Appendice 1

TOPOLOGIE

Nous avons rassemblé dans ce chapitre les notions topologiques, dont nous avons besoin dans ce cours. Certaines des démonstrations sont mots à mots les mêmes que celles faites dans le cadre des espaces métriques (cf. cours d'Analyse [17], chapitre 10).

Version du 2 février 2004

1.1 Ensembles ouverts et fermés

DEFINITION 1 Soit X un ensemble. On dit qu'une partie \mathfrak{T} de $\mathfrak{P}(X)$ est une topologie si l'on a

- (a) Si $\mathfrak{G} \subset \mathfrak{T}$, alors $\bigcup_{O \in \mathfrak{G}} O \in \mathfrak{T}$.
- (b) Si \mathfrak{F} est une partie finie de \mathfrak{T} , alors $\bigcap_{O \in \mathfrak{T}} O \in \mathfrak{T}$.

On dit que (X,\mathfrak{T}) est un espace topologique. Une partie $O\subset X$ est dite ouverte si $O\in\mathfrak{T}$. Une partie $F\subset X$ est dite fermée si $\mathcal{L}A:=X\smallsetminus A$ est ouverte. A la place de (X,\mathfrak{T}) on écrit souvent simplement X.

PROPOSITION Soient X un espace métrique, d sa métrique, $x \in X$, $\varepsilon > 0$,

$$B_{\varepsilon}(x) := \{ y \in X \mid d(x, y) \leqslant \varepsilon \} \quad et \quad D_{\varepsilon}(x) := \{ y \in X \mid d(x, y) < \varepsilon \} .$$

En posant

$$\mathfrak{T}_{(X,d)} := \{ O \subset X \mid \forall x \in O \ \exists \varepsilon > 0 \ tel \ que \ B_{\varepsilon}(x) \subset O \}$$

on définit une topologie sur X.

Cela a été démontré dans la proposition 10.12, cours d'Analyse [17]. Ainsi à tout espace métrique est associé un espace topologique.

DEFINITION 2 On dit qu'un espace topologique est *métrisable* si sa topologie peut être définie par une métrique.

EXEMPLE 1 Soit X un espace topologique, $\mathfrak T$ sa topologie et Y une partie de X. En posant

$$\mathfrak{T}_Y := \{ O \cap Y \mid O \in \mathfrak{T} \}$$

on définit une topologie sur Y, dite la topologie induite.

Si X est un espace métrique et \mathfrak{T} sa topologie, alors \mathfrak{T}_Y est le topologie qui provient de la métrique induite par X sur Y (cf. cours d'Analyse [17], exercice 10.12).

DEFINITION 3 Pour tout $A \subset X$, on définit l'intérieur A° de A par

$$A^\circ := \bigcup_{O \text{ ouvert, } \subset A} O \ .$$

460 TOPOLOGIE Claude Portenier

On dit que $x \in A$ est un point intérieur de A s'il existe une partie ouverte O telle que $x \in O \subset A$. Si x est un point intérieur de A, on dit que A est un voisinage de x. En posant

$$\overline{A} := \bigcap_{F \text{ ferm\'e}, \ \supset A} F$$

on définit la fermeture de A.

Une partie A est dite dense si $\overline{A} = X$.

L'ensemble A° est la plus grande partie ouverte contenue dans A. L'ensemble des points intérieurs de A est égal à A° . L'ensemble \overline{A} est la plus petite partie fermée contenant A.

EXEMPLE 2 Soient X un espace métrique, $x \in X$ et $\varepsilon > 0$. L'ensemble $B_{\varepsilon}(x)$, respectivement $D_{\varepsilon}(x)$, est un voisinage fermé respectivement ouvert de x. On dit que la boule fermée, respectivement ouverte, de $centre\ x$ et $rayon\ \varepsilon$. On a

$$\overline{D_{\varepsilon}(x)} \subset B_{\varepsilon}(x)$$
 et $D_{\varepsilon}(x) \subset B_{\varepsilon}(x)^{\circ}$.

