subroutine daxpy(n,da,dx,incx,dy,incy) c c constant times a vector plus a vector. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),da integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if (da .eq. 0.0d0) return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dy(iy) + da*dx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,4) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dy(i) + da*dx(i) 30 continue if( n .lt. 4 ) return 40 mp1 = m + 1 do 50 i = mp1,n,4 dy(i) = dy(i) + da*dx(i) dy(i + 1) = dy(i + 1) + da*dx(i + 1) dy(i + 2) = dy(i + 2) + da*dx(i + 2) dy(i + 3) = dy(i + 3) + da*dx(i + 3) 50 continue return end subroutine dcopy(n,dx,incx,dy,incy) c c copies a vector, x, to a vector, y. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*) integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,7) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dx(i) 30 continue if( n .lt. 7 ) return 40 mp1 = m + 1 do 50 i = mp1,n,7 dy(i) = dx(i) dy(i + 1) = dx(i + 1) dy(i + 2) = dx(i + 2) dy(i + 3) = dx(i + 3) dy(i + 4) = dx(i + 4) dy(i + 5) = dx(i + 5) dy(i + 6) = dx(i + 6) 50 continue return end double precision function ddot(n,dx,incx,dy,incy) c c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),dtemp integer i,incx,incy,ix,iy,m,mp1,n c ddot = 0.0d0 dtemp = 0.0d0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy 10 continue ddot = dtemp return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dtemp = dtemp + dx(i)*dy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 50 continue 60 ddot = dtemp return end SUBROUTINE DGEMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, \$ BETA, Y, INCY ) * .. Scalar Arguments .. DOUBLE PRECISION ALPHA, BETA INTEGER INCX, INCY, LDA, M, N CHARACTER*1 TRANS * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ), Y( * ) * .. * * Purpose * ======= * * DGEMV performs one of the matrix-vector operations * * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n matrix. * * Parameters * ========== * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. * * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. * * TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix A. * M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - DOUBLE PRECISION. * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry, the leading m by n part of the array A must * contain the matrix of coefficients. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, m ). * Unchanged on exit. * * X - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. * Before entry, the incremented array X must contain the * vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - DOUBLE PRECISION. * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - DOUBLE PRECISION array of DIMENSION at least * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' * and at least * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. * Before entry with BETA non-zero, the incremented array Y * must contain the vector y. On exit, Y is overwritten by the * updated vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( TRANS, 'N' ).AND. \$ .NOT.LSAME( TRANS, 'T' ).AND. \$ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 1 ELSE IF( M.LT.0 )THEN INFO = 2 ELSE IF( N.LT.0 )THEN INFO = 3 ELSE IF( LDA.LT.MAX( 1, M ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 ELSE IF( INCY.EQ.0 )THEN INFO = 11 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DGEMV ', INFO ) RETURN END IF * * Quick return if possible. * IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR. \$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) ) \$ RETURN * * Set LENX and LENY, the lengths of the vectors x and y, and set * up the start points in X and Y. * IF( LSAME( TRANS, 'N' ) )THEN LENX = N LENY = M ELSE LENX = M LENY = N END IF IF( INCX.GT.0 )THEN KX = 1 ELSE KX = 1 - ( LENX - 1 )*INCX END IF IF( INCY.GT.0 )THEN KY = 1 ELSE KY = 1 - ( LENY - 1 )*INCY END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * * First form y := beta*y. * IF( BETA.NE.ONE )THEN IF( INCY.EQ.1 )THEN IF( BETA.EQ.ZERO )THEN DO 10, I = 1, LENY Y( I ) = ZERO 10 CONTINUE ELSE DO 20, I = 1, LENY Y( I ) = BETA*Y( I ) 20 CONTINUE END IF ELSE IY = KY IF( BETA.EQ.ZERO )THEN DO 30, I = 1, LENY Y( IY ) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40, I = 1, LENY Y( IY ) = BETA*Y( IY ) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF( ALPHA.EQ.ZERO ) \$ RETURN IF( LSAME( TRANS, 'N' ) )THEN * * Form y := alpha*A*x + y. * JX = KX IF( INCY.EQ.1 )THEN DO 60, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) DO 50, I = 1, M Y( I ) = Y( I ) + TEMP*A( I, J ) 50 CONTINUE END IF JX = JX + INCX 60 CONTINUE ELSE DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = ALPHA*X( JX ) IY = KY DO 70, I = 1, M Y( IY ) = Y( IY ) + TEMP*A( I, J ) IY = IY + INCY 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF ELSE * * Form y := alpha*A'*x + y. * JY = KY IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = ZERO