text{ stetia}}} \mu(x)|^q = \sum_{x \in K} \psi(x) \bar{\psi}(x) \cdot |\psi(x)|^{q-2} = \sum_{x \in K} \mu(1_{\{x\}}) \cdot \bar{\psi}(x) \cdot |\psi(x)|^{q-2}$$

$$\stackrel{\mu \ stetig}{=} \|\mu\| \cdot \|\sum_{x \in K} 1_{\{x\}} \cdot \bar{\psi}(x) \cdot |\psi|^{q-2}(x)\|_p$$

$$\stackrel{p-Norm}{=} \|\mu\| \cdot (\sum_{y \in X} |\sum_{x \in K} 1_{\{x\}}(y) \cdot \bar{\psi}(x) \cdot |\psi|^{q-2}(x)|^p)^{\frac{1}{p}}$$

$$= \|\mu\| \cdot (\sum |\bar{\psi}(x) \cdot |\psi|^{q-2} (x)|^p)^{\frac{1}{p}}$$

$$= \|\mu\| \cdot \left(\sum_{x \in K} |\psi(x)|^q\right)^{\frac{1}{p}}$$

$$\Rightarrow \frac{\sum_{x \in K} |\psi(x)|^q}{\left(\sum_{x \in K} |\psi(x)|\right)^{\frac{1}{p}}} \le \|\mu\|$$

$$\Rightarrow \left(\sum_{x \in K} |\psi(x)|^q\right)^{\frac{1}{q}} \le \|\mu\|$$

 $\Rightarrow (\sum_{x \in K} |\psi(x)|^q)^{\frac{1}{q}} \leq \|\mu\|$ Übergehen zum Supremum über alle endlichen Mengen liefert die Behauptung.

Ad (ii): Da $(1_{\{x\}})_{x\in X}$ total in $\ell^p(X)$, genügt es die Behauptung für diese Funktionen zu zeigen:

Sei
$$x_0$$
 beliebig: $\mu_{\psi}(1_{\{x_0\}}) = \sum_{x \in X} 1_{\{x_0\}}(x) \cdot \mu(1_{\{x\}}) = \mu(1_{\{x_0\}})$

Lösungsblatt 11

Aufgabe 2 Sei $f: X \longrightarrow \mathbb{K}$. Es gilt

$$\varphi \cdot f \in \ell^1(X) \quad \Longleftrightarrow \quad \varphi \cdot |f| \in \ell^1(X)$$

und

$$f \in \ell^q(X) \iff |f| \in \ell^q(X)$$
.

Demzufolge kann Œ $f \ge 0$ angenommen werden. Für jede endliche Teilmenge $K \subset X$ ist $1_K \cdot f \in \ell^q(X)$ und somit $\mu_K = \mu_{1_K \cdot f} \in \ell^p(X)'$ nach Aufgabe 1. Nach Voraussetzung gilt

$$\sup_{K \in \mathfrak{K}(X)} |\mu_K(\varphi)| = \sup_{K \in \mathfrak{K}(X)} \left| \sum_{x \in K} \varphi(x) \cdot f(x) \right| \leqslant$$

$$\leqslant \sup_{K \in \mathfrak{K}(X)} \sum_{x \in K} |\varphi(x) \cdot f(x)| = \|\varphi \cdot f\|_{1} < \infty ,$$

so dass $(\mu_K)_{K \in \mathfrak{K}(X)}$ in $\mathcal{L}_s\left(\ell^p\left(X\right), \mathbb{K}\right)$ beschränkt ist. Nach dem Satz über die gleichmäßige Beschränktheit ist $p = \sup_K |\mu_K|$ eine stetige Halbnorm auf $\ell^p\left(X\right)$. Es gibt also eine Konstante $c \in \mathbb{R}_+$ mit

$$c \cdot \left\|\varphi\right\|_{p} \geqslant p\left(\left|\varphi\right|\right) \geqslant \left|\mu_{K}\left(\left|\varphi\right|\right)\right| = \sum_{x \in K} \left|\varphi\left(x\right)\right| \cdot f\left(x\right) \geqslant \left|\sum_{x \in K} \varphi\left(x\right) \cdot f\left(x\right)\right| \ .$$