Ces inclusions sont en général stricte.

PROPOSITION Soient A, B des parties d'un espace topologique X. Alors

- (i) A ouverte \iff $A^{\circ} = A$.
- (ii) A fermée $\iff \overline{A} = A$.
- (iii) $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$.
- (iv) $\overline{A} \cup \overline{B} = \overline{A \cup B}$.
- $(v) \quad A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ} .$
- (vi) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- (vii) $X \setminus A^{\circ} = \overline{X \setminus A}$.
- (viii) $X \setminus \overline{A} = (X \setminus A)^{\circ}$.

Cf. cours d'Analyse [17], exercice 10.16.

1.2 Continuité

1.2 Continuité

DEFINITION Soient X, Y des espaces topologiques. Une application $f: X \longrightarrow Y$ est dite continue en $x \in X$ si, pour toute partie ouverte O de Y telle que $f(x) \in O$, il existe une partie ouverte U de X telle que $x \in U$ et $f(U) \subset O$.

L'application f est dite continue si elle est continue en tout point de X.

THEOREME Soient X,Y des espaces topologiques et $f:X\longrightarrow Y$. Les propriétés suivantes sont équivalentes :

- (i) f est continue.
- (ii) f(O) est ouverte pour toute partie ouverte O de Y.
- (iv) $f(\overline{A}) \subset \overline{f(A)}$ pour toute partie $A \subset X$.

Cf. cours d'Analyse [17], proposition 10.16. Seule l'équivalence avec (iv) n'a pas été démontrée.

(iii) \Rightarrow (iv) Pour toute partie $A \subset X$, la partie $\overset{-1}{f}\left(\overline{f(A)}\right)$ est fermée et $\overset{-1}{f}\left(\overline{f(A)}\right) \supset \overset{-1}{f}\left(f(A)\right) \supset A$. On en déduit que $\overset{-1}{f}\left(\overline{f(A)}\right) \supset \overline{A}$ et par suite que $f\left(\overline{A}\right) \subset f\left(\overset{-1}{f}\left(\overline{f(A)}\right)\right) \subset \overline{f(A)}$.

 $(iv) \Rightarrow (iii)$ Soit F une partie fermée de Y. En posant $A := \stackrel{-1}{f}(F)$, on a $f(\overline{A}) \subset \overline{f(A)} \subset \overline{F} = F$, donc $\overline{A} \subset \stackrel{-1}{f}(F) = A \subset \overline{A}$, ce qui montre que $A = \stackrel{-1}{f}(F)$ est fermée.

EXEMPLE Soient X un espace topologique et Y une partie de X munie de la topologie induite. L'injection canonique $Y \hookrightarrow X$ est alors continue.

COROLLAIRE Si les applications $f: X \longrightarrow Y$ et $g: Y \longrightarrow Z$ sont continues, alors l'application

$$h = g \circ f : X \xrightarrow{f} Y \xrightarrow{g} Z$$

l'est aussi.

Cette assertion n'a pas été démontrée topologiquement (cf. cours d'Analyse [17], théorème 7.3). La démonstration est immédiate en utilisant (ii).

Convergence 1.3

1.3 Convergence

DEFINITION 1 Une suite $(x_k)_{k\in\mathbb{N}}$ de X est dite convergente si, pour toute partie ouverte U telle que $x\in U$, il existe un $N\in\mathbb{N}$ tel que l'on ait

$$x_k \in U$$
 pour tout $k \geqslant N$.

EXEMPLE 1 Soit (X, d) un espace métrique. Une suite $(x_k)_{k \in \mathbb{N}}$ de X est alors convergente vers x pour $\mathfrak{T}_{(X,d)}$ si, et seulement si, elle converge vers x par rapport à la métrique d.