DO 90, I = 1, M TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 100 CONTINUE ELSE DO 120, J = 1, N TEMP = ZERO IX = KX DO 110, I = 1, M TEMP = TEMP + A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE Y( JY ) = Y( JY ) + ALPHA*TEMP JY = JY + INCY 120 CONTINUE END IF END IF * RETURN * * End of DGEMV . * END DOUBLE PRECISION FUNCTION DNRM2 ( N, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N * .. Array Arguments .. DOUBLE PRECISION X( * ) * .. * * DNRM2 returns the euclidean norm of a vector via the function * name, so that * * DNRM2 := sqrt( x'*x ) * * * * -- This version written on 25-October-1982. * Modified on 14-October-1993 to inline the call to DLASSQ. * Sven Hammarling, Nag Ltd. * * * .. Parameters .. DOUBLE PRECISION ONE , ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. Local Scalars .. INTEGER IX DOUBLE PRECISION ABSXI, NORM, SCALE, SSQ * .. Intrinsic Functions .. INTRINSIC ABS, SQRT * .. * .. Executable Statements .. IF( N.LT.1 .OR. INCX.LT.1 )THEN NORM = ZERO ELSE IF( N.EQ.1 )THEN NORM = ABS( X( 1 ) ) ELSE SCALE = ZERO SSQ = ONE * The following loop is equivalent to this call to the LAPACK * auxiliary routine: * CALL DLASSQ( N, X, INCX, SCALE, SSQ ) * DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX IF( X( IX ).NE.ZERO )THEN ABSXI = ABS( X( IX ) ) IF( SCALE.LT.ABSXI )THEN SSQ = ONE + SSQ*( SCALE/ABSXI )**2 SCALE = ABSXI ELSE SSQ = SSQ + ( ABSXI/SCALE )**2 END IF END IF 10 CONTINUE NORM = SCALE * SQRT( SSQ ) END IF * DNRM2 = NORM RETURN * * End of DNRM2. * END subroutine drot (n,dx,incx,dy,incy,c,s) c c applies a plane rotation. c jack dongarra, linpack, 3/11/78. c modified 12/3/93, array(1) declarations changed to array(*) c double precision dx(*),dy(*),dtemp,c,s integer i,incx,incy,ix,iy,n c if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments not equal c to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = c*dx(ix) + s*dy(iy) dy(iy) = c*dy(iy) - s*dx(ix) dx(ix) = dtemp ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c 20 do 30 i = 1,n dtemp = c*dx(i) + s*dy(i) dy(i) = c*dy(i) - s*dx(i) dx(i) = dtemp 30 continue return end subroutine drotg(da,db,c,s) c c construct givens plane rotation. c jack dongarra, linpack, 3/11/78. c double precision da,db,c,s,roe,scale,r,z c roe = db if( dabs(da) .gt. dabs(db) ) roe = da scale = dabs(da) + dabs(db) if( scale .ne. 0.0d0 ) go to 10 c = 1.0d0 s = 0.0d0 r = 0.0d0 z = 0.0d0 go to 20 10 r = scale*dsqrt((da/scale)**2 + (db/scale)**2) r = dsign(1.0d0,roe)*r c = da/r s = db/r z = 1.0d0 if( dabs(da) .gt. dabs(db) ) z = s if( dabs(db) .ge. dabs(da) .and. c .ne. 0.0d0 ) z = 1.0d0/c 20 da = r db = z return end subroutine dscal(n,da,dx,incx) c c scales a vector by a constant. c uses unrolled loops for increment equal to one. c jack dongarra, linpack, 3/11/78. c modified 3/93 to return if incx .le. 0. c modified 12/3/93, array(1) declarations changed to array(*) c double precision da,dx(*) integer i,incx,m,mp1,n,nincx c if( n.le.0 .or. incx.le.0 )return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx dx(i) = da*dx(i) 10 continue return c c code for increment equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dx(i) = da*dx(i) 30 continue if( n .lt. 5 ) return 40 mp1 = m + 1 do 50 i = mp1,n,5 dx(i) = da*dx(i) dx(i + 1) = da*dx(i + 1) dx(i + 2) = da*dx(i + 2) dx(i + 3) = da*dx(i + 3) dx(i + 4) = da*dx(i + 4) 50 continue return end SUBROUTINE DTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, LDA, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ) * .. * * Purpose * ======= * * DTRSV solves one of the systems of equations * * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the equations to be solved as * follows: * * TRANS = 'N' or 'n' A*x = b. * * TRANS = 'T' or 't' A'*x = b. * * TRANS = 'C' or 'c' A'*x = b. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). * Before entry with UPLO = 'U' or 'u', the leading n by n * upper triangular part of the array A must contain the upper * triangular matrix and the strictly lower triangular part of * A is not referenced. * Before entry with UPLO = 'L' or 'l', the leading n by n * lower triangular part of the array A must contain the lower * triangular matrix and the strictly upper triangular part of * A is not referenced. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced either, but are assumed to be unity. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. LDA must be at least * max( 1, n ). * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element right-hand side vector b. On exit, X is overwritten * with the solution vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, J, JX, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. \$ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. \$ .NOT.LSAME( TRANS, 'T' ).AND. \$ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. \$ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTRSV ', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) \$ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x := inv( A )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 20, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) \$ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 10, I = J - 1, 1, -1 X( I ) = X( I ) - TEMP*A( I, J ) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 40, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) \$ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 30, I = J - 1, 1, -1 IX = IX - INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 60, J = 1, N IF( X( J ).NE.ZERO )THEN IF( NOUNIT ) \$ X( J ) = X( J )/A( J, J ) TEMP = X( J ) DO 50, I = J + 1, N X( I ) = X( I ) - TEMP*A( I, J ) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80, J = 1, N IF( X( JX ).NE.ZERO )THEN IF( NOUNIT ) \$ X( JX ) = X( JX )/A( J, J ) TEMP = X( JX ) IX = JX DO 70, I = J + 1, N IX = IX + INCX X( IX ) = X( IX ) - TEMP*A( I, J ) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A' )*x. * IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 100, J = 1, N TEMP = X( J ) DO 90, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( I ) 90 CONTINUE IF( NOUNIT ) \$ TEMP = TEMP/A( J, J ) X( J ) = TEMP 100 CONTINUE ELSE JX = KX DO 120, J = 1, N TEMP = X( JX ) IX = KX DO 110, I = 1, J - 1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX + INCX 110 CONTINUE IF( NOUNIT ) \$ TEMP = TEMP/A( J, J ) X( JX ) = TEMP JX = JX + INCX 120 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 140, J = N, 1, -1 TEMP = X( J ) DO 130, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( I ) 130 CONTINUE IF( NOUNIT ) \$ TEMP = TEMP/A( J, J ) X( J ) = TEMP 140 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 160, J = N, 1, -1 TEMP = X( JX ) IX = KX DO 150, I = N, J + 1, -1 TEMP = TEMP - A( I, J )*X( IX ) IX = IX - INCX 150 CONTINUE IF( NOUNIT ) \$ TEMP = TEMP/A( J, J ) X( JX ) = TEMP JX = JX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTRSV . * END LOGICAL FUNCTION LSAME( CA, CB ) * * -- LAPACK auxiliary routine (version 2.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * January 31, 1994 * * .. Scalar Arguments .. CHARACTER CA, CB * .. * * Purpose * ======= * * LSAME returns .TRUE. if CA is the same letter as CB regardless of * case. * * Arguments * ========= * * CA (input) CHARACTER*1 * CB (input) CHARACTER*1 * CA and CB specify the single characters to be compared. * * ===================================================================== * * .. Intrinsic Functions .. INTRINSIC ICHAR * .. * .. Local Scalars .. INTEGER INTA, INTB, ZCODE * .. * .. Executable Statements .. * * Test if the characters are equal * LSAME = CA.EQ.CB IF( LSAME ) \$ RETURN * * Now test for equivalence if both characters are alphabetic. * ZCODE = ICHAR( 'Z' ) * * Use 'Z' rather than 'A' so that ASCII can be detected on Prime * machines, on which ICHAR returns a value with bit 8 set. * ICHAR('A') on Prime machines returns 193 which is the same as * ICHAR('A') on an EBCDIC machine. * INTA = ICHAR( CA ) INTB = ICHAR( CB ) * IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN * * ASCII is assumed - ZCODE is the ASCII code of either lower or * upper case 'Z'. * IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32 IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32 * ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN * * EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or * upper case 'Z'. * IF( INTA.GE.129 .AND. INTA.LE.137 .OR. \$ INTA.GE.145 .AND. INTA.LE.153 .OR. \$ INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64 IF( INTB.GE.129 .AND. INTB.LE.137 .OR. \$ INTB.GE.145 .AND. INTB.LE.153 .OR. \$ INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64 * ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN * * ASCII is assumed, on Prime machines - ZCODE is the ASCII code * plus 128 of either lower or upper case 'Z'. * IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32 IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32 END IF LSAME = INTA.EQ.INTB * * RETURN * * End of LSAME * END SUBROUTINE XERBLA( SRNAME, INFO ) * * -- LAPACK auxiliary routine (preliminary version) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * February 29, 1992 * * .. Scalar Arguments .. CHARACTER*6 SRNAME INTEGER INFO * .. * * Purpose * ======= * * XERBLA is an error handler for the LAPACK routines. * It is called by an LAPACK routine if an input parameter has an * invalid value. A message is printed and execution stops. * * Installers may consider modifying the STOP statement in order to * call system-specific exception-handling facilities. * * Arguments * ========= * * SRNAME (input) CHARACTER*6 * The name of the routine which called XERBLA. * * INFO (input) INTEGER * The position of the invalid parameter in the parameter list * of the calling routine. * * WRITE( *, FMT = 9999 )SRNAME, INFO * STOP * 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ', \$ 'an illegal value' ) * * End of XERBLA * END