für alle endlichen $K \subset X$ und $\varphi \in \ell^p(X)$. Dies zeigt, dass $\nu_f : \varphi \longmapsto \sum_{x \in X} (f \cdot \varphi)(x)$ eine stetige Linearform ist, also $\nu_f = \mu_\psi$ für ein $\psi \in \ell^q(X)$. Dann folgt aber

$$f\left(x\right) = \nu_f\left(1_{\{x\}}\right) = \mu_\psi\left(1_{\{x\}}\right) = \psi\left(x\right)$$
 für alle $x \in X$.

Damit ist $f = \psi \in \ell^q(X)$.

Aufgabe 3

(a) Zu $x \in X$ sei

$$A_{x,l} = \left\{ \left| \varkappa \left(x, \diamond \right) \right| \geqslant \frac{1}{l} \right\} .$$

Wegen (a) ist die Integrierbarkeit klar und die Limeseigenschaft aus dem Hinweis folgt mit dem Satz von Lebesgue.

Ist $x \in X$ und A eine ν -integrierbare Menge, so ist mit

$$\operatorname{sgn} z = \begin{cases} \frac{z}{|z|} & z \neq 0 \\ 0 & z = 0 \end{cases}$$

die Funktion $1_A \cdot \operatorname{sgn} \overline{\varkappa(x,\diamond)}$ ν -integrierbar und es gibt eine Folge $(\psi_{x,k})_{k\in\mathbb{N}} \in \mathcal{K}(Y)$ mit $1_A \cdot \operatorname{sgn} \overline{\varkappa(x,\diamond)} = \lim_k \psi_{x,k}$ in $\mathbf{L}^1(\nu)$. Durch Schneiden und mittels des Satzes von Riesz-Fischer kann $|\psi_{x,k}| \leqslant 1$ für alle k sowie punktweise Konvergenz ν -fast überall angenommen werden. Dann erfüllt die Folge $(\varkappa(x,\cdot) \cdot \psi_{x,k})_{k\in\mathbb{N}} \subset \mathbf{L}^1(\nu)$ die Voraussetzungen des Satzes von Lebesgue und es folgt

$$\lim_{k \to \infty} \left| \int \varkappa(x, y) \cdot \psi_{x,k}(y) \ d\nu(y) \right| = \left| \int \lim_{k \to \infty} \varkappa(x, y) \cdot \psi_{x,k}(y) \ d\nu(y) \right| =$$

$$= \int_{A} |\varkappa(x, y)| \ d\nu(y) .$$

Zusammen erhält man für jedes $x \in X$ und für jede der Mengen $A_{x,l}$ eine Folge $\left(\psi_{x,k}^{(l)}\right)_{k \in \mathbb{N}}$, so dass

$$\int |\varkappa(x,y)| \ d\nu(y) = \lim_{l \to \infty} \int_{A_l} |\varkappa(x,y)| \ d\nu(y) =$$

$$= \lim_{l \to \infty} \lim_{k \to \infty} \left| \int \varkappa(x,y) \cdot \psi_{x,k}^{(l)}(y) \ d\nu(y) \right| \leqslant$$

$$\stackrel{(d)}{\leqslant} \lim_{l \to \infty} \lim_{k \to \infty} ||K|| \ \left\| \psi_{x,k}^{(l)} \right\| \ \leqslant ||K|| \ .$$

Dies liefert die noch fehlende Ungleichung für die Behauptung.

(b) Der Kern $|f\rangle\langle g|$ erfüllt die Bedingungen (a) und (b) trivialerweise und wegen

$$|f(x) \cdot g| \le ||f||_{\infty} \cdot |g|$$
 für alle x

auch Bedingung (c). Man rechnet sofort

$$\sup_{x \in X} \int \left| |f\rangle \langle g|(x,y) \right| d\nu (y) = \sup_{x \in X} |f(x)| \cdot \int |g(y)| dy = ||f||_{\infty} \cdot ||g||_{1} < \infty$$

und erhält damit die Norm des Integraloperators.