PROPOSITION Soient X, Y des espaces topolgiques. Alors

- (i) Si une fonction $f: X \longrightarrow Y$ est continue en $x \in X$ et si une suite $(x_k)_{k \in \mathbb{N}}$ converge vers x, alors la suite $(f(x_k))_{k \in \mathbb{N}}$ converge vers f(x).
- (ii) Soient $A \subset X$ et $x \in X$. S'il existe une suite $(x_k)_{k \in \mathbb{N}} \subset A$, qui converge vers x, alors $x \in \overline{A}$.

Rappelons que la réciproque de ces assertions est valable dans le cas suivant :

THEOREME Soient X, Y des espaces topologiques et supposons que X est métrisable.

- (i) Soit $x \in X$. Une application $f: X \longrightarrow Y$ est continue en x si, et seulement si, pour toute suite $(x_k)_{k \in \mathbb{N}}$ convergente vers x, la suite $(f(x_k))_{k \in \mathbb{N}}$ est convergente vers f(x).
- (ii) Etant donné $A \subset X$ et $x \in X$, on a $x \in \overline{A}$ si, et seulement si, il existe une suite $(x_k)_{k \in \mathbb{N}} \subset A$ convergente vers x.

REMARQUE 1 En toute généralité on ne peut pas caractériser la continuité et la fermeture à l'aide des suites. Il faut introduire une généralisation de la notion de suite : les filtres.

DEFINITION 2 Soit X un ensemble. On dit qu'une famille non-vide $\mathfrak{B} \subset \mathfrak{P}(X)$ est une base de filtre si

- (a) $\emptyset \notin \mathfrak{B}$.
- (b) Pour tout $A, B \in \mathfrak{B}$, il existe $C \in \mathfrak{B}$ tel que $C \subset A \cap B$. On dit que $\mathfrak{F} \subset \mathfrak{P}(X)$ est un *filtre* si c'est une base de filtre et si en plus
- (c) Pour tout $A \in \mathfrak{F}$ et $A \subset B \subset X$, on a $B \in \mathfrak{F}$.

Soient $\mathfrak{B},\mathfrak{C}$ des bases de filtre. On dit que \mathfrak{B} est plus fine que \mathfrak{C} si, pour tout $C\in\mathfrak{C}$, il existe $B\in\mathfrak{B}$ telle que $B\subset C$.

Si $\mathfrak F$ est un filtre alors, pour tout $A,B\in\mathfrak F$, on a $A\cap B\in\mathfrak F$. Une base de filtre $\mathfrak B$ engendre un filtre

$$\widetilde{\mathfrak{B}}:=\{A\subset X\mid \text{il existe }B\in\mathfrak{B}\text{ tel que }B\subset A\}$$
 .

1.3 Convergence

Si $\mathfrak C$ est une autre base de filtre, alors $\mathfrak B$ est plus fine que $\mathfrak C$ si, et seulement si, $\widetilde{\mathfrak B}\supset\widetilde{\mathfrak C}$.

EXEMPLE 2 Si $(x_k)_{k\in\mathbb{N}}$ est une suite de X, alors l'ensemble des parties de la forme $\{x_l\mid l\geqslant k\}$ est une base de filtre sur X.

EXEMPLE 3 Si $f: X \longrightarrow Y$ est une application et \mathfrak{B} une base de filtre sur X, alors $f(\mathfrak{B}) := \{f(A) \mid A \in \mathfrak{B}\}$ est une base de filtre sur Y.

En particulier si X est une partie de Y et en considérant l'injection canonique, on voit que toute base de filtre sur X est une base de filtre sur Y .

EXEMPLE 4 Si X est un espace topologique et $x \in X$, alors l'ensemble $\mathfrak{V}(x)$ des voisinages de x est un filtre.

DEFINITION 3 Soit X un espace topologique. On dit qu'une base de filtre $\mathfrak B$ converge vers $x\in X$, si pour tout voisinage V de X, il existe $A\in \mathfrak B$ tel que $A\subset V$, i.e. si $\mathfrak B$ est plus fine que $\mathfrak V(x)$. On écrit alors

$$x = \lim \mathfrak{B} = \lim_{y \in \mathfrak{B}} y$$
.