(c) Hier sind ebenfalls alle Bedingungen (a), (b) und (c) erfüllt. Wir fassen die Familien von Vektoren $(f_j)_{j=1,\ldots,m}$, $(g_j)_{j=1,\ldots,m} \subset \mathbb{K}^n$ zu Matrizen $F,G \in \mathbb{K}^{n \times m}$ zusammen:

$$F_{kj} = f_j(k)$$
 und $G_{kj} = g_j(k)$.

Für $k = 1, \ldots, n$ gilt

$$\int \left| \sum_{j=1}^{m} \left| f_{j} \right\rangle \left\langle g_{j} \right| \left(k, l \right) \right| d\# \left(l \right) = \sum_{l=1}^{n} \left| \sum_{j=1}^{m} f_{j} \left(k \right) \cdot \overline{g_{j} \left(l \right)} \right| = \sum_{l=1}^{n} \left| \sum_{j=1}^{m} F_{kj} G_{jl}^{*} \right| =$$

$$= \sum_{l=1}^{n} \left| (FG^*)_{k,l} \right| = \|h_k\|_1 ,$$

wenn

$$h_k(l) = (FG^*)_{kl} .$$

Damit ist

$$||K|| = \max_{k=1}^{n} ||h_k||_1$$
,

das Maximum der Zeilen-1-Normen.

Blatt 12 Aufgabe 1

a) Definiere T: $l^1(X) \rightarrow c^0(X)_{\beta}$ ': $f \mid \rightarrow Tf$ mit

$$(Tf)(g) := \sum_{x \in X} f(x)g(x)$$

für alle $g \in c^0(X)$. Dann folgt mit der Hölder-Ungleichung

$$|(Tf)(g)| \le \sum_{x \in X} |f(x)g(x)| = ||fg||_1 \le ||f||_1 ||g||_{\infty} < \infty$$

d.h. die Reihe ist absolut konvergent für alle $f \in l^1(X)$ und $g \in c^0(X)$. Weiter ist $||Tf|| = ||f||_1 < 8$, d.h. Tf ist stetig und T ist wohldefiniert.

Beh.: T ist ein isometrischer Isomorphismus.

Wenn T isometrisch ist, ist T automatisch injektiv und T⁻¹ stetig wegen Normerhaltung. Es bleibt also nur Surjektivität und Isometrie zu zeigen.

Surjektivität: Sei $\mu \in c^0(X)_{\beta}$ '. Setze $f(x) := \mu(1_{\{x\}})$ für alle $x \in X$ und h(x) := |f(x)| / f(x) falls $f(x) \neq 0$ und 0 sonst. Sei $K \subset X$ endlich. Es gilt

$$\sum_{x \in K} |f(x)| = \sum_{x \in K} |\mathbf{m}(1_{\{x\}})| = \sum_{x \in K} h(x)\mathbf{m}(1_{\{x\}}) = |\mathbf{m}(\sum_{x \in K} h(x)1_{\{x\}})| \le ||\mathbf{m}|| \sum_{x \in K} h(x)1_{\{x\}}| \le ||\mathbf{m}|| < \infty$$

und somit $||f||_1 = ||\mu|| < 8$, d.h. $f \in l^1(X)$. Nach Definition ist $(Tf)(1_{\{x\}}) = f(x) = \mu(1_{\{x\}})$, d.h. $Tf = \mu$ auf $lin(1_{\{x\}})$. Aus Stone-Weierstraß folgt, dass $lin(1_{\{x\}}) \subset c^0(X)$ dicht ist. Durch Stetigkeit ist $Tf = \mu$ auf ganz $c^0(X)$.

Isometrie: Für $f \in l^1(X)$ wurde schon $||Tf|| = ||f||_1$ und $||f||_1 = ||Tf||$ gezeigt, woraus die Gleichheit folgt.

b) Definiere T: $l^8(X) \rightarrow : l^1(X)_{\beta}$ wie oben. Bleibt z.z.: T surjektive Isometrie.

Surjektivität: Sei $\mu \in l^1(X)_{\beta}$ ', $f(x) := \mu(1_{\{x\}})$ für alle $x \in X$. Wegen $|\mu(1_{\{x\}})| = ||\mu|| ||1_{\{x\}}||_1 = ||\mu||$ folgt

$$\|\mu(1_{\{x\}})\| = \|\mu\| \|1_{\{x\}}\|_1 = \|\mu\| \text{ roigt}$$

$$||f||_{\infty} = \sup_{x \in X} |\mathbf{m}(1_{\{x\}})| \le ||\mathbf{m}|| < \infty$$

d.h. $f \in l^8(X)$. Es ist wieder $Tf = \mu$ auf $lin(1_{\{x\}}) = K(X) \subset L^1(X,\#) = l^1(X)$ dicht, d.h. $Tf = \mu$ auf $l^1(X)$.

c) Beh.: Die Norm von μ wird genau dann nicht angenommen, wenn

supp f = supp $T^{-1}\mu$ = { x ∈ X | $\mu(1_{\{x\}}) \neq 0$ } =: M unendlich ist.

"⇒": Ist M endlich, so gilt für

$$\mathbf{j} := \sum_{x \in M} \overline{\text{sgn } \mathbf{m}(1_{\{x\}})} 1_{\{x\}}$$

$$\mathbf{m}(\mathbf{j}) = \sum_{x \in M} |\mathbf{m}(1_{\{x\}})| = \sum_{x \in X} |\mathbf{m}(1_{\{x\}})| = ||f|| = ||Tf|| = ||\mathbf{m}||$$

" \Leftarrow ": Sei $\varphi \in c^0(X)$ mit $\|\varphi\| = 1$, $(K_l) \subset k(X)$ wachsend und

$$\boldsymbol{j}_{l} \coloneqq \sum_{x \in K_{l}} \boldsymbol{j}(x) 1_{\{x\}}$$

Dann gilt $\lim_{l} ||\phi_{l} - \phi||_{8} = 0$. Sei $0 < \epsilon < 1$. Es gibt ein $N \in |N|$, so dass für alle $x \in X \setminus K_{N}$ gilt $|\phi(x)| = \epsilon$. Damit gilt die Abschätzung

$$| \mathbf{m}(\mathbf{j}) | = \lim_{l} \left| \sum_{x \in K_{k}} \mathbf{j}(x) \mathbf{m}(1_{\{x\}}) \right| \leq \lim_{l} \sum_{x \in K_{l}} |\mathbf{j}(x)| \| \mathbf{m}(1_{\{x\}}) |$$

$$= \lim_{l \geq N} \left(\sum_{x \in K_{l} \setminus K_{N}} |\mathbf{j}(x)| \| \mathbf{m}(1_{\{x\}}) | + \sum_{x \in K_{l}} |\mathbf{j}(x)| \| \mathbf{m}(1_{\{x\}}) | \right) \leq \mathbf{e} \sum_{x \in X \setminus K_{N}} |\mathbf{m}(1_{\{x\}})| + \sum_{x \in K_{N}} |\mathbf{m}(1_{\{x\}})|$$

$$< \sum_{x \in X} | \mathbf{m}(1_{\{x\}}) | = ||f|| = ||Tf|| = ||\mathbf{m}||$$

 $d.h. \ |\mu(\phi)| < ||\mu||.$

Funktional-Analysis Zettel 12 Aufgabe 2

In dieser Aufgabe geht es um die schwache Topologie und das induktive Tensorprodukt. Dabei seinen zunächst F und G lokal konvexe Räume.

Wir zeigen, dass $|F_{\sigma}\rangle_i\langle G_{\sigma}|_{\sigma}$ homö
omorph zu $|F\rangle_i\langle G|_{\sigma}$ ist. Dazu betrachten wir die Bijektion

$$id: |F_{\sigma}\rangle_i \langle G_{\sigma}|_{\sigma} \longrightarrow |F\rangle_i \langle G|_{\sigma}$$
.

Wir müssen also jeweils die schwache Stetigkeit zeigen. Dabei werden wir benutzen, dass $(F_{\sigma})^{\dagger} = F^{\dagger}$ gilt.

Beweis:

Sei p eine der die Topologie erzeugenden Halbnormen auf $|F\rangle_i \langle G|_{\sigma}$.

 $\Leftrightarrow p = |\mu|$, wobei μ stetige Linearform auf $|F\rangle_i\langle G|$ ist.

 $\Leftrightarrow \mu \circ |\cdot\rangle\langle\gamma|$ ist eine stetige Linearform auf F für alle γ aus G und $\mu \circ |\varphi\rangle\langle\cdot|$ ist eine stetige Linearform auf G für alle φ aus F.

 $\Leftrightarrow \mu \circ |\cdot\rangle\langle\gamma|$ ist eine stetige Linearform auf F_{σ} für alle γ aus G und $\mu \circ |\varphi\rangle\langle\cdot|$ ist eine stetige Linearform auf G_{σ} für alle φ aus F.

 $\Leftrightarrow \mu$ ist eine stetige Linearform auf $|F_{\sigma}\rangle_i \langle G_{\sigma}|$.

 $\Leftrightarrow p = |\mu|$ ist eine der die schwache Topologie von $|F_{\sigma}\rangle_i \langle G_{\sigma}|_{\sigma}$ erzeugenden Halbnormen.

Zusatz:

Es gilt die folgende Kette:

$$|F\rangle_i\langle G| \stackrel{stetig}{\longrightarrow} |F_\sigma\rangle_i\langle G_\sigma| \stackrel{stetig}{\longrightarrow} |F\rangle_i\langle G|_\sigma = |F_\sigma\rangle_i\langle G_\sigma|_\sigma$$

Lösungsblatt 12

Aufgabe 3 (a) Ist μ eine solche Linearform, so gilt für alle endlichen Teilmengen $K \subset J$ und alle $(\beta_j)_{j \in K} \subset \mathbb{R}_+$

$$\begin{split} p\left(-\sum_{j\in K}\beta_{j}\cdot\varphi_{j}\right)\geqslant\mu\left(-\sum_{j\in K}\beta_{j}\cdot\varphi_{j}\right)&=-\sum_{j\in K}\beta_{j}\cdot\mu\left(\varphi_{j}\right)\geqslant\\ \geqslant&-\sum_{j\in K}\beta_{j}\cdot\alpha_{j}\;. \end{split}$$

Umgekehrt gelte die Ungleichung. Man definiere $q_j = r_j^{\infty}$, $j \in J$, wobei

$$r_j: \mathbb{R}_+ \cdot \varphi_j \longrightarrow \mathbb{R}: a \cdot \varphi_j \longmapsto a \cdot \alpha_j$$
.

Œ sei $0 \notin J$. Sei $\widetilde{J} := J \cup \{0\}$ und $q_0 := p$. Es ist die Existenz einer Linearform μ mit $\mu \leqslant q_j$ für alle $j \in \widetilde{J}$ zu zeigen. Dies wird mittels des Orlicz-Prinzips durchgeführt. Es bleibt, die Voraussetzungen hierfür zu prüfen.

Offensichtlich gilt $\bigwedge_{j\in \tilde{J}}q_j\leqslant p<\infty$ auf F. Sei $\varphi\in F$. Da andere Zerlegungen außer

$$\varphi = \left(\varphi - \sum_{j \in K} \beta_j \cdot \varphi_j\right) + \sum_{j \in K} \beta_j \cdot \varphi_j \quad \text{(mit K endlich, $\subset J$)}$$

den Wert ∞ liefern, reduziert sich das Infimum in der Definition von $\bigwedge_{j\in\widetilde{J}}q_j$ auf

$$\bigwedge_{j\in\widetilde{J}}q_{j}\left(\varphi\right)=\inf_{K\in\mathfrak{K}\left(J\right),\left(\beta_{j}\right)\subset\mathbb{R}_{+}}\left[p\left(\varphi-\sum_{j\in K}\beta_{j}\cdot\varphi_{j}\right)+\sum_{j\in K}q_{j}\left(\beta_{j}\cdot\varphi_{j}\right)\right]\geqslant$$

$$\geqslant \inf_{K \in \mathfrak{K}(J), \left(\beta_{j}\right) \subset \mathbb{R}_{+}} \left[p \left(-\sum_{j \in K} \beta_{j} \cdot \varphi_{j} \right) + \sum_{j \in K} \beta_{j} \cdot \alpha_{j} - p \left(-\varphi \right) \right] \geqslant -p \left(-\varphi \right) > -\infty .$$

Das Orlicz-Prinzip ist also anwendbar.

(b) Sei zunächst ein entsprechendes μ gegeben. Für beliebige endlichen $\mathbb{R}\text{-Linearkombinationen}$ muss

$$\sum_{j \in K} \beta_j \cdot \alpha_j = \mu \left(\sum_{j \in K} \beta_j \cdot \varphi_j \right) \leqslant p \left(\sum_{j \in K} \beta_j \cdot \varphi_j \right)$$

gelten, d.h. die Bedingung

$$p\left(\sum_{j\in K}\beta_j\cdot\varphi_j\right)\geqslant\sum_{j\in K}\beta_j\cdot\alpha_j\tag{*}$$

für alle endlichen Teilmengen $K \subset J$ und alle $(\beta_j)_{j \in K} \subset \mathbb{R}$ ist notwendig. Ist diese Bedingung erfüllt, so gilt

$$p\left(-\sum_{j\in K}\beta_j\cdot\varphi_j-\sum_{j\in L}\gamma_j\cdot\left(-\varphi_j\right)\right)\geqslant -\sum_{j\in K}\beta_j\cdot\alpha_j-\sum_{j\in L}\gamma_j\cdot\left(-\alpha_j\right)$$

für alle endlichen Teilmengen $K,L\subset J$ und alle $(c_j)_{j\in K}$, $(b_j)_{j\in L}\subset \mathbb{R}_+$. Dies entspricht der Bedingung in (a) für die Familien $(\varphi_j)_{j\in J}\cup (-\varphi_j)_{j\in J}$ und $(\alpha_j)_{j\in J}\cup (-\alpha_j)_{j\in J}$. Mit (a) folgt aus dieser Bedingung bereits die Existenz von μ mit $\mu\leqslant p$ und

$$-\alpha_{j} \leqslant -\mu\left(-\varphi_{j}\right) = \mu\left(\varphi_{j}\right) \leqslant \alpha_{j}.$$

Die Bedingung (*) ist also notwendig und hinreichend.

(c) Wie in der Vorlesung gezeigt, ist eine C-Linearform μ durch ihren Realteil $\nu={\rm Re}\,\mu$ eindeutig bestimmt. Dieser muss

$$\nu\left(\varphi_{i}\right) = \operatorname{Re}\alpha_{i} \quad \text{und} \quad \nu\left(i\varphi_{i}\right) = -\operatorname{Im}\alpha_{i} \quad \text{für alle} \quad j \in J$$

erfüllen. Nach (b) ist die Existenz einer solchen \mathbb{R} -Linearform ν dazu äquivalent, dass

$$\sum_{j \in K} \beta_j \cdot \operatorname{Re} \alpha_j \leqslant p \left(\sum_{j \in K} \beta_j \cdot i \varphi_j \right) = p \left(\sum_{j \in K} \beta_j \cdot \varphi_j \right) \geqslant \sum_{j \in K} \beta_j \cdot \operatorname{Im} \alpha_j$$

für alle endlichen Teilmengen $K \subset J$ und alle $(\beta_j)_{j \in K} \subset \mathbb{R}$. Hat man eine solche \mathbb{R} -Linearform ν gegeben, so definiert

$$\mu(\varphi) = \nu(\varphi) - i\nu(-i\varphi)$$
 für alle $\varphi \in F$

eine \mathbb{C} -Linearform μ mit

$$\mu\left(\varphi_{j}\right) = \nu\left(\varphi_{j}\right) - i\nu\left(i\varphi_{j}\right) = \alpha_{j}$$

und

$$|\mu(\varphi)| = \sqrt{\nu(\varphi)^2 + \nu(i\varphi)^2} \leqslant \sqrt{p(\varphi)^2 + p(\varphi)^2} = p(\varphi)$$

für alle $\varphi \in F$.