Si Y est un autre espace topologique et $f: X \longrightarrow Y$ une application, on dit que $y \in Y$ est une valeur limite de f suivant \mathfrak{B} si $f(\mathfrak{B})$ converge vers y et on écrit

$$y = \lim f(\mathfrak{B}) = \lim_{x \in \mathfrak{B}} f(x) = \lim_{\mathfrak{B}} f$$
.

REMARQUE 2 Pour qu'une base de filtre converge, il faut et il suffit que le filtre engendré converge.

Le théorème ci-dessus est alors valable en toute généralité.

THEOREME Soient X, Y des espaces topologiques.

- (i) Soit $x \in X$. Une application $f: X \longrightarrow Y$ est continue en x si, et seulement si, pour tout filtre \mathfrak{F} qui converge vers x, la base de filtre $f(\mathfrak{F})$ converge vers f(x).
- (ii) Etant donné $A \subset X$ et $x \in X$, on a $x \in \overline{A}$ si, et seulement si, il existe un filtre sur A qui converge vers x dans X.

1.4 Espaces topologiques séparés

DEFINITION Un espace topologique X est dit *séparé* si, pour tout $x, y \in X$ tels que $x \neq y$, il existe des partie ouverte O, U telles que $x \in O$, $y \in U$ et $O \cap U = \emptyset$.

En particulier, dans un espace séparé toute partie ne contenant qu'un point est fermée.

EXEMPLE Tout espace métrique est séparé.

THEOREME Soient X, Y des espaces topologiques séparés et A une partie dense de X.

- (i) Si $f, g: X \longrightarrow Y$ sont des applications continues telles que $f_{|A} = g_{|A}$, alors f = g.
- (ii) Si $f: X \longrightarrow Y$ est une application continue d'image dense, alors f(A) est dense dans Y .

Démonstration de (i) Il suffit de montrer que $\{f = g\}$ est fermée et contient A.

Démonstration de (ii) Utilisant le théorème 10.2, on a

$$\overline{f(A)} \supset f(\overline{A}) = f(X)$$
,

donc

$$\overline{f(A)} \supset \overline{f(X)} = Y$$
.

1.5 Parties et espaces compacts

DEFINITION 1 Soit X un espace topologique séparé. Une partie $K \subset X$ est dite compacte si, pour tout recouvrement ouvert de K possède un sous-recouvrement fini. Si X est compact, on dit que X est un espace compact.

On désigne par $\mathfrak{K}(X)$ l'ensemble des parties compactes de X.

EXEMPLE 1 Si X est un espace métrique, alors $K \subset X$ est compact si, et seulement si, toute suite de K contient une sous-suite convergente.

Cf. cours d'Analyse [17], théorème 10.17.

THEOREME Soient X, Y des espaces topologiques séparés.

- (i) Si $f: X \longrightarrow Y$ est une application continue et $K \subset X$ est compacte, alors f(K) est compact.
- (ii) Une partie compacte est fermée.
- (iii) Une partie fermée contenue dans une partie compacte est compacte.

Démonstration de (i) Cf. cours d'Analyse [17], théorème 10.19.

Démonstration de (ii) La démonstration du cours d'Analyse [17], Corollaire 10.17 utilise les suites. Voici une démonstration topologique. Soit $x \in X \setminus K$. Puisque X est séparé, pour tout $y \in K$, il existe des voisinages ouverts U_y de y et V_y de x tels que $U_y \cap V_y = \emptyset$. La famille $(U_y)_{y \in K}$ est évidemment un recouvrement ouvert de K; il existe donc une partie finie $F \subset K$ telle que $(U_y)_{y \in F}$ soit encore un recouvrement de K. On en déduit que $V := \bigcap_{y \in F} V_y$ est un voisinage de x qui ne coupe pas $\bigcup_{y \in E} U_y$, donc aussi K. Ceci montre que $X \setminus K$ offen ist.