Lösungsblatt 13

Aufgabe 1 Die Inklusionen $F \cap G \hookrightarrow F$ und $F \cap G \hookrightarrow G$ sind stetig, injektiv und haben dichtes Bild. Analoges gilt somit für die adjungierten Abbildungen, so dass F^{\dagger} und G^{\dagger} sinnvoll in $(F \cap G)^{\dagger}$ addiert werden können:

$$F^{\dagger} + G^{\dagger} \subset (F \cap G)^{\dagger}$$
.

Für die umgekehrte Inklusion sei $\lambda \in (F \cap G)^\dagger$, d.h. es existieren stetige Halbnormen p,q auf F bzw. G mit $|\lambda| \leqslant p+q$ auf $F \cap G$. Nach Beispiel 3.6.3 der Vorlesung existieren Semilinearformen μ bzw. ν auf $F \cap G$ mit

$$\lambda = \mu + \nu$$
 , $|\mu| \leqslant p$ und $|\nu| \leqslant q$.

Offensichtlich sind $\mu \in F^{\dagger}$ und $\nu \in G^{\dagger}$ und somit gilt die Behauptung.

Aufgabe 2

- (a) Es gilt Ker $B_k = \bigcap_{j=1}^k \operatorname{Ker} \mu_j$ und die Surjektivität aller B_k auf \mathbb{K}^k folgt aus dem Lemma 3.4.
- (b) Seien $(\varphi_j)_{j=1,\dots,n}$ und $(\psi_j)_{j=1,\dots,n}$ zwei Familien, die den Bedingungen

$$\varphi_j, \psi_j \in H_j \quad \text{und} \quad \varphi_j | \mu_k \rangle_F = \psi_j | \mu_k \rangle_F = \delta_{j,k} \quad \text{für alle } j, k = 1, \dots, n$$

genügen. Dann ist $\varphi_i - \psi_i | \mu_k \rangle_E = 0$ j, k = 1, ..., n. Mit anderen Worten

$$\varphi_j - \psi_j \in H_j \cap \operatorname{Ker} B_n \subset H_j \cap \operatorname{Ker} B_j = \{0\} \ .$$

Dies zeigt die Eindeutigkeit.

Für die Existenz gehen wir induktiv vor, wobei der Induktionsanfang $(H_0 = 0)$ klar ist. Seien

$$\varphi_j \in H_j$$
 mit $\varphi_j | \mu_k \rangle_E = \delta_{j,k}$ für alle $j, k = 1, \dots, l$

gegeben. Nach Lemma 3.4 existiert ein $\varphi_{l+1} \in \operatorname{Ker} B_l \setminus \operatorname{Ker} \mu_{l+1}$. In der Zerlegung $\varphi_{l+1} = \psi_{l+1} + \phi_{l+1} \in H_{l+1} \oplus \operatorname{Ker} B_{l+1}$ ist $\psi_{l+1} \in (H_{l+1} \cap \operatorname{Ker} B_l) \setminus \operatorname{Ker} \mu_{l+1}$. Œ $\psi_{l+1} | \mu_{l+1} \rangle = 1$. Weiter gilt $\psi_{l+1} | \mu_j \rangle_F = 0$ für alle $j = 1, \ldots, l$. Man setzt

$$\varphi_{l+1} = \psi_{l+1} - \sum_{j=1}^{l} \overline{\psi_{l+1} | \mu_j \rangle} \cdot \varphi_j \in H_{l+1} .$$

Es gilt

$$\varphi_{l+1} | \mu_k \rangle = \psi_{l+1} | \mu_k \rangle_F - \sum_{j=1}^l \psi_{l+1} | \mu_j \rangle \cdot \delta_{j,k} = 0 \quad \text{für alle } k = 1, \dots, l ,$$

und wegen $\varphi_1, \ldots, \varphi_l \in H_l \subset \operatorname{Ker} \mu_{l+1}$

$$\varphi_j | \mu_{l+1} \rangle = 0$$
 für alle $j = 1, \dots, l$,

sowie

$$\varphi_{l+1} | \mu_{l+1} \rangle = \psi_{l+1} | \mu_{l+1} \rangle_F - \sum_{j=1}^l \psi_{l+1} | \mu_j \rangle \cdot 0 = 1.$$

(c) Es gilt

$$\operatorname{Ker} B_{k} = \left\{ f \in \mathcal{AC}^{(n)}(J) \mid f^{(j)}(\tau) = 0 \text{ für } j = 0, \dots, k \right\}$$

und $H_1=\mathbb{K}\cdot 1$ ist ein geeigneter Komplementärraum. Es gilt $\varphi_1=1$. Induktiv erhält man

$$H_k = \mathcal{P}_{k-1} = \operatorname{Ker} \partial^k$$

(Polynome vom Grade $\leq k$) und

$$\varphi_k = \frac{(\mathrm{id} - \tau)^{k-1}}{(k-1)!} \ .$$

Die Bedingungen sind erfüllt und lassen sich leicht nachprüfen. Die Abbildung

$$R: \mathbf{L}_{\mathrm{loc}}^{1}\left(J\right) \longrightarrow \mathrm{Ker}\,B_{n-1} \subset \mathcal{AC}^{(n)}\left(J\right): g \longmapsto \int_{\tau}^{\diamond} \left(\int_{\tau}^{t_{n}} \ldots \left(\int_{\tau}^{t_{2}} g\left(t_{1}\right) \, dt_{1}\right) \ldots \, dt_{n-1}\right) \, dt_{n}$$

ist die Retraktion von ∂^n nach Ker B_{n-1} . Mit Fubini folgt

$$\int_{\tau}^{t} \left(\int_{\tau}^{t_{n}} \dots \left(\int_{\tau}^{t_{2}} g(t_{1}) dt_{1} \right) \dots dt_{n-1} \right) dt_{n} =$$

$$= \int_{J^{n}} 1_{\tau,t_{2}}(t_{1}) \dots 1_{\tau,t_{n}}(t_{n-1}) \cdot 1_{\tau,t}(t_{n}) \cdot g(t_{n}) d(t_{1},\dots,t_{n-1},t_{n}) =$$

$$= \int_{\tau}^{t} \left(\int_{t_{1}}^{t} \dots \int_{t_{n-2}}^{t} \left(\int_{t_{n-1}}^{t} 1 dt_{n} \right) dt_{n-1} \dots dt_{2} \right) \cdot g(t_{1}) dt_{1} =$$

$$= \int_{T} 1_{\tau,t}(s) \cdot \frac{(t-s)^{n-1}}{(n-1)!} \cdot g(s) ds,$$

also ist R der Integralkernoperator mit Kernfunktion

$$\varkappa(t,s) := 1_{\tau,t}(s) \cdot \frac{(t-s)^{n-1}}{(n-1)!}$$
.

Aufgabe 3

- (a) Es gilt für jedes $\xi \in \mathcal{H}$, dass $((\epsilon_k | \xi))_{k \in \mathbb{N}} \in \ell^2(\mathbb{N}) \subset c^0(\mathbb{N})$.
- (b) Sei $\eta \in \mathcal{H}$ mit $\|\eta\|_2 \leqslant 1$. Da

$$\sum_{j \in \mathbb{N} \setminus \{k\}} \left| \left(\epsilon_j \right| \eta \right) \right|^2 \leqslant \left\| \eta \right\|_2^2 \leqslant 1 ,$$

gibt es $1 \ge \alpha_k \ge 0$, so dass

$$\eta_k = \eta + (a_k - (\epsilon_k | \eta)) \cdot \epsilon_k \in \mathbb{S}$$
,

nämlich

$$\alpha_k^2 = 1 - \sum_{j \in \mathbb{N} \setminus \{k\}} \left| \left(\epsilon_j | \eta \right) \right|^2.$$

Für jedes $\xi \in \mathcal{H}$ gilt

$$|(\eta - \eta_k | \xi)| \leq |\alpha_k - (\epsilon_k | \eta)| \cdot |(\epsilon_k | \xi)| \leq 2 \cdot |(\epsilon_k | \xi)| \longrightarrow 0$$

also folgt die Behauptung.