Démonstration de (iii) Soient A une partie fermée de X et K une partie compacte la contenant. Comme $X \setminus A$ est ouvert, il suffit de constater qu'une famille \mathcal{R} est un recouvrement ouvert de A si, et seulement si, $\mathcal{U} \cup \{X \setminus A\}$ est un recouvrement ouvert de K.

COROLLAIRE Pour qu'une partie $K \subset X$ soit compacte, il faut et il suffit que que K muni de la topologie induite soit un espace compact.

Cf. cours d'Analyse [17], exercice 10.17.4.

EXEMPLE 2 Soit X un espace topologique séparé. L'ensemble $\mathbb{C}(\mathfrak{K}(X))$ des parties de la forme $X \setminus K$, où $K \in \mathfrak{K}(X)$ est une base de filtre sur X.

Utilisant la notion de filtre on peut donner une caractérisation utile des espaces compacts. Mais tout d'abord **DEFINITION 2** On dit qu'un filtre $\mathfrak U$ est un *ultrafiltre* s'il est maximal, i.e. si tout filtre $\mathfrak F$ plus fin que $\mathfrak U$, i.e. $\mathfrak F\supset \mathfrak U$, est égal à $\mathfrak F$.

REMARQUE Par le principe de maximalité de Hausdorff, tout filtre est contenu dans un ultrafiltre.

THEOREME

- (i) Soit X un espace topologique séparé. Les propriétés suivantes sont équivalentes :
 - (a) X soit compact.
 - (b) Pour toute famille \mathfrak{B} d'ensembles fermés telle que $\bigcap_{B \in \mathfrak{B}} B = \emptyset$, il existe une sous-famille finie de \mathfrak{B} dont l'intersection est vide.
 - (c) Pour toute base de filtre \mathfrak{B} formées d'ensembles fermés, on a $\bigcap_{B\in\mathfrak{B}} B\neq\emptyset$.
 - (d) Tout ultrafiltre sur X est convergent.
- (ii) **Tychonoff** Si $(X_j)_{j\in J}$ est une famille d'espaces compacts, alors $\prod_{j\in J} X_j$ est compact.

Démonstration de (i)

- (a) \iff (b) Il suffit de passer aux complémentaires.
- (b) \iff (c) C'est la contraposition.
- (c) \Rightarrow (d) Soit $\mathfrak U$ un ultrafiltre. La famille des adhérences $\overline A$ pour $A \in \mathfrak U$ est une base de filtre satisfaisant à (c). Soit donc $x \in \bigcap_{A \in \mathfrak U} \overline A$. Pour tout voisinage V de x, on a $V \cap A \neq \emptyset$ pour tout $A \in \mathfrak U$, donc $V \in \mathfrak U$ par la maximalité de $\mathfrak U$. Ceci montre que $\mathfrak U$ converge vers x.
- (d) \Rightarrow (c) Par la remarque, il existe un ultrafiltre $\mathfrak U$ plus fin que $\mathfrak B$. Cet ultrafiltre converge donc vers un $x \in X$. Soit $B \in \mathfrak B$. On a $B \in \mathfrak U$ et, pour tout voisinage V de x, on a aussi $V \in \mathfrak U$, donc $B \cap V \in \mathfrak U$, ce qui montre que $B \cap V \neq \emptyset$. On en déduit que $x \in \overline{B} = B$, ce qui montre que $\bigcap_{B \in \mathfrak B} B \neq \emptyset$.

Démonstration de (ii)	Si \mathfrak{U} est un ultrafiltre sur	$\prod_{j\in J} X_j$, alors $\operatorname{pr}_j(\mathfrak{U})$ est une base
de filtre et elle engendre un	ultrafiltre sur X_j . Par hypo	othèse chaque $\operatorname{pr}_j(\mathfrak{U})$ converge, donc
aussi $\mathfrak U$. ——————————————————————————————